
Final Exam

Math 5525
Introduction to Ordinary Di�erential Equations

Spring 2020
University of Minnesota, Twin Cities

Nasser M. Abbasi

May 31, 2020 Compiled on May 31, 2020 at 6:16pm [public]

mailto:nma@12000.org


Contents

0.1 Problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
0.2 Problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1



2

0.1 Problem 1

Final Exam for Dynamical Systems, Math 5525

May 10, 2020

Problem 1
Consider the following system of ordinary differential equations

ẋ =− x+ y + xy

ẏ =x− y − x2 − y3. (1)

1. Find the (unique) equilibrium point (x∗, y∗) of the system (1).

2. Linearize the system about about (x∗, y∗) and write the corresponding
Jacobian matrix A (that is, the matrix of the linear system.)

3. Find the eigenvalues and eigenvectors of A.

4. Can you reach any conclusions about the stability of (x∗, y∗)?

5. Write down the definition of Lyapunov stability of an equilibrium
point.

6. Write down the (Lyapunov) theorem that gives sufficient conditions
for the stability of an equilibrium point.

7. Apply the previous theorem to show that the equilibrium solution
(x∗, y∗) is, indeed, stable. For this, choose a ∈ R, so that V (x, y) =
ax2 + 2y2, is a Lyapunov function of the system.

8. Determine an ω-limit set of the system.

9. Write down the Poincaré-Bendixon theorem for two dimensional sys-
tems.

10. Taking into account the Poincaré-Bendixon theorem, would you say
that a limit cycle is possible for system (1)?

1Figure 1: Problem description
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�̇� = −𝑥 + 𝑦 + 𝑥𝑦
�̇� = 𝑥 − 𝑦 − 𝑥2 − 𝑦3

Part 1 Equilibrium points are found by solving for 𝑥, 𝑦 in

−𝑥 + 𝑦 + 𝑥𝑦 = 0 (1)

𝑥 − 𝑦 − 𝑥2 − 𝑦3 = 0 (2)

The first obvious solution is 𝑥 = 0, 𝑦 = 0. To find other solutions, then from (1) and solving
for 𝑥 gives

𝑦 + 𝑥 �𝑦 − 1� = 0

𝑥 =
−𝑦
𝑦 − 1

=
𝑦

1 − 𝑦
(3)

Substituting (3) into (2) results in

�
𝑦

1 − 𝑦�
− 𝑦 − �

𝑦
1 − 𝑦�

2

− 𝑦3 = 0

𝑦
1 − 𝑦

− 𝑦 −
𝑦2

�1 − 𝑦�
2 − 𝑦

3 = 0

𝑦 �1 − 𝑦� − 𝑦 �1 − 𝑦�
2
− 𝑦2 − 𝑦3 �1 − 𝑦�

2
= 0

𝑦 ��1 − 𝑦� − �1 − 𝑦�
2
− 𝑦 − 𝑦2 �1 − 𝑦�

2
� = 0

The above shows that 𝑦 = 0 is a solution and �1 − 𝑦�
2
− �1 − 𝑦�

2
− 𝑦 − 𝑦2 �1 − 𝑦�

2
= 0 is the

second solution. But 𝑦 = 0 gives 𝑥 = 0 which we already found earlier. So now we look at
the solution for 𝑦 from the second case which gives the following

�1 − 𝑦� − �1 − 𝑦�
2
− 𝑦 − 𝑦2 �1 − 𝑦�

2
= 0

�1 − 𝑦� − �1 + 𝑦2 − 2𝑦� − 𝑦 − 𝑦2 �1 + 𝑦2 − 2𝑦� = 0

1 − 𝑦 − 1 − 𝑦2 + 2𝑦 − 𝑦 − �𝑦2 + 𝑦4 − 2𝑦3� = 0
1 − 𝑦 − 1 − 𝑦2 + 2𝑦 − 𝑦 − 𝑦2 − 𝑦4 + 2𝑦3 = 0

−𝑦2 − 𝑦2 − 𝑦4 + 2𝑦3 = 0
−2𝑦2 − 𝑦4 + 2𝑦3 = 0

𝑦2 �−2 − 𝑦2 + 2𝑦� = 0

This gives solutions 𝑦 = 0 or −2−𝑦2+2𝑦 = 0. But 𝑦 = 0 gives 𝑥 = 0 from (3) which we already
found earlier. So now we look at the solution for 𝑦 from the second solution which gives

−2 − 𝑦2 + 2𝑦 = 0
𝑦2 − 2𝑦 + 2 = 0
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Therefore the roots are, by using the quadratic formula 𝑦 = − 𝑏
2𝑎 ±

