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1 Problem 1

A modification of the predator-prey system is given by

�̇� = 𝑥 (1 − 𝑥) −
𝑎𝑥𝑦
𝑥 + 1

�̇� = 𝑦 �1 − 𝑦�

Where 𝑎 > 0 is a parameter.

1. Find all equilibrium points, in the following two cases: 0 < 𝑎 < 1 and 𝑎 > 1. (You may
select specific values of 𝑎, if you wish.)

2. Classify the equilibrium points in each case.

3. Sketch the nullclines and the phase portraits for di�erent values of 𝑎.

4. What is special about the parameter value 𝑎 = 1? (It is called a bifurcation value,
why?)

solution

1.1 Part 1

case 0 < 𝑎 < 1

Equilibrium points are found by solving

𝑥 (1 − 𝑥) −
𝑎𝑥𝑦
𝑥 + 1

= 0 (1)

𝑦 �1 − 𝑦� = 0 (2)

EQ (2) gives 𝑦 = 0 or 𝑦 = 1. When 𝑦 = 0 then EQ(1) becomes 𝑥 (1 − 𝑥) = 0 which has
solutions 𝑥 = 0, 𝑥 = 1. Hence the critical points found so far are (0, 0) , (1, 0).

When 𝑦 = 1 then EQ(1) becomes

𝑥 (1 − 𝑥) −
𝑎𝑥
𝑥 + 1

= 0

𝑥 (1 − 𝑥) (1 + 𝑥) − 𝑎𝑥 = 0
𝑥 − 𝑥3 − 𝑎𝑥 = 0

𝑥 �1 − 𝑥2 − 𝑎� = 0

Hence 𝑥 = 0 or 1 − 𝑥2 − 𝑎 = 0 or 𝑥2 − 1 + 𝑎 = 0. Therefore 𝑥2 = 1 − 𝑎 or 𝑥 = ±√1 − 𝑎. Since we
are in the case 0 < 𝑎 < 1 then √1 − 𝑎 is positive. Let √1 − 𝑎 = 𝑛2. Hence 𝑥 = ±𝑛. Therefore
the critical points found for this case are (0, 1) , �√1 − 𝑎, 1� , �−√1 − 𝑎, 1�.

Hence all the critical points for 0 < 𝑎 < 1 are

�𝑥𝑖, 𝑦𝑖� = �(0, 0) , (1, 0) , (0, 1) , �√1 − 𝑎, 1� , �−√1 − 𝑎, 1��

For say 𝑎 = 1
2 , these critical points become

�𝑥𝑖, 𝑦𝑖� =
⎧⎪⎨
⎪⎩(0, 0) , (1, 0) , (0, 1) ,

⎛
⎜⎜⎜⎜⎝�

1
2
, 1
⎞
⎟⎟⎟⎟⎠ ,
⎛
⎜⎜⎜⎜⎝−�

1
2
, 1
⎞
⎟⎟⎟⎟⎠

⎫⎪⎬
⎪⎭

= {(0, 0) , (1, 0) , (0, 1) , (0.707107, 1) , (−0.707107, 1)}

case 𝑎 > 1

Equilibrium points are found by solving

𝑥 (1 − 𝑥) −
𝑎𝑥𝑦
𝑥 + 1

= 0 (1)

𝑦 �1 − 𝑦� = 0 (2)
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EQ (2) gives 𝑦 = 0 or 𝑦 = 1. When 𝑦 = 0 then EQ(1) becomes 𝑥 (1 − 𝑥) = 0 which has
solutions 𝑥 = 0, 𝑥 = 1. Hence the critical points found so far are (0, 0) , (1, 0).

When 𝑦 = 1 then EQ(1) reduces to (as was done above)

𝑥 �1 − 𝑥2 − 𝑎� = 0

Hence 𝑥 = 0 or 𝑥 = ±√1 − 𝑎. Since we are in the case 𝑎 > 1 then √1 − 𝑎 is negative. which
means √1 − 𝑎 is complex. We are assuming real domain, then these solutions are rejected.
This leaves the critical points for 𝑎 > 1 as only the following

