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1 Problem 6.6

Consider the equation �̇� = 𝐴 (𝑡) 𝑥 with 𝑥 ∈ ℝ2 and

𝐴 (𝑡) =
⎛
⎜⎜⎜⎜⎝
1
2 − cos 𝑡 𝑏

𝑎 3
2 + sin 𝑡

⎞
⎟⎟⎟⎟⎠

And 𝑎, 𝑏 constants. Show that that there exists at least a one-parameter family of solutions
which becomes unbounded as 𝑡 → ∞

solution

�̇� = 𝐴 (𝑡) 𝑥 has characteristic multiplies 𝜌𝑖 and exponents 𝜆𝑖. Where 𝜌𝑖 = 𝑒𝜆𝑖𝑇 and 𝑇 is the
period of the coe�cients of 𝐴 (𝑡) which is

𝑇 = 2𝜋

To answer this question we need to show that there is at least one characteristic exponent
𝜆𝑖 with real part strictly positive.

Using theorem 6.6, which applies here because 𝐴 (𝑡) is periodic, it says that

𝜌1𝜌2 = 𝑒
∫𝑇
0

trace(𝐴(𝜏))𝑑𝜏 (1)

𝜆1 + 𝜆2 =
1
𝑇 ��

𝑇

0
trace (𝐴 (𝜏)) 𝑑𝜏�mod 2𝜋𝑖

𝑇
(2)

We only need to use (2) in the above to answer this question. Trace of 𝐴 (𝑡) is sum of
diagonal elements of 𝐴 (𝑡) which is

trace (𝐴 (𝜏)) = 1
2
− cos 𝑡 + 3

2
+ sin 𝑡

= 2 − cos 𝑡 + sin 𝑡

Then

�
𝑇

0
trace (𝐴 (𝜏)) 𝑑𝜏 = �

2𝜋

0
(2 − cos 𝜏 + sin 𝜏) 𝑑𝜏

= [2𝜏 − sin 𝜏 − cos 𝜏]2𝜋0
= (2 (2𝜋) − sin 2𝜋 − cos 2𝜋) − (− cos 0)
= (4𝜋 − 1) − (−1)
= 4𝜋

Hence (2) becomes

𝜆1 + 𝜆2 = �
1
2𝜋
4𝜋�mod 2𝜋𝑖

2𝜋
= 2

Since Φ (𝑡) = 𝑃 (𝑡) 𝑒𝐵𝑡 where Φ (𝑡) is the fundamental matrix and since 𝜆1, 𝜆2 are the eigenval-
ues of the 𝐵 matrix, then we see that one solution exist which blows up. This shows there
exists at least a one-parameter family of solutions which becomes unbounded as 𝑡 → ∞
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2 Problem 8.4

Consider the system

�̇� = 2𝑦 (𝑧 − 1) (1)

�̇� = −𝑥 (𝑧 − 1) (2)

�̇� = 𝑥𝑦 (3)

a Show that the solution (0, 0, 0) is stable

b Is this solution asymptotically stable?

solution

2.1 Part a

Setting 𝑥 = 0, 𝑦 = 0, 𝑧 = 0 gives

�̇� = 0
�̇� = 0
�̇� = 0

Therefore (0, 0, 0) is critical point. Eq(1)/Eq(2) gives

𝑑𝑥
𝑑𝑡
𝑑𝑦
𝑑𝑡

=
2𝑦 (𝑧 − 1)
−𝑥 (𝑧 − 1)

𝑑𝑥
𝑑𝑦

=
−2𝑦
𝑥

Hence
−2𝑦𝑑𝑦 = 𝑥𝑑𝑥

Integrating gives

−𝑦2 =
𝑥2

2
+ 𝑉1

Where 𝑉1 is integration constant. Therefore

𝑉1 = −𝑦2 −
𝑥2

2

𝑉1 = 𝑦2 +
𝑥2

2

Where the sign was absorbed in the constant. The above can be written as

𝑉1 = 2𝑦2 + 𝑥2 (4)

Where the 2 factor was absorbed in the constant.

Now solving Eq (2) for 𝑥 gives, 𝑥 = �̇�
−(𝑧−1) and substituting this into Eq (3) gives

�̇� =
�̇�

1 − 𝑧
𝑦

�̇�
�̇�
=

𝑦
1 − 𝑧

𝑑𝑧
𝑑𝑡
𝑑𝑦
𝑑𝑡

=
𝑦

1 − 𝑧

𝑑𝑧
𝑑𝑦

=
𝑦

1 − 𝑧

Hence
𝑦𝑑𝑦 = (1 − 𝑧) 𝑑𝑧
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Integrating gives
𝑦2

2
= �𝑧 −

𝑧2

2 �
+ 𝑉2

Where 𝑉2 is the constant of integration. Therefore

𝑉2 =
𝑦2

2
− 𝑧 +

𝑧2

2
𝑉2 = 𝑧2 − 2𝑧 + 𝑦2 (5)

Let the candidate Lyapunov function (we still have to check it is indeed a Lyapunov
function) be the following (per the hint given)