1
2𝑎√𝑏

2 − 4𝑎𝑐 or

𝑦 =
2
2
±
1
2√

4 − 8

= 1 ±
1
2√

−4

= 1 ± 𝑖

Since we are looking for real solutions, then the above is not a solution that we can accept.
This shows that there is only one equilibrium point

�𝑥∗, 𝑦∗� = {0, 0}

Using the computer, the phase plot for the non-linear is given below. The red point is the
equilibrium point {0, 0}
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Phase plot of the non-linear system

Figure 2: Phase plot

The following is the same phase plot, but made for a much larger domain of the state
variables 𝑥, 𝑦.
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Phase plot of the non-linear system

Figure 3: Phase plot using larger domain

ClearAll[x, y];

eq1 = -x + y + x y;

eq2 = x - y - x^2 - y^3;

p = StreamPlot[{eq1, eq2}, {x, -1, 1}, {y, -1, 1},

Epilog → {Red, PointSize[0.03], Point[{0, 0}]},

StreamPoints → 30,

FrameLabel → {{"y", None}, {"x", "Phase plot of the non-linear system"}},

BaseStyle → 14];

Figure 4: code used for the above plot

Part 2 The linearized system at the equilibrium point is given by

⎛
⎜⎜⎜⎜⎝
�̇�
�̇�

⎞
⎟⎟⎟⎟⎠ = [𝐴]

⎛
⎜⎜⎜⎜⎝
𝑥
𝑦

⎞
⎟⎟⎟⎟⎠ (1)
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Where the matrix 𝐴 is the Jacobian matrix 𝐽 when evaluated at the equilibrium point. The
Jacobian matrix is given by

𝐽 =

⎛
⎜⎜⎜⎜⎜⎜⎝

𝜕�̇�
𝜕𝑥

𝜕�̇�
𝜕𝑦

𝜕�̇�
𝜕𝑥

𝜕�̇�
𝜕𝑦

⎞
⎟⎟⎟⎟⎟⎟⎠ (2)

Where �̇� = −𝑥 + 𝑦 + 𝑥𝑦, �̇� = 𝑥 − 𝑦 − 𝑥2 − 𝑦3. Therefore

𝜕�̇�
𝜕𝑥

= −1 + 𝑦

𝜕�̇�
𝜕𝑦

= 1 + 𝑥

𝜕�̇�
𝜕𝑥

= 1 − 2𝑥

𝜕�̇�
𝜕𝑦

= −1 − 3𝑦2

Using the above in (2) gives the Jacobian matrix as

𝐽 =
⎛
⎜⎜⎜⎜⎝
−1 + 𝑦 1 + 𝑥
1 − 2𝑥 −1 − 3𝑦2

⎞
⎟⎟⎟⎟⎠

Then the linearized system around 𝑥 = 0, 𝑦 = 0 now is found as
⎛
⎜⎜⎜⎜⎝
�̇�
�̇�

⎞
⎟⎟⎟⎟⎠ = 𝐴

⎛
⎜⎜⎜⎜⎝
𝑥
𝑦

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
−1 + 𝑦 1 + 𝑥
1 − 2𝑥 −1 − 3𝑦2

⎞
⎟⎟⎟⎟⎠
𝑥=0
𝑦=0

⎛
⎜⎜⎜⎜⎝
𝑥
𝑦

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
−1 1
1 −1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥
𝑦

⎞
⎟⎟⎟⎟⎠

Part 3 From part (2) above, we found the linearized system around 𝑥 = 0, 𝑦 = 0 to be
⎛
⎜⎜⎜⎜⎝
�̇�
�̇�

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
−1 1
1 −1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥
𝑦

⎞
⎟⎟⎟⎟⎠

Now we find the eigenvalues of 𝐴. Solving

|𝐴 − 𝜆𝐼| = 0

�
−1 − 𝜆 1
1 −1 − 𝜆

� = 0

(−1 − 𝜆) (−1 − 𝜆) − 1 = 0
𝜆2 + 2𝜆 = 0
𝜆 (𝜆 + 2) = 0
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Therefore the eigenvalues are 𝜆1 = 0, 𝜆2 = −2. Now we find the corresponding eigenvectors
of 𝐴.