�𝑥𝑖, 𝑦𝑖� = {(0, 0) , (1, 0) , (0, 1)}

1.2 Part 2

The Jacobian matrix for the system

�̇� = 𝑥 (1 − 𝑥) −
𝑎𝑥𝑦
𝑥 + 1

�̇� = 𝑦 �1 − 𝑦�

Is given by the following, where the rule of derivative 𝑑
𝑑𝑥

𝑓(𝑥)
𝑔(𝑥) =

𝑔𝑓′−𝑓𝑔′

𝑔2 is used

𝐽 =

⎛
⎜⎜⎜⎜⎜⎜⎝

𝜕�̇�
𝜕𝑥

𝜕�̇�
𝜕𝑦

𝜕�̇�
𝜕𝑥

𝜕�̇�
𝜕𝑦

⎞
⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝
(1 − 𝑥) − 𝑥 −

(𝑥+1)𝑎𝑦−�𝑎𝑥𝑦�

(1+𝑥)2
− 𝑎𝑥
𝑥+1

0 �1 − 𝑦� − 𝑦

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝
1 − 2𝑥 − 𝑎𝑥𝑦+𝑎𝑦−𝑎𝑥𝑦

(1+𝑥)2
− 𝑎𝑥
𝑥+1

0 1 − 2𝑦

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝
1 − 2𝑥 − 𝑎𝑦

(1+𝑥)2
− 𝑎𝑥
𝑥+1

0 1 − 2𝑦

⎞
⎟⎟⎟⎟⎟⎠

case 0 < 𝑎 < 1

The critical points for this case from part (1) are

�𝑥𝑖, 𝑦𝑖� = �(0, 0) , (1, 0) , (0, 1) , �√1 − 𝑎, 1� , �−√1 − 𝑎, 1��

At point (0, 0) the linearized system 𝐴 matrix is the Jacobian above evaluated at this point,
which gives

𝐴 =

⎛
⎜⎜⎜⎜⎜⎝
1 − 2𝑥 − 𝑎𝑦

(1+𝑥)2
− 𝑎𝑥
𝑥+1

0 1 − 2𝑦

⎞
⎟⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
1 0
0 1

⎞
⎟⎟⎟⎟⎠

Hence |𝐴 − 𝜆𝐼| = 0 becomes

�
1 − 𝜆 0
0 1 − 𝜆

� = 0

(1 − 𝜆)2 = 0
𝜆 = 1 double root

Since the eigenvalues are positive, this is unstable critical point.
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At point (1, 0) the linearized system 𝐴 matrix is the Jacobian above evaluated at this point,
which gives

𝐴 =

⎛
⎜⎜⎜⎜⎜⎝
1 − 2𝑥 − 𝑎𝑦

(1+𝑥)2
− 𝑎𝑥
𝑥+1

0 1 − 2𝑦

⎞
⎟⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
1 − 2 − 𝑎

2
0 1

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
−1 − 𝑎

2
0 1

⎞
⎟⎟⎟⎟⎠

Hence |𝐴 − 𝜆𝐼| = 0 becomes

�
−1 − 𝜆 − 𝑎

2
0 1 − 𝜆

� = 0

(−1 − 𝜆) (1 − 𝜆) = 0
𝜆2 − 1 = 0

𝜆2 = 1
𝜆 = ±1

This means this critical points is a saddle point (unstable) since one eigenvalue is negative
and one is negative.

At point (0, 1) the linearized system 𝐴 matrix is the Jacobian above evaluated at this point,
which gives

𝐴 =

⎛
⎜⎜⎜⎜⎜⎝
1 − 2𝑥 − 𝑎𝑦

(1+𝑥)2
− 𝑎𝑥
𝑥+1

0 1 − 2𝑦

⎞
⎟⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
1 − 𝑎 0
0 −1

⎞
⎟⎟⎟⎟⎠

Hence |𝐴 − 𝜆𝐼| = 0 becomes

�
(1 − 𝑎) − 𝜆 0

0 −1 − 𝜆
� = 0

((1 − 𝑎) − 𝜆) (−1 − 𝜆) = 0
𝜆2 + 𝑎𝜆 + 𝑎 − 1 = 0

Therefore

𝜆 = −
𝑏
2𝑎
±
1
2𝑎
√𝑏2 − 4𝑎𝑐

= −
𝑎
2
±
1
2�

𝑎2 − 4 (𝑎 − 1)

= −
𝑎
2
±
1
2
√𝑎2 − 4𝑎 + 4

Since 0 < 𝑎 < 1 then −3 < 𝑎2 − 4𝑎 < 0 which means the term under the root will remain
positive for all 𝑎 values between 0 and 1. This means this critical points is a saddle point
(unstable) since one eigenvalue will be negative and one is positive.