𝑉�𝑥, 𝑦, 𝑧� = 𝑉1 + (𝑉2 − 1)
2 (6)

= 2𝑦2 + 𝑥2 + �𝑧2 − 2𝑧 + 𝑦2 − 1�
2

= 𝑥2 + 𝑦4 + 2𝑦2𝑧2 − 4𝑦2𝑧 + 𝑧4 − 4𝑧3 + 2𝑧2 + 4𝑧 + 1

We will now verify it is a Lyapunov function. The function 𝑉�𝑥, 𝑦, 𝑧� is Lyapunov function
for the system if the following conditions are all met

1. 𝑉�𝑥.𝑦, 𝑧� is continuously di�erentiable function in ℝ3 and 𝑉�𝑥.𝑦, 𝑧� ≥ 0 (positive
definite or positive semidefinite) for all 𝑥, 𝑦, 𝑧 away from the origin, or everywhere
inside some fixed region around the origin. This function represents the total energy
of the system (For Hamiltonian systems).

2. 𝑉 (0, 0, 0) = 0. This says the system has no energy when it is at the equilibrium point.
(rest state).

3. The orbital derivative 𝑑𝑉
𝑑𝑡 ≤ 0 (i.e. negative definite or negative semi-definite) for

all 𝑥, 𝑦, 𝑧, or inside some fixed region around the origin. The orbital derivative is
same as 𝑑𝑉

𝑑𝑡 along any solution trajectory. This condition says that the total energy is
either constant in time (the zero case) or the total energy is decreasing in time (the
negative definite case). Both of which indicate that the origin is a stable equilibrium
point.

If 𝑑𝑉
𝑑𝑡 is negative semi-definite then the origin is stable in Lyapunov sense. If 𝑑𝑉

𝑑𝑡 is negative
definite then the origin is asymptotically stable equilibrium. Negative semi-definite means
the system, when perturbed away from the origin, a trajectory will remain around the
origin since its energy do not increase nor decrease. So it is stable. But asymptotically
stable equilibrium is a stronger stability. It means when perturbed from the origin the
solution will eventually return back to the origin since the energy is decreasing. Global
stability means 𝑑𝑉

𝑑𝑡 ≤ 0 everywhere, and not just in some closed region around the origin.

Local stability means 𝑑𝑉
𝑑𝑡 ≤ 0 in some closed region around the origin. Global stability is

stronger stability than local stability.

Condition (1) is satisfied 𝑉�𝑥.𝑦, 𝑧� ≥ 0 (since of squares) and 𝑉�0, 0, ± �1 + √2�� = 0. Hence

𝑉�𝑥, 𝑦, 𝑧� is positive semidefinite (not positive definite).

Condition (2) is easily checked is valid. Since 𝑉 = 𝑉1 + (𝑉2 − 1)
2 = 0 at (0, 0, 0).

To check for condition (1), we see from looking at (6) that 𝑉 can not be negative since
𝑉1 = 2𝑦2+𝑥2 is square quantity and (𝑉2 − 1)

2 is also square. So we need to check if 𝑉�𝑥, 𝑦, 𝑧�
is always positive away from the origin. One way to do this is to find its Hessian and check
if its eigenvalues. If the eigenvalues of the Hessian are all positive everywhere, then this
implies 𝑉 is positive definite. But we can do a short cut here. Since 𝑉 is the sum of 2 square
quantities, we just need to check if one of these two quantities is always positive. We do
not have to check the whole 𝑉.. Let us check if 𝑉1 is positive definite or not first. Since 𝑉1
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depends on 𝑥, 𝑦 only, then

∇𝑉1 =

⎛
⎜⎜⎜⎜⎜⎝

𝜕𝑉1
𝜕𝑥
𝜕𝑉1
𝜕𝑦

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
2𝑥
4𝑦

⎞
⎟⎟⎟⎟⎠

∇ 2𝑉1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

𝜕2𝑉1
𝜕𝑥𝜕𝑥

𝜕2𝑉1
𝜕𝑥𝜕𝑦

𝜕2𝑉1
𝜕𝑦𝜕𝑥

𝜕2𝑉1
𝜕𝑦𝜕𝑥

⎞
⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
2 0
0 4

⎞
⎟⎟⎟⎟⎠

Hence the eigenvalues are 2, 4. Since these are positive everywhere, then we conclude that
𝑉1 �𝑥, 𝑦� is concave up. This means the minimum is at zero and it is positive everywhere

else away from the origin. This implies that 𝑉�𝑥, 𝑦, 𝑧� is positive definite everywhere away

from zero, which is what we wanted to show. Now we check the third condition 𝑑𝑉
𝑑𝑡 ≤ 0.

