MATH 5525- Test 1-Solutions

March 2, 2020

Problem 1. (50 points). Consider the system of differential equations

$$
\dot{y}=v, \quad \dot{v}=f(y),
$$

where f is a continuous function $f: \mathbf{R} \rightarrow \mathbf{R}$.

1. Find a first integral of the system. Let us rewrite the system as a single, second order ordinary differential equation:

$$
\frac{d^{2} y}{d t^{2}}=f(y)
$$

Now, multiply both sides by \dot{y} to get:

$$
\dot{y} \frac{d^{2} y}{d t^{2}}=\dot{y} f(y), \quad \text { or, equivalently } \quad \frac{1}{2} \frac{d \dot{y}^{2}}{d t}-\frac{d F(y)}{d t}=0
$$

where $F(y)$ is the antiderivative of $f(y)$, that is, it satisfies the relation

$$
F^{\prime}(y)=f(y) .
$$

Hence, the first integral of the system is

$$
\frac{1}{2}(\dot{y})^{2}-F(y)=E
$$

where E is an arbitrary constant.
2. Find the equilibrium points of the system in the case that $f(y)=\sin y$. From now on, consider $f(y)=\sin (y)$. The equilibrium points satisfy the equations $\sin y=0$ and $\dot{y}=0$. That is,

$$
y=0, \pm \pi, \pm 2 \pi, \ldots \quad \text { and } \quad \dot{y}=0
$$

3. Find the Jacobian matrix of the system at the equilibrium points. (That is, write the linearized system about the equilibrium points).

We first express the function $f(y)$ in a Taylor series about $y=y_{0}$, an equilibrium value, taking into account that $f\left(y_{0}\right)=0$:

$$
f(y)=f^{\prime}\left(y_{0}\right)\left(y-y_{0}\right)+o\left(\left|y-y_{0}\right|\right)
$$

In particular, for $f(y)=\sin y$, the matrix of the linear system about $\left(y_{0}, 0\right)$ becomes:

$$
A=\left[\begin{array}{cc}
0 & 1 \\
\cos y_{0} & 0
\end{array}\right]
$$

A. For $y_{0}=0, \pm 2 \pi, \pm 4 \pi, \ldots, \quad A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.
B. For $y_{0}=0, \pm \pi, \pm 3 \pi, \ldots, \quad A=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$.
4. Determine the nature of the equilibrium points.

The eigenvalues of $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ are $\lambda= \pm 1$. Hence the equilibrium points $(0,0),(\pm 2 \pi, 0),(\pm 4 \pi, 0), \ldots$ are saddle points.

The eigenvalues of $A=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ are $\lambda= \pm i$. Hence the equilibrium points $(0,0),(\pm \pi, 0),(\pm 3 \pi, 0), \ldots$ are centers.
5. Sketch the phase plane of the system in the interval $-\pi \leq y \leq \pi$.

Problem 2. (40 points). Consider the predator-pray system governing the number of individuals $x y$ of the two species at time $t>0$:

$$
\dot{x}=x(1-x-y), \quad \dot{y}=y(-2+x)
$$

1. Find the equilibrium points of the system. For this, we need to solve the equations

$$
x(1-x-y)=0 \quad \text { and } \quad y(-2+x)=0
$$

The solutions are given by

$$
x=0 \text { and } y=0 ; \quad x+y=1 \text { and } y=0 ; \quad x+y=1 \text { and }-2+x=0
$$

Consequently, the equilibrium points (all of them) are

$$
(0,0),(1,0),(2,-1)
$$

2. Find two invariant sets.

- $x=0$ is an invariant set. Note that a solution such that $x(0)=0$ will satisfy $x(t)=0$, for all $t \geq 0$. The variable y is obtained by solving the second equation, now given by $\dot{y}=-2 y$.
- $y=0$ is another invariant set. A solution such that $y(0)=0$ will satisfy $y(t)=0$, for all $t \geq 0$. The variable x is obtained by solving the equation $\dot{x}=x(1-x)$.

3. Sketch the phase plane. Let us classify the equilibrium points. For this, denote

$$
f(x, y)=x-x^{2}-x y, \quad g(x, y)=-2 y+x y .
$$

Calculate

$$
\frac{\partial f}{\partial x}=1-2 x-y ; \quad \frac{\partial f}{\partial y}=-x ; \quad \frac{\partial g}{\partial x}=y ; \quad \frac{\partial g}{\partial y}=-2+x .
$$

- The matrix of the linearized system about $(0,0)$ is $A=\left[\begin{array}{cc}1 & 0 \\ 0 & -2\end{array}\right]$. Its eigenvalues are 1 and -2 ; the corresponding eigenvectors are $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$, respectively. $(0,0)$ is a saddle point.
- The matrix of the linearized system about $(2,-1)$ is $A=\left[\begin{array}{cc}-2 & -2 \\ -1 & 0\end{array}\right]$. Its eigenvalues are $\lambda=-1 \pm \sqrt{3}$; the corresponding eigenvectors are $\left[\begin{array}{c}1 \pm \sqrt{3} \\ 1\end{array}\right]$. $(2,-1)$ is a saddle point.
- The matrix of the linearized system about $(1,0)$ is $A=\left[\begin{array}{cc}-1 & -1 \\ 0 & -1\end{array}\right]$. It has a (double) eigenvalue $\lambda=-1$ with eigenvector $\left[\begin{array}{l}1 \\ 0\end{array}\right] .(1,0)$ is a degenerate stable node.

Phase plane sketches will be given in separate handout.