For 𝜆1 = 0 we solve for 𝑣 from

⎛
⎜⎜⎜⎜⎝
−1 − 𝜆1 1

1 −1 − 𝜆1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
−1 1
1 −1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

First equation gives −𝑣1 + 𝑣2 = 0. Let 𝑣1 = 1 then 𝑣2 = 1. Hence the eigenvector associated

with 𝜆1 = 0 is
⎛
⎜⎜⎜⎜⎝
1
1

⎞
⎟⎟⎟⎟⎠

For 𝜆2 = −2 we solve for 𝑣 from

⎛
⎜⎜⎜⎜⎝
−1 − 𝜆2 1

1 −1 − 𝜆2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
−1 + 2 1
1 −1 + 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
1 1
1 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

First equation gives 𝑣1 + 𝑣2 = 0. Let 𝑣1 = 1 then 𝑣2 = −1. Hence the eigenvector associated

with 𝜆2 = −2 is
⎛
⎜⎜⎜⎜⎝
1
−1

⎞
⎟⎟⎟⎟⎠

Summary of results for part 3

𝑥∗ Linearized system at 𝑥∗ Eigenvalues Eigenvectors

(0, 0)
⎛
⎜⎜⎜⎜⎝
�̇�
�̇�

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
−1 1
1 −1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥
𝑦

⎞
⎟⎟⎟⎟⎠ 𝜆1 = 0, 𝜆2 = −2

⎛
⎜⎜⎜⎜⎝
1
1

⎞
⎟⎟⎟⎟⎠ ,
⎛
⎜⎜⎜⎜⎝
1
−1

⎞
⎟⎟⎟⎟⎠

Part 4 Since the system is non-linear, and one of the eigenvalues is zero, then the equilib-
rium point is called defective. What this means is that it is not possible to conclude that the
origin is stable or not. Even though the second eigenvalue is negative, we can not conclude
that the non-linear system is stable at the origin since one eigenvalue is zero.

This only happens for non-linear systems. If the actual system was linear, then we could
have concluded it is stable. But not for non-linear systems.

Part 5 Considering system �̇� = 𝑓 (𝒙, 𝑡) and neighborhood 𝐷 ⊂ ℝ𝑛 around the origin point
𝒙 = 0. Here the origin is always taken as the equilibrium point. But any other equilibrium
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point will also work in this definition, since we can always translate the system to make the
equilibrium point as the origin. So it is easier to always take the equilibrium point as the
origin.

Now, let solution that start at time 𝑡 = 𝑡0 from point 𝒙0 ∈ 𝐷 be called 𝒙 (𝑡; 𝑡0, 𝒙0). Then we say
that the the solution at 𝒙 = 0 is stable in the sense of Lyapunov if for each 𝜖 > 0 and 𝑡0 we
can find 𝛿 (𝜖, 𝑡0) such that �𝒙0� ≤ 𝛿 implies �𝒙 (𝑡; 𝑡0, 𝒙0)� ≤ 𝜖 for all 𝑡 ≥ 𝑡0.

The above is basically what the book gives as the definition of Lyapunov stability.

The following is a diagram made to help explain what the above means, and also I give may
be a little simpler definition as follows.

Lyapunov stability intuitively says that if we start with initial conditions 𝑥0(𝑡0) at time 𝑡0
somewhere near the equilibrium point (this is the domain 𝐷) then if the solution 𝑥(𝑡) is
always bounded from above for any future time 𝑡 by some limit (which depends on how far
the initial conditions are from the origin, and the time 𝑡0 the solution started), then that the
origin is called a stable equilibrium point in the sense of Lyapunov.

This basically says that solutions that starts near the equilibrium point will never go too far
away from the origin for all time.

To make this more mathematically precise1, we say that for any ||𝑥0|| ≤ 𝛿(𝑡0) we can find 𝜖(𝛿)
such that ||𝑥(𝑡)|| ≤ 𝜖 for any 𝑡 ≥ 𝑡0. In this both 𝛿 and 𝜖 are some positive quantities and 𝜖
depends on choice of 𝛿 and 𝛿 depends on 𝑡0.

This diagram helps illustrate the above definition.

1notice that this definition is slightly di�erent from book definition, which I modified slightly in the hope
to make it more clear, at least to me it does.
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x0

origin

||x0|| ≤ δ(t0)

At time t0

x(t)

origin

||x(t)|| ≤ ε

system at any time t > t0

This ε depnds on choice of δ

(Lyapunov stable)

Figure 5: Graphical representation of Lyapunov stability

In the above diagram, we start with the system in some initial state shown on the left where
we have the norm �𝑥0� ≤ 𝛿 where 𝛿 depends on 𝑡0. Now, if we can always find 𝜖 such that the
solution norm ‖𝑥 (𝑡)‖ ≤ 𝜖 for any time in the future 𝑡 > 𝑡0 where 𝜖 depends on 𝛿, then we say
the equilibrium point is stable in the sense of Lyapunov.

