MATH 5525: HOMEWORK ASSIGNMENT 4

Date (May 8, 2020)

Problem 1. Exercise 6.6 of the textbook (page 81, second edition).
Hint: Apply theorems 6.5 and 6.6 of the textbook.
Solution. According to Theorem 6.6, we have that the exponents λ_{1} and λ_{2} satisfy

$$
\lambda_{1}+\lambda_{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{trace} A(t) d t(\bmod 2 \pi i)
$$

(Note that we take $T=2 \pi$ since the period of the matrix coefficients is 2π.) Here

$$
\operatorname{trace} A(t)=\frac{1}{2}-\cos t+\frac{3}{2}+\sin t=2+\sin t-\cos t
$$

So,

$$
\lambda_{1}+\lambda_{2}=2
$$

Consequently at least one of the λ_{1} or λ_{2} is positive.
By Theorem 2.5, the fundamental matrix solution is

$$
\Phi(t)=P(t) e^{B t}
$$

where λ_{1}, λ_{2} are the eigenvalues of B. Therefore, at least one of the linearly independent solutions of the system (that is, a column of Φ) involves a positive exponential function of t, and therefore solutions of the given system become unbounded at $t \rightarrow \infty$.

Problem 2. Exercise 8.4 of the textbook (page 109, second edition).
Hint: Eliminating $(z-1)$ from equation (1) and equation (2) gives a system of two equations for x and y. Find a Lyapunov function for the latter system; call it $V_{1}(x, y)$. Likewise, eliminating x from equations (2) and (3) you get another system for the variables y and z. Find a Lyapunov function, $V_{2}(y, z)$. Then, show that $V(x, y, z):=V_{1}(x, y)+\left(V_{2}(y, z)-1\right)^{2}$ is a Lyapunov function for the original system. Subsequent application of the Lyapunov theorem on stability (and/or asymptotic stability) gives the result.

Solution. An easy calculation shows that

$$
V_{1}(x, y)=x^{2}+2 y^{2}, \quad V_{2}(y, z)=y^{2}+(z-1)^{2}
$$

Let us start showing that

$$
V(x, y, z)=V_{1}+\left(V_{2}-1\right)^{2}=x^{2}+2 y^{2}+\left(y^{2}+z^{2}-2 z\right)^{2}
$$

is a Lyapunov function of the system. For this, we need to investigate two properties,

- $V(0,0,0)=0$, which is satisfied.
- $V(x, y, z)$ is positive semidefinite. Indeed $V(x, y, z) \geq 0$. Note that $V(0,0,2)=0$, so V is not positive definite.
- \dot{V}, the orbital derivative also denoted as $L_{t} V$, is negative semidefinite. Indeed, $\dot{V}=$ $V_{x} \dot{x}+V_{y} \dot{y}+V_{z} \dot{z}=0$. So, \dot{V} is positive semidefinite.

By Theorem 8.1, the equilibruim solution $(0,0,0)$ is stable. However, we cannot conclude asymptotic stability since V is not negative definite.

Problem 3. Exercise 8.9 of the textbook (page 109, second edition).
Hint: Consider a quadratic function of the form $V(x, y)=a x^{2}+b y^{2}$. Choose particular values of a and b so that V is a Lyapunov function.

Solution. Let us determine a and b so that $V(x y)=a x^{2}+b y^{2}$ is a Lyapunov function.

1. First of all, note that $a>0$ and $b>0$ imply that $V(x, y)>0$, if $(x, y) \neq(0,0)$ and $V(0,0)=0$. So V is positive definite.
2. Calculate $\dot{V}=V_{x} \dot{x}+V_{y} \dot{y}=2\left(a-\frac{b}{5}\right) x^{2} y^{2}-a x^{4}-b y^{4}$. Choosing $a=\frac{b}{5}$ we see that $\dot{V}=-a\left(x^{4}+5 y^{4}\right)$. So, it is negative definite.

Therefore, the equilibrium solution $(0,0)$ of the system is asymptotically stable. Indeed, we could find a Lyapunov function of the system with \dot{V} negative definite.