At point �√1 − 𝑎, 1� the linearized system 𝐴 matrix is the Jacobian above evaluated at this
point, which gives

𝐴 =

⎛
⎜⎜⎜⎜⎜⎝
1 − 2𝑥 − 𝑎𝑦

(1+𝑥)2
− 𝑎𝑥
𝑥+1

0 1 − 2𝑦

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 − 2√1 − 𝑎 −
𝑎

�1+√1−𝑎�
2 − 𝑎√1−𝑎

√1−𝑎+1

0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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Hence |𝐴 − 𝜆𝐼| = 0 becomes

�
�

⎛
⎜⎜⎜⎝1 − 2√1 − 𝑎 −

𝑎

�1+√1−𝑎�
2

⎞
⎟⎟⎟⎠ − 𝜆 − 𝑎√1−𝑎

√1−𝑎+1

0 −1 − 𝜆

�
�
= 0

⎛
⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎝1 − 2√1 − 𝑎 −

𝑎

�1 + √1 − 𝑎�
2

⎞
⎟⎟⎟⎟⎟⎟⎠ − 𝜆

⎞
⎟⎟⎟⎟⎟⎟⎠ (−1 − 𝜆) = 0

To simplify this, let us pick 𝑎 = 1
2 . Hence the point �√1 − 𝑎, 1� becomes (0.707, 1). The above

becomes ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 − 2

�
1
2
−

1
2

�1 + �
1
2
�
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
− 𝜆

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(−1 − 𝜆) = 0

(𝜆 + 1) �𝜆 − √2 + 2� = 0

Hence 𝜆 = −1 and 𝜆 = √2−2. So one eigenvalue is negative and also the second is negative.
This means this is stable point (positive attraction). Even though we used specific 𝑎 value
here, this result is value for all 0 < 𝑎 < 1.

At point �−√1 − 𝑎, 1� the linearized system 𝐴 matrix is the Jacobian above evaluated at this
point, which gives

𝐴 =

⎛
⎜⎜⎜⎜⎜⎝
1 − 2𝑥 − 𝑎𝑦

(1+𝑥)2
− 𝑎𝑥
𝑥+1

0 1 − 2𝑦

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 + 2√1 − 𝑎 −
𝑎

�1−√1−𝑎�
2

𝑎√1−𝑎
−√1−𝑎+1

0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Hence |𝐴 − 𝜆𝐼| = 0 becomes

�
�

⎛
⎜⎜⎜⎝1 + 2√1 − 𝑎 −

𝑎

�1−√1−𝑎�
2

⎞
⎟⎟⎟⎠ − 𝜆 − 𝑎√1−𝑎

√1−𝑎+1

0 −1 − 𝜆

�
�
= 0

⎛
⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎝1 + 2√1 − 𝑎 −

𝑎

�1 − √1 − 𝑎�
2

⎞
⎟⎟⎟⎟⎟⎟⎠ − 𝜆

⎞
⎟⎟⎟⎟⎟⎟⎠ (−1 − 𝜆) = 0

To simplify this, let us pick 𝑎 = 1
2 . Hence the point �−√1 − 𝑎, 1� becomes (−0.707, 1). The

above becomes ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 + 2

�
1
2
−

1
2

�1 − �
1
2
�
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
− 𝜆

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(−1 − 𝜆) = 0

(𝜆 + 1) �𝜆 + √2 + 2� = 0

Hence 𝜆 = −1 and 𝜆 = −√2−2. So one eigenvalue is negative and also the second is negative.
This means this is stable point (positive attraction). Even though we used specific 𝑎 value
here, this result is value for all 0 < 𝑎 < 1.

The following table is a summary of the above results, all for 0 < 𝑎 < 1. To obtain numerical
values below for eigenvalues, 𝑎 = 1

2 was used as an example.

critical point eigenvalues type of equilibrium

(0, 0) 𝜆1 = 1, 𝜆2 = 1 negative attraction, unstable

(1, 0) 𝜆 = ±1 saddle point, unstable.

(0, 1) 𝜆 = − 𝑎
2 ±

1
2√𝑎

2 − 4𝑎 + 4 saddle point, unstable.

�√1 − 𝑎, 1� 𝜆1 = −1, 𝜆2 = √2 − 2 positive attraction, stable

�−√1 − 𝑎, 1� 𝜆1 = −1, 𝜆2 = −√2 − 2 positive attraction, stable
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For specific value 𝑎 = 1
2 the above table becomes

critical point eigenvalues type of equilibrium

(0, 0) 𝜆1 = 1, 𝜆2 = 1 negative attraction, unstable

(1, 0) 𝜆 = ±1 saddle point, unstable.