Part 6 The theorem that gives the conditions for Lyapunov stability is given in theorem
8.8 in the book. This is what it basically says. If given the system �̇� = 𝑓 (𝒙, 𝑡) with 𝑓 (0, 𝑡) = 0
and 𝒙 ∈ 𝐷 ⊂ ℝ𝑛, 𝑡 ≥ 𝑡0, then assuming we can find what is called the Lyapunov function 𝑉 (𝒙)
for this system with the following three conditions

1. 𝑉 (𝒙) is continuously di�erentiable function in ℝ𝑛 and 𝑉 (𝒙) ≥ 0 (positive definite or
positive semidefinite) for all points away from the origin, or everywhere inside some
fixed region around the origin. This function represents the total energy of the system
(For Hamiltonian systems). For non-Hamiltonian systems we have to work harder to
find it.

2. 𝑉 (0) = 0. This condition says the system has no energy when it is at the equilibrium
point. (rest state).

3. The orbital derivative along any solution trajectory is 𝑑𝑉
𝑑𝑡 ≤ 0 (negative definite or

negative semi-definite) for all points, or inside some fixed region around the origin.
This condition says that the total energy is either constant in time (the zero case)
or the total energy is decreasing in time (the negative definite case). Both of which
indicate that the origin is a stable equilibrium point.
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If such 𝑉 (𝒙) could be found, then these are su�cient conditions for the stability of equilibrium
point. If 𝑑𝑉

𝑑𝑡 is strictly negative definite, then we say the equilibrium point is asymptotically

stable. If 𝑑𝑉
𝑑𝑡 is negative semidefinite, then the equilibrium point is stable in the sense of

Lyapunov. asymptotically stable have stronger stability.

Negative semi-definite means the system, when perturbed away from the origin, a solution
trajectory remains around the origin since its energy do not increase nor decrease. So it is
stable. But asymptotically stable equilibrium is a stronger stability. It means when perturbed
from the origin the solution will eventually return back to the origin since the energy is
always decreasing. Global stability means 𝑑𝑉

𝑑𝑡 ≤ 0 everywhere, and not just in some closed

region around the origin. Local stability means 𝑑𝑉
𝑑𝑡 ≤ 0 in some closed region around the

origin. Global stability is stronger stability than local stability. Sometimes it is easier to
determine local stability than global stability.

Part 7 Let 𝑉�𝑥, 𝑦� = 𝑎𝑥2 + 2𝑦2. Condition (2) 𝑉 (0) = 0 is satisfied, since when 𝑥 = 0, 𝑦 = 0
then 𝑉�𝑥, 𝑦� = 0.

Condition (1) is also satisfied since both terms are positive if we choose 𝑎 > 0. This makes
𝑉�𝑥, 𝑦� > 0 for non zero 𝑥, 𝑦. We now need to check the third condition. This condition is

always the hardest one to check. The orbital derivative 𝑑𝑉
𝑑𝑡 is

𝑑𝑉
𝑑𝑡

=
𝜕𝑉
𝜕𝑥
�̇� +

𝜕𝑉
𝜕𝑦
�̇�

= 2𝑎𝑥�̇� + 4𝑦�̇� (1)

But

�̇� = −𝑥 + 𝑦 + 𝑥𝑦
�̇� = 𝑥 − 𝑦 − 𝑥2 − 𝑦3

Eq(1) now becomes

𝑑𝑉
𝑑𝑡

= 2𝑎𝑥 �−𝑥 + 𝑦 + 𝑥𝑦� + 4𝑦 �𝑥 − 𝑦 − 𝑥2 − 𝑦3�

= −2𝑎𝑥2 + 2𝑎𝑥𝑦 + 2𝑎𝑥2𝑦 + 4𝑦𝑥 − 4𝑦2 − 4𝑦𝑥2 − 4𝑦4

= − �2𝑎𝑥2 + 4𝑦2 + 4𝑦4� + 2𝑎𝑥𝑦 + 2𝑎𝑥2𝑦 + 4𝑦𝑥 − 4𝑦𝑥2

= − �2𝑎𝑥2 + 4𝑦2 + 4𝑦4� + 𝑥𝑦 (2𝑎 + 4) + 2𝑎𝑥2𝑦 − 4𝑦𝑥2

= − �2𝑎𝑥2 + 4𝑦2 + 4𝑦4� − �−𝑥𝑦 (2𝑎 + 4) − 2𝑎𝑥2𝑦 + 4𝑦𝑥2�

We see that is we choose 𝑎 ≥ 0 then the first term above which is − �2𝑎𝑥2 + 4𝑦2 + 4𝑦4� is always
negative (or negative semidefinite for 𝑥 = 0, 𝑦 = 0) and can not be positive.