The orbital derivative 𝑑𝑉
𝑑𝑡 is

𝑑𝑉
𝑑𝑡

=
𝜕𝑉
𝜕𝑥
�̇� +

𝜕𝑉
𝜕𝑦
�̇� +

𝜕𝑉
𝜕𝑧
�̇�

= 2𝑥�̇� + 6𝑦�̇� + (2𝑧 − 2) �̇�

But 𝜕𝑉
𝜕𝑥 = 2𝑥 and

𝜕𝑉
𝜕𝑦 = 4𝑦 �𝑦

2 − 2𝑧 + 𝑧2� and 𝜕𝑉
𝜕𝑧 = 4 (𝑧 − 1) �𝑧

2 + 𝑦2 − 1 − 2𝑧�. Therefore using
(1,2,3) the above becomes

𝐿𝑡𝑉 = 2𝑥 �2𝑦 (𝑧 − 1)� + 4𝑦 �𝑦2 − 2𝑧 + 𝑧2� (−𝑥 (𝑧 − 1)) + �4 (𝑧 − 1) �𝑧2 + 𝑦2 − 1 − 2𝑧�� 𝑥𝑦
= 0

Therefore conditions 3 is also satisfied. Hence 𝑉�𝑥, 𝑦, 𝑧� is a Lyapunov function for the

system and (0, 0, 0) is stable equilibrium point since 𝑑𝑉
𝑑𝑡 is zero. (by theorem 8.1)

2.2 Part b

By theorem 8.2, since we found from part a that 𝑑𝑉
𝑑𝑡 is zero, therefore it is not negative def-

inite but negative semi-definite, hence (0, 0, 0) is not asymptotically stable (for this specific

𝑉�𝑥, 𝑦, 𝑧�).
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3 Problem 8.9

Determine the stability of the trivial solution of

�̇� = 𝑥𝑦2 −
1
2
𝑥3

�̇� = −
1
2
𝑦3 +

1
5
𝑥2𝑦

solution

Setting 𝑥 = 0, 𝑦 = 0 gives

�̇� = 0
�̇� = 0

Therefore (0, 0) is critical point. We need to find Lyapunov function. Let 𝑉�𝑥, 𝑦� = 𝑎𝑥2+𝑏𝑦2.
A quadratic function. The function 𝑉�𝑥, 𝑦, 𝑧� is Lyapunov function for the system if the
three conditions given in the above problem are met.

Condition (2) is clearly satisfied. Condition (1) is also satisfied since both terms are squared
if we choose 𝑎, 𝑏 > 0. Hence 𝑉�𝑥, 𝑦� > 0 for non zero 𝑥, 𝑦. We now need to check the third

condition. The orbital derivative 𝑑𝑉
𝑑𝑡 is

𝑑𝑉
𝑑𝑡

=
𝜕𝑉
𝜕𝑥
�̇� +

𝜕𝑉
𝜕𝑦
�̇�

= 2𝑎𝑥�̇� + 2𝑏𝑦�̇�

= 2𝑎𝑥 �𝑥𝑦2 −
1
2
𝑥3� + 2𝑏𝑦 �−

1
2
𝑦3 +

1
5
𝑥2𝑦�

= 2𝑎𝑥2𝑦2 − 𝑏𝑦4 − 𝑎𝑥4 +
2
5
𝑏𝑥2𝑦2

= �2𝑎 +
2
5
𝑏� �𝑥2𝑦2� − �𝑏𝑦4 + 𝑎𝑥4�

= − ��𝑏𝑦4 + 𝑎𝑥4� − �2𝑎 +
2
5
𝑏� �𝑥2𝑦2�� (1)

Completing the squares

𝑑𝑉
𝑑𝑡

= − ��√𝑏𝑦2 − √𝑎𝑥2�
2
+ 2√𝑎√𝑏𝑥2𝑦2 − �2𝑎 +

2
5
𝑏� �𝑥2𝑦2��

= − ��√𝑏𝑦2 − √𝑎𝑥2�
2
+ �2√𝑎√𝑏 − 2𝑎 −

2
5
𝑏� �𝑥2𝑦2��

The above is negative definite if we can find 𝑎, 𝑏 > 0 such that

2√𝑎√𝑏 − 2𝑎 −
2
5
𝑏 > 0

Picking 𝑎 = 1, 𝑏 = 2 then left side above is

2√2 − 2 −
2
5
(2) = 0.028

Hence 𝑎 = 1, 𝑏 = 2 is one choice that makes 𝑉�𝑥, 𝑦� = 𝑎𝑥2 + 𝑏𝑦2 a Lyapunov function. This

shows that (0, 0) is asymptotically stable. The following is a plot of 𝑑𝑉
𝑑𝑡 given in (1) to

confirm it is negative definite (it is zero only at the origin, but negative everywhere else).



7

In[ ]:= a = 1; b = 2;

V = a x^2 + b y^2;

orbital = D[V, x] * (x y^2 - 1 / 2 x^3) + D[V, y] (-1 / 2 y^3 + 1 / 5 x^2 y)

Out[ ]= 2 x -
x3

2
+ x y2 + 4 y

x2 y

5
-
y3

2

In[ ]:= Plot3D[orbital, {x, -4, 4}, {y, -4, 4}]

Out[ ]=

Figure 1: Showing the Orbtial derivative negative everywhere around the origin
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