(0, 1) 𝜆1 = −1, 𝜆2 =
1
2 saddle point, unstable.

(0.707, 1) 𝜆1 = −1, 𝜆2 = −0.5857 positive attraction, stable

(−0.707, 1) 𝜆1 = −1, 𝜆2 = −3.41421 positive attraction, stable

case 𝑎 > 1

The critical points for this case from part(1) are

�𝑥𝑖, 𝑦𝑖� = {(0, 0) , (1, 0) , (0, 1)}

At point (0, 0) the linearized system 𝐴 matrix is the Jacobian above evaluated at this point,
which gives

𝐴 =

⎛
⎜⎜⎜⎜⎜⎝
1 − 2𝑥 − 𝑎𝑦

(1+𝑥)2
− 𝑎𝑥
𝑥+1

0 1 − 2𝑦

⎞
⎟⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
1 0
0 1

⎞
⎟⎟⎟⎟⎠

This is the same as with part 1. Which gives 𝜆 = 1 double root. Since the eigenvalues are
positive, this is unstable critical point.

At point (1, 0) the linearized system 𝐴 matrix is the Jacobian above evaluated at this point,
which gives

𝐴 =

⎛
⎜⎜⎜⎜⎜⎝
1 − 2𝑥 − 𝑎𝑦

(1+𝑥)2
− 𝑎𝑥
𝑥+1

0 1 − 2𝑦

⎞
⎟⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
1 0
0 1

⎞
⎟⎟⎟⎟⎠

This is the same as with part 1. Which gives 𝜆 = 1 double root. Since the eigenvalues are
positive, this is unstable critical point.

At point (1, 0) the linearized system 𝐴 matrix is the Jacobian above evaluated at this point,
which gives

𝐴 =

⎛
⎜⎜⎜⎜⎜⎝
1 − 2𝑥 − 𝑎𝑦

(1+𝑥)2
− 𝑎𝑥
𝑥+1

0 1 − 2𝑦

⎞
⎟⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
−1 − 𝑎

2
0 1

⎞
⎟⎟⎟⎟⎠

This is the same as 0 < 𝑎 < 1, since 𝑎 is not involved and cancels out. Hence 𝜆 = ±1. This
means this critical points is a saddle point (unstable) since one eigenvalue is negative and
one is negative.

At point (0, 1) the linearized system 𝐴 matrix is the Jacobian above evaluated at this point,
which gives

𝐴 =

⎛
⎜⎜⎜⎜⎜⎝
1 − 2𝑥 − 𝑎𝑦

(1+𝑥)2
− 𝑎𝑥
𝑥+1

0 1 − 2𝑦

⎞
⎟⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
1 − 𝑎 0
0 −1

⎞
⎟⎟⎟⎟⎠
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From case 0 < 𝑎 < 1 we found

𝜆 = −
𝑎
2
±
1
2
√𝑎2 − 4𝑎 + 4

Let us pick 𝑎 = 3. Hence

𝜆 = −
3
2
±
1
2√

9 − 12 + 4

= −
3
2
±
1
2

= −2, −1

Therefore this is stable. This is di�erent from case 0 < 𝑎 < 1 where this point was unstable.

The following table is a summary of the above results, all for 𝑎 > 1. To obtain numerical
values below for eigenvalues, 𝑎 = 3 was used as an example.

critical point eigenvalues type of equilibrium

(0, 0) 𝜆1 = 1, 𝜆2 = 1 (same as 0 < 𝑎 < 1) negative attraction, unstable

(1, 0) 𝜆 = ±1 (same as 0 < 𝑎 < 1) saddle point, unstable.

(0, 1) 𝜆 = − 𝑎
2 ±

1
2√𝑎

2 − 4𝑎 + 4 or 𝜆1 = −1, 𝜆2 = −2 positive attraction, stable

From the above, we notice that when 𝑎 changes from 0 < 𝑎 < 1 to 𝑎 > 1 then one critical point
(0, 1) switches from being unstable to stable. This implies solution encountered bifurcation
value.