Let us try 𝑎 = 2, (we only need to find one 𝑎 value to make it valid Lyapunov function). This
means our choice of Lyapunov function becomes

𝑉�𝑥, 𝑦� = 2𝑥2 + 2𝑦2
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The above 𝑑𝑉
𝑑𝑡 now becomes

𝑑𝑉
𝑑𝑡

= − �4𝑥2 + 4𝑦2 + 4𝑦4� − �−𝑥𝑦 (4 + 4) − 4𝑥2𝑦 + 4𝑦𝑥2�

= −4𝑥2 + 8𝑥𝑦 − 4𝑦4 − 4𝑦2

= − �4𝑥2 − 8𝑥𝑦 + 8𝑦4�

= − ��2𝑥 − 2𝑦�
2
+ 4𝑦2�

Since the terms inside are all squares, then this shows 𝑑𝑉
𝑑𝑡 ≤ 0. It can not be positive. The

maximum it can be is zero and this is at the origin only. This shows origin is indeed stable
in the sense of Lyapunov because now all the three conditions given above are satisfied.
Plotting the Lyapunov 2𝑥2 + 2𝑦2 for some region around the origin gives

Figure 6: Graphical representation of Lyapunov function used
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V[x_, y_] := 2 x^2 + 2 y^2;

p = Show[

Plot3D[{0, V[x, y]}, {x, -2, 2}, {y, -2, 2},

PerformanceGoal → "Quality",

PlotRange → All,

PlotTheme -> "Web",

BaseStyle → {Opacity[.5], 14},

AxesLabel → {"x", "y", "V(x,y)"},

ImageSize → 400

],

Graphics3D[{Red, PointSize[0.03], Point[{0, 0, 0}]}]

];

Figure 7: Code used for the above

The following shows the orbital derivative 𝑑𝑉
𝑑𝑡 plot also in a region around the origin showing

it is indeed negative definite.

Figure 8: Graphical representation of 𝑑𝑉
𝑑𝑡
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orbitalDerivative[x_, y_] := -2 x - 2 y^2 + 4 y^2

p = Show[

Plot3D[{orbitalDerivative[x, y]}, {x, -2, 2}, {y, -2, 2},

PerformanceGoal → "Quality",

PlotRange → All,

PlotTheme -> "Web",

BaseStyle → {Opacity[.6], 12},

AxesLabel → {"x", "y", "dv/dt"},

ImageSize → 400

],

Graphics3D[{Blue, PointSize[0.03], Point[{0, 0, 0}]}]

];

Figure 9: Code used for the above

The following plot shows Lyapunov function and the orbital derivative function found above
in the same plot. These functions can only meet at the equilibrium point which is the origin
in this case if the system is stable in the sense of Lyapunov.

Figure 10: Combined Graphical representation of 𝑑𝑉
𝑑𝑡 and Lapunov function



14

V[x_, y_] := 2 x^2 + 2 y^2;

orbitalDerivative[x_, y_] := -2 x - 2 y^2 + 4 y^2

p = Show[

Plot3D[{V[x, y], orbitalDerivative[x, y]}, {x, -3, 3}, {y, -3, 3},

PerformanceGoal → "Quality",

PlotRange → All,

PlotTheme -> "Web",

BaseStyle → {Opacity[.8], 14},

AxesLabel → {"x", "y", None},

ImageSize → 400

],

Graphics3D[{Red, PointSize[0.03], Point[{0, 0, 0}]}]

];

Figure 11: Code used for the above

Part 8 𝜔 limit set, is the set of all points that are the limit of all positive orbits 𝛾+ (𝑥). In
other words, given a specific orbit 𝛾+ (𝑥) that starts at some initial conditions point 𝑥0 and
if as 𝑡 → ∞ this orbit terminates at point 𝑝 then 𝑝 is in the 𝜔 limit set of such orbit.

To find the 𝜔 limit set, we need to find the points where solutions terminate at them eventually
(attractive or saddle points). But from above, we found that there is only one critical point,
which is the origin, and that this point was stable. And since 𝑑𝑉

𝑑𝑡 < 0 for all points away from
the origin and zero only at the origin, then the origin is asymptotically stable equilibrium.
This means all orbits 𝛾+ (𝑥) have their limit as the origin. Hence 𝜔 limit set is the origin
point.

