MATH 5525- Test 1-Solutions

March 2, 2020

Problem 1. (50 points). Consider the system of differential equations

$$\dot{y} = v, \quad \dot{v} = f(y),$$

where f is a continuous function $f : \mathbf{R} \to \mathbf{R}$.

1. *Find a first integral of the system.* Let us rewrite the system as a single, second order ordinary differential equation:

$$\frac{d^2y}{dt^2} = f(y)$$

Now, multiply both sides by \dot{y} to get:

$$\dot{y}\frac{d^2y}{dt^2} = \dot{y}f(y), \quad \text{or, equivalently} \quad \frac{1}{2}\frac{d\dot{y}^2}{dt} - \frac{dF(y)}{dt} = 0,$$

where F(y) is the antiderivative of f(y), that is, it satisfies the relation

$$F'(y) = f(y).$$

Hence, the first integral of the system is

$$\frac{1}{2}(\dot{y})^2 - F(y) = E_y$$

where E is an arbitrary constant.

2. Find the equilibrium points of the system in the case that $f(y) = \sin y$. From now on, consider $f(y) = \sin(y)$. The equilibrium points satisfy the equations $\sin y = 0$ and $\dot{y} = 0$. That is,

$$y = 0, \pm \pi, \pm 2\pi, \dots$$
 and $\dot{y} = 0.$

3. Find the Jacobian matrix of the system at the equilibrium points. (That is, write the linearized system about the equilibrium points).

We first express the function f(y) in a Taylor series about $y = y_0$, an equilibrium value, taking into account that $f(y_0) = 0$:

$$f(y) = f'(y_0)(y - y_0) + o(|y - y_0|).$$

In particular, for $f(y) = \sin y$, the matrix of the linear system about $(y_0, 0)$ becomes:

$$A = \begin{bmatrix} 0 & 1 \\ \cos y_0 & 0 \end{bmatrix}.$$

A. For $y_0 = 0, \pm 2\pi, \pm 4\pi, \dots, A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$
B. For $y_0 = 0, \pm \pi, \pm 3\pi, \dots, A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$

4. Determine the nature of the equilibrium points. The eigenvalues of $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ are $\lambda = \pm 1$. Hence the equilibrium points $(0,0), (\pm 2\pi, 0), (\pm 4\pi, 0), \ldots$ are saddle points.

The eigenvalues of $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ are $\lambda = \pm i$. Hence the equilibrium points $(0,0), (\pm \pi,0), (\pm 3\pi,0), \ldots$ are centers.

5. Sketch the phase plane of the system in the interval $-\pi \leq y \leq \pi$.

Problem 2. (40 points). Consider the predator-pray system governing the number of individuals x y of the two species at time t > 0:

$$\dot{x} = x(1 - x - y), \quad \dot{y} = y(-2 + x).$$

1. Find the equilibrium points of the system. For this, we need to solve the equations

$$x(1-x-y) = 0$$
 and $y(-2+x) = 0.$

The solutions are given by

$$x = 0$$
 and $y = 0$; $x + y = 1$ and $y = 0$; $x + y = 1$ and $-2 + x = 0$.

Consequently, the equilibrium points (all of them) are

$$(0,0), (1,0), (2,-1).$$

2. Find two invariant sets.

- x = 0 is an invariant set. Note that a solution such that x(0) = 0 will satisfy x(t) = 0, for all $t \ge 0$. The variable y is obtained by solving the second equation, now given by $\dot{y} = -2y$.
- y = 0 is another invariant set. A solution such that y(0) = 0 will satisfy y(t) = 0, for all $t \ge 0$. The variable x is obtained by solving the equation $\dot{x} = x(1-x)$.

3. Sketch the phase plane. Let us classify the equilibrium points. For this, denote

$$f(x,y) = x - x^2 - xy, \quad g(x,y) = -2y + xy.$$

Calculate

$$\frac{\partial f}{\partial x} = 1 - 2x - y; \quad \frac{\partial f}{\partial y} = -x; \quad \frac{\partial g}{\partial x} = y; \quad \frac{\partial g}{\partial y} = -2 + x.$$

• The matrix of the linearized system about (0,0) is $A = \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}$. Its eigenvalues are 1 and -2; the corresponding eigenvectors are $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$, respectively. (0,0) is a saddle point.

- The matrix of the linearized system about (2, -1) is $A = \begin{bmatrix} -2 & -2 \\ -1 & 0 \end{bmatrix}$. Its eigenvalues are $\lambda = -1 \pm \sqrt{3}$; the corresponding eigenvectors are $\begin{bmatrix} 1 \pm \sqrt{3} \\ 1 \end{bmatrix}$. (2, -1) is a saddle point.
- The matrix of the linearized system about (1,0) is $A = \begin{bmatrix} -1 & -1 \\ 0 & -1 \end{bmatrix}$. It has a (double) eigenvalue $\lambda = -1$ with eigenvector $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$. (1,0) is a degenerate stable node.

Phase plane sketches will be given in separate handout.