1.3 Part 3

�̇� = 𝑥 (1 − 𝑥) −
𝑎𝑥𝑦
𝑥 + 1

�̇� = 𝑦 �1 − 𝑦�

The 𝑥 nullclines are the solution of 𝑥 (1 − 𝑥) − 𝑎𝑥𝑦
𝑥+1 = 0 and the 𝑦 nullclines are solutions of

𝑦 �1 − 𝑦� = 0. Therefore 𝑦 nullclines are 𝑦 = 0 (which is the 𝑥 axis) and 𝑦 = 1. These are
both straight lines. To find the 𝑥 nullclines

𝑥 (1 − 𝑥) −
𝑎𝑥𝑦
𝑥 + 1

= 0

𝑥 (1 − 𝑥) (𝑥 + 1) − 𝑎𝑥𝑦 = 0
𝑥 − 𝑥3 − 𝑎𝑥𝑦 = 0

𝑥 �1 − 𝑥2 − 𝑎𝑦� = 0

Hence 𝑥 = 0 (which is the 𝑦 axis) and 𝑥2 = 1 − 𝑎𝑦 are the 𝑥 nullclines.

𝑥 nullclines 𝑦 nullclines

𝑥 = 0 𝑦 = 0
𝑥2 = 1 − 𝑎𝑦 𝑦 = 1

The following is a plot of the nullclines for the case of 0 < 𝑎 < 1, using 𝑎 = 1
2
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-2 -1 0 1 2
-2

-1

0

1

2

x

y

Cases 0<a<1 using a=0.5

x nullclines

y nullclines

Figure 1: nullclines for case 0 < 𝑎 < 1

ClearAll[x, y, a]

a = 1  2;

f1 = x 1 - x - a x y  x + 1;

f2 = y 1 - y;

p = ContourPlot[{f1 ⩵ 0, f2 ⩵ 0}, {x, -2, 2}, {y, -2, 2},

PlotLegends → {"x nullclines", "y nullclines"},

PlotLabel → "Cases 0<a<1 using a=0.5",

BaseStyle → 14, FrameLabel → {{"y", None}, {"x", None}}];

Figure 2: code used for the above plot

The following is a plot of the nullclines for the case of 𝑎 > 1, using 𝑎 = 3

-2 -1 0 1 2
-2

-1

0

1

2

x

y

Cases a>1 using a=3

x nullclines

y nullclines

Figure 3: nullclines for case 𝑎 > 1

We notice that the case of 𝑎 = 1 is the following
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-2 -1 0 1 2
-2

-1

0

1

2

x

y

Cases a=1

x nullclines

y nullclines

Figure 4: nullclines for case 𝑎 > 1

The following is a phase plot for the case of 0 < 𝑎 < 1, using 𝑎 = 1
2 with the critical points

highlighted. Red dot indicates unstable point and green dot color indicates stable point.
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1.0

1.5

x

y

Phase plot for 0<a<1

Figure 5: Phase plot 0 < 𝑎 < 1 using 𝑎 = 0.5
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ClearAll[x, y, a]

a = 1  2;

f1 = x 1 - x - a x y  x + 1;

f2 = y 1 - y;

p1 = {Red, PointSize[0.03], Point[{0, 0}]};

p2 = {Red, PointSize[0.03], Point[{1, 0}]};

p3 = {Red, PointSize[0.03], Point[{0, 1}]};

p4 = {Blue, PointSize[0.03], Point[{Sqrt[1 - a], 1}]};

p5 = {Blue, PointSize[0.03], Point[{-Sqrt[1 - a], 1}]};

ps = StreamPlot[{f1, f2}, {x, -1.5, 1.5}, {y, -1, 1.5}, Epilog → {p1, p2, p3, p4, p5},

FrameLabel → {{"y", None}, {"x", "Phase plot for 0<a<1"}}, BaseStyle → 14];

Figure 6: Code for the above plot

The following is a phase plot for the case of 𝑎 > 1, using 𝑎 = 3.
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Phase plot for a>1

Figure 7: Phase plot 𝑎 > 1 using 𝑎 = 3
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1.4 Part 4

When 𝑎 = 1 the solution of the system changes abruptly. To see this, the following is the
two phase plots about side by side, one for 𝑎 = 0.99 and one for 𝑎 = 1.01.
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Phase plot for a=0.99
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y

Phase plot for a=1.01

Figure 8: Phase plots changes as 𝑎 cross over 1

We notice the following. As 𝑎 changes from 0 < 𝑎 < 1 to 𝑎 > 1, the equilibrium point (0, 1)
changes from being unstable to stable (this is in addition to now having 3 equilibrium
points instead of 5). This is exactly what bifurcation is. So 𝑎 = 1 is a bifurcation value. It
is a parameter in the system, which cause sudden change in the solution trajectories when
its value crosses over some specific value, which is 1 in this problem.