Part 9 Poincare-Bedixon theorem for ℝ2, says that having positive, bounded, non-periodic
orbit 𝛾+ of the system �̇� = 𝑓 (𝒙), then the 𝜔 limit set 𝜔�𝛾+� contains either a critical point
or consists of closed orbit. In this, 𝛾+ means a solution orbit which as 𝑡 → ∞ goes to
or terminates at a point in the 𝜔 limit set. In this we also require that 𝑓 ∶ ℝ2 → ℝ2 has
continuous first partial derivatives and that solutions exist for all time −∞ < 𝑡 < ∞.

Part 10 Since a limit cycle implies closed orbit, and since we found that in part 8 the 𝜔
limit set contains a critical point (the origin), then by Poincare-Bedixon, it is not possible
for the system to have a limit cycle in its 𝜔 limit set.
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0.2 Problem 2

Problem 2.

This problem is about discrete dynamical systems/one-dimensional
dynamics. (Class notes, pages 63-69, Lecture notes, 5525-May4-2020
and section 14.4 of textbook.)

Consider the map

f(x) =
x

1 + x2
− ax, a ∈ R, (2)

and the discrete orbit defined by the sequence

x0, x1 = f(x0), x2 = f(x1) = f2(x0), . . . xn = f(xn−1) = fn(x0), . . .

11. Define a fixed-point of a map.

12. Find all the fixed points x∗ of the map (2) and determine in which
intervals of a they exist.

13. Determine the stability of the nonzero fixed point in the parameter
interval a ∈ (−1, 0). Hint: Use the proposition in page 68 of the
notes.

14. For x = ε > 0, ε very small, consider the approximate map g(·) given
by

g(x) := (1− a)x.

Show that the map g(·) has a two-cycle, that is a discrete periodic
orbit of period 2.

2

Figure 12: Problem description
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Part 11 A fixed point of a map 𝑓 (𝑥) is one which is mapped to itself. In other words, all
points 𝑥∗ that satisfy 𝑓 (𝑥∗) = 𝑥∗ where 𝑓 (𝑥) is the map.

Part 12 From (2)

𝑓 (𝑥) =
𝑥

1 + 𝑥2
− 𝑎𝑥

Hence we need to solve for 𝑥 in the following

𝑥
1 + 𝑥2

− 𝑎𝑥 = 𝑥

𝑥 − 𝑎𝑥 �1 + 𝑥2� = 𝑥 �1 + 𝑥2�

𝑥 �1 + 𝑥2� + 𝑎𝑥 �1 + 𝑥2� − 𝑥 = 0
𝑎𝑥3 + 𝑎𝑥 + 𝑥3 = 0

𝑥 �𝑎𝑥2 + 𝑎 + 𝑥2� = 0

𝑥 �𝑥2 (1 + 𝑎) + 𝑎� = 0

Hence 𝑥 = 0 is a fixed point, and 𝑥2 (1 + 𝑎) + 𝑎 = 0. Or

𝑥2 =
−𝑎
1 + 𝑎

For real 𝑥, the RHS must be positive and also 𝑎 ≠ −1. Hence we need −1 < 𝑎 < 0. And now

the remaining fixed points are given by 𝑥 = ±�
−𝑎
1+𝑎 . Hence the fixed points are

𝑥∗1 = 0 for all 𝑎

𝑥∗2 = �
−𝑎
1 + 𝑎

− 1 < 𝑎 < 0

𝑥∗3 = −�
−𝑎
1 + 𝑎

− 1 < 𝑎 < 0

Part 13 By definition, for a map 𝑓 (𝑥) with fixed point 𝑥∗ then

1. 𝑥∗ is sink of �𝑓′ (𝑥∗)� < 1

2. 𝑥∗ is source if �𝑓′ (𝑥∗)� > 1

3. Unable to decide if �𝑓′ (𝑥∗)� = 1

Therefore, we now apply the above on the two non-zero fixed points found in part 12.
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For 𝑥∗2 = �
−𝑎
1+𝑎

𝑓′ (𝑥) =
𝑑
𝑑𝑥
�

𝑥
1 + 𝑥2

− 𝑎𝑥�

=
𝑑
𝑑𝑥

𝑥
1 + 𝑥2

−
𝑑
𝑑𝑥
𝑎𝑥

=
�1 + 𝑥2� − 𝑥 (2𝑥)

�1 + 𝑥2�
2 − 𝑎

=
1 + 𝑥2 − 2𝑥2

�1 + 𝑥2�
2 − 𝑎

=
1 − 𝑥2

�1 + 𝑥2�
2 − 𝑎 (1)