12

2 Problem 2

The spread of infectious diseases such as measles, malaria or corona virus may be modeled
as nonlinear system of di�erential equations, the SIR model. In the simplest form of the
model, we postulate three disjoint groups: 𝑆 = 𝑆(𝑡), the population of susceptible individuals,
𝐼 = 𝐼(𝑡), the infected population, and 𝑅 = 𝑅(𝑡) the recovered population. We assume for
simplicity, that the total population is constant:

𝑑
𝑑𝑡
(𝑆 + 𝐼 + 𝑅) = 0

The SIR model, in its simplest form, is stated as

�̇� = −𝛽𝑆𝐼 (1)
̇𝐼 = 𝛽𝑆𝐼 − 𝜐𝐼 (2)

�̇� = 𝜐𝐼 (3)

Where 𝜐 > 0 and 𝛽 > 0 are parameters.

1. Show that the line 𝐼 = 0 is an equilibrium line.

2. Find the matrix that results from linearizing the system about 𝐼 = 0.

3. Calculate the eigenvalues of the resulting matrix.

4. Find the nullclines of the system.

5. What can we infer about the prospects of full recovery of the population?

solution

This is a diagram of the SIR model

S(t)

β

susceptible
population

I(t)

infected
population

R(t)

recovered
population

νrate of
infection rate of

recovery

Figure 9: SIR model of infection

Hence total population is
𝑁 = 𝑆 + 𝐼 + 𝑅

Which is a constant (This assumes no death occurs, only infection and recovery). In this
model, it is assumed that recovered population 𝑅 (𝑡) can not become infected again.

2.1 Part 1

Critical points are solutions to

0 = −𝛽𝑆𝐼 (1A)

0 = 𝛽𝑆𝐼 − 𝜐𝐼 (2A)

0 = 𝜐𝐼 (3A)

Eq. (3) shows that, since 𝜐 can not be zero, then 𝐼 = 0 is equilibrium. This says that if there
are no infected individuals, then the population 𝑁 do not change which is to be expected
since 𝑁 = 𝑆+ 𝐼 +𝑅 and hence if 𝐼 = 0 then this implies also that 𝑅 = 0 and hence 𝑁 remains
constant.
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2.2 Part 2

The Jacobian Matrix is

𝐽 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜕�̇�
𝜕𝑆

𝜕�̇�
𝜕𝐼

𝜕�̇�
𝜕𝑅

𝜕 ̇𝐼
𝜕𝑆

𝜕 ̇𝐼
𝜕𝐼

𝜕 ̇𝐼
𝜕𝑅

𝜕�̇�
𝜕𝑆

𝜕�̇�
𝜕𝐼

𝜕�̇�
𝜕𝑅

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−𝛽𝐼 −𝛽 0
𝛽𝐼 𝛽𝑆 − 𝜐 0
0 𝜐 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Evaluating the above at 𝐼 = 0 gives

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −𝛽 0
0 𝛽𝑆 − 𝜐 0
0 𝜐 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

2.3 Part 3

To find the eigenvalues

|𝐴 − 𝜆𝐼| = 0

�

�

−𝜆 −𝛽 0
0 �𝛽𝑆 − 𝜐� − 𝜆 0
0 𝜐 −𝜆

�

�
= 0

−𝜆 �
�𝛽𝑆 − 𝜐� − 𝜆 0

𝜐 −𝜆
� + 𝛽 �

0 0
0 −𝜆

� + 0 = 0

𝜆2 �𝛽𝑆 − 𝜐 − 𝜆� = 0

Hence 𝜆 = 0 (double root) and 𝜆 = 𝛽𝑆 − 𝜐 are the eigenvalues.

2.4 Part 4

The 𝑆 nullclines are the solution of −𝛽𝑆𝐼 = 0 and the 𝐼 nullclines are solutions of 𝛽𝑆𝐼 −𝜐𝐼 = 0
and 𝑅 nullclines are solutions of 𝜐𝐼

𝑆 nullclines are therefore 𝐼 = 0 and 𝑆 = 0.

𝐼 nullclines are therefore 𝐼 = 0 and 𝑆 = 𝜐
𝛽 .

𝑅 nullclines are 𝐼 = 0.

2.5 Part 5

To answer this, we need to assume that 𝐼 (0) is not zero. This means initial condition such
that some infection exist, otherwise 𝑆 (𝑡) will not change.

Since ̇𝐼 = 𝛽𝑆𝐼 − 𝜐𝐼 then as 𝐼 increases (infected population increases) and because 𝜐 > 0
then the term 𝜐𝐼 becomes more negative. Since 𝑆 (𝑡) also at the same time becomes smaller
during this process (because more people are infected), then we see that ̇𝐼 will eventually
starts to decrease as 𝐼 increases and this happens when 𝜐𝐼 becomes larger than 𝛽𝑆𝐼. (This
is the peak infection).

This means infected population size eventually decreases as 𝐼 (𝑡) passes some peak value.
Since population is assumed constant, this implies the recovered population size will also
increase and eventually all susceptible population that became infected will recover and
infected population will go to zero with time.
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3 Problem 3 (exercise 4.1, page 57)

In exercise 2.3 of chapter 2 we analyzed the existence of periodic solutions in an invariant
set of a three-dimensional system. Obtain this result in a more straightforward manner.
The following is 2.3 of chapter 2

We are studying the three-dimensional system

�̇�1 = 𝑥1 − 𝑥1𝑥2 − 𝑥32 + 𝑥3 �𝑥21 + 𝑥22 − 1 − 𝑥1 + 𝑥1𝑥2 + 𝑥32�

�̇�2 = 𝑥1 − 𝑥3 (𝑥1 − 𝑥2 + 2𝑥1𝑥2)

�̇�3 = (𝑥3 − 1) �𝑥3 + 2𝑥3𝑥22 + 𝑥33�

Consider the invariant set 𝑥3 = 1. Does this set contain periodic solutions?

solution

Writing the above as

�̇� = 𝑭 (𝑥1, 𝑥2, 𝑥2)
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

�̇�1
�̇�2
�̇�3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑓1 (𝑥1, 𝑥2, 𝑥3)
𝑓2 (𝑥1, 𝑥2, 𝑥3)
𝑓3 (𝑥1, 𝑥2, 𝑥3)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1 − 𝑥1𝑥2 − 𝑥32 + 𝑥3 �𝑥21 + 𝑥22 − 1 − 𝑥1 + 𝑥1𝑥2 + 𝑥32�
𝑥1 − 𝑥3 (𝑥1 − 𝑥2 + 2𝑥1𝑥2)
(𝑥3 − 1) �𝑥3 + 2𝑥3𝑥22 + 𝑥33�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

We now need to set 𝑥3 = 1 before taking the divergence. The above simplifies to

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

�̇�1
�̇�2
�̇�3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑓1 (𝑥1, 𝑥2, 𝑥3)
𝑓2 (𝑥1, 𝑥2, 𝑥3)
𝑓3 (𝑥1, 𝑥2, 𝑥3)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1 − 𝑥1𝑥2 − 𝑥32 + �𝑥21 + 𝑥22 − 1 − 𝑥1 + 𝑥1𝑥2 + 1�
𝑥1 − (𝑥1 − 𝑥2 + 2𝑥1𝑥2)

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Then using Bendixson’s criterion, periodic solution exist only if divergence of 𝑭 (𝑥1, 𝑥2, 𝑥2)
changes sign in the domain 𝐷 or if the divergence is identically zero. 𝐷 is taken as the
whole of ℝ3.

∇ ⋅ 𝑭 (𝑥1, 𝑥2, 𝑥2) =
𝜕𝑓1
𝜕𝑥1

+
𝜕𝑓2
𝜕𝑥2

+
𝜕𝑓3
𝜕𝑥3

(1)

But

𝜕𝑓1
𝜕𝑥1

= 1 − 𝑥2 + (2𝑥1 − 1 + 𝑥2) = 2𝑥1

𝜕𝑓2
𝜕𝑥2

= − (−1 + 2𝑥1) = 1 − 2𝑥1

𝜕𝑓3
𝜕𝑥3

= 0

Hence (1) now becomes

∇ ⋅ 𝑭 (𝑥1, 𝑥2, 𝑥2) = 2𝑥1 + 1 − 2𝑥1
= 1

Therefore ∇ ⋅ 𝑭 (𝑥1, 𝑥2, 𝑥2) does not change sign. Therefore no periodic solution exist.
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