Evaluating the above at 𝑥 = 𝑥∗2 = �
−𝑎
1+𝑎 gives

𝑓′ �𝑥∗2� =
1 − ��

−𝑎
1+𝑎
�
2

�1 + ��
−𝑎
1+𝑎
�
2
�
2 − 𝑎

=
1 − −𝑎

1+𝑎

�1 + −𝑎
1+𝑎
�
2 − 𝑎

=
1+𝑎+𝑎
1+𝑎

�1+𝑎−𝑎
1+𝑎

�
2 − 𝑎

=
1+2𝑎
1+𝑎

� 1
1+𝑎
�
2 − 𝑎

=
1+2𝑎
1+𝑎
1

(1+𝑎)2

− 𝑎

=
1 + 2𝑎

1
1+𝑎

− 𝑎

= (1 + 2𝑎) (1 + 𝑎) − 𝑎
= 2𝑎2 + 2𝑎 + 1
= 1 + 2𝑎 (1 + 𝑎)

Since −1 < 𝑎 < 0 then 0 < 1 + 𝑎 < 1 and −1 < 2𝑎 < 0. Hence 0 < 1 + 2𝑎 (1 + 𝑎) < 1. This means
�𝑓′ �𝑥∗2�� < 1 which implies that 𝑥∗2 is a sink. To verify this, the 𝑓′ �𝑥∗2� = 1 + 2𝑎 (1 + 𝑎) was
plotted for −1 < 𝑎 < 0 which shows it is indeed smaller than one over this range of 𝑎.
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In[ ]:= ClearAll[a];

Plot[Abs[1 + 2 a (1 + a)], {a, -1, 0}, AxesOrigin → {0, 0},

AxesLabel → {"a", "f'(x2)"}, BaseStyle → 13]

Out[ ]=

-1.0 -0.8 -0.6 -0.4 -0.2
a

0.2

0.4

0.6

0.8

1.0

f'(x2)

Figure 13: Plot of 𝑓′(𝑥∗2) showing it is less than 1

For 𝑥∗3 = −�
−𝑎
1+𝑎 , evaluating 𝑓

′ (𝑥) = 1−𝑥2

�1+𝑥2�
2 − 𝑎 found in Eq (1) above, at this fixed point gives

𝑓′ �𝑥∗3� =
1 − �−�

−𝑎
1+𝑎
�
2

�1 + �−�
−𝑎
1+𝑎
�
2
�
2 − 𝑎

=
1 − −𝑎

1+𝑎

�1 + −𝑎
1+𝑎
�
2 − 𝑎

Which gives the result above 𝑥∗2 which is 𝑓′ �𝑥∗3� = 1 + 2𝑎 (1 + 𝑎). This means This means 𝑥∗3 is
also a sink.

What the above analysis means, is that if we start near one of these fixed points, then map
iteration (the discrete orbit sequence) will converge to the sink fixed point. For illustration,

let us choose 𝑎 = −1
2 . For this 𝑎 the fixed point is 𝑥∗2 = �

−𝑎
1+𝑎 =

�

1
2

1− 1
2

= 1. We expect if we start

the sequence near 1, say at 1.2, then the discrete orbit will approach 1 as more iterations of
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the map are made. Let us find out.

𝑥0 = 1.2
𝑥1 = 𝑓 (𝑥0)
𝑥2 = 𝑓 (𝑥1)
𝑥3 = 𝑓 (𝑥2)
𝑥4 = 𝑓 (𝑥3)
𝑥5 = 𝑓 (𝑥4)
⋮

Plugging in numerical values gives

𝑥0 = 1.2

𝑥1 = 𝑓 (𝑥0) =
𝑥0

1 + 𝑥20
− �−

1
2�
𝑥0 =

1.2
1 + (1.2)2

− �−
1
2�
(1.2) = 1.0918

𝑥2 = 𝑓 (𝑥1) =
𝑥1

1 + 𝑥21
− �−

1
2�
𝑥1 =

1.0918
1 + (1.0918)2

− �−
1
2�
(1.0918) = 1.044

𝑥3 = 𝑓 (𝑥2) =
𝑥2

1 + 𝑥22
− �−

1
2�
𝑥2 =

1.044
1 + (1.044)2

− �−
1
2�
(1.044) = 1.0215

𝑥4 = 𝑓 (𝑥3) =
𝑥3

1 + 𝑥23
− �−

1
2�
𝑥3 =

1.0215
1 + (1.0215)2

− �−
1
2�
(1.0215) = 1.0106

𝑥5 = 𝑓 (𝑥4) =
𝑥4

1 + 𝑥24
− �−

1
2�
𝑥4 =

1.0106
1 + (1.0106)2

− �−
1
2�
(1.0106) = 1.0053

⋮

We see that the map discrete orbit is given by

1.2, 1.0918, 1.044, 1.0215, 1.0106, 1.0053,⋯ , 𝑥∗2

Where 𝑥∗2 = 1 in this case. The same thing will happen if we choose to start near the other fixed

point 𝑥∗3 using the same 𝑎 used in this example. This will now give 𝑥∗3 = −�
−𝑎
1+𝑎 = −

�

1
2

1− 1
2

= −1.

If we start the sequence now near −1, say at −1.2, then the discrete orbit will approach −1
as more iterations of the map are made. Let us find out.

𝑥0 = −1.2
𝑥1 = 𝑓 (𝑥0)
𝑥2 = 𝑓 (𝑥1)
𝑥3 = 𝑓 (𝑥2)
𝑥4 = 𝑓 (𝑥3)
𝑥5 = 𝑓 (𝑥4)
⋮
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Plugging in numerical values gives

𝑥0 = −1.2

𝑥1 = 𝑓 (𝑥0) =
𝑥0

1 + 𝑥20
− �−

1
2�
𝑥0 =

−1.2
1 + (−1.2)2

− �−
1
2�
(−1.2) = −1.0918

𝑥2 = 𝑓 (𝑥1) =
𝑥1

1 + 𝑥21
− �−

1
2�
𝑥1 =

−1.0918
1 + (−1.0918)2

− �−
1
2�
(−1.0918) = −1.044

𝑥3 = 𝑓 (𝑥2) =
𝑥2

1 + 𝑥22
− �−

1
2�
𝑥2 =

−1.044
1 + (−1.044)2

− �−
1
2�
(−1.044) = −1.0215

𝑥4 = 𝑓 (𝑥3) =
𝑥3

1 + 𝑥23
− �−

1
2�
𝑥3 =

−1.0215
1 + (−1.0215)2

− �−
1
2�
(−1.0215) = −1.0106

𝑥5 = 𝑓 (𝑥4) =
𝑥4

1 + 𝑥24
− �−

1
2�
𝑥4 =

−1.0106
1 + (−1.0106)2

− �−
1
2�
(−1.0106) = −1.0053

⋮

We see that the map discrete orbit is given by

−1.2, −1.0918, −1.044, −1.0215, −1.0106, −1.0053,⋯ , 𝑥∗3

where 𝑥∗3 = −1 in this case. The above verifies that 𝑥∗3, 𝑥∗2 are fixed point of type sink.

Part 14
𝑔 (𝑥) = (1 − 𝑎) 𝑥

The fixed point is given by solving (1 − 𝑎) 𝑥 = 𝑥 which gives

𝑥∗ = 0

Let us apply 𝑔 (𝑥). Using seed 𝑥 = 𝜖 > 0, a very small value. Therefore

𝑥0 = 𝜖
𝑥1 = 𝑔 (𝑥0) = (1 − 𝑎) 𝑥0 = (1 − 𝑎) 𝜖

𝑥2 = 𝑔 (𝑥1) = (1 − 𝑎) 𝑥1 = (1 − 𝑎) (1 − 𝑎) 𝜖 = (1 − 𝑎)
2 𝜖

𝑥3 = 𝑔 (𝑥2) = (1 − 𝑎) 𝑥2 = (1 − 𝑎) (1 − 𝑎) (1 − 𝑎) 𝜖 = (1 − 𝑎)
3 𝜖

⋮
𝑥𝑛 = 𝑔 (𝑥𝑛) = (1 − 𝑎) 𝑥𝑛−1 = (1 − 𝑎)

𝑛 𝜖

Choosing 𝑎 = 2 this results in

𝑥𝑛 = 𝑔 (𝑥𝑛)
= (1 − 𝑎)𝑛 𝑥𝑛−1
= (−1)𝑛 𝜖



21

We now see that for 𝑛 = 0, 𝑥0 = 𝜖 > 0 and for 𝑛 = 1, 𝑥1 = −𝜖 and for 𝑛 = 2, 𝑥2 = 𝜖 and for
𝑛 = 3, 𝑥3 = −𝜖 and so on. In other words, the sequence is

{𝜖, −𝜖, 𝜖, −𝜖,⋯}

Hence, from the above we see that the map 𝑔 (⋅) has discrete period of 2. We notice also that
the orbit is switching back and forth around 𝑥∗ = 0, the fixed point found for above for 𝑔 (𝑥).
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