MATH 5525: HOMEWORK ASSIGNMENT 2

Date (March 4, 2020)
3.1, page 36, textbook. Consider the system of ODEs

$$
\begin{equation*}
\dot{x}=y\left(1+x-y^{2}\right):=f(x, y), \quad \dot{y}=x\left(1+y-x^{2}\right):=g(x, y) . \tag{1}
\end{equation*}
$$

Find the critical points and characterize their stability properties.

1. To find the critical points, we solve the algebraic equations

$$
y\left(1+x-y^{2}\right)=0, \quad \text { and } \quad x\left(1+y-x^{2}\right)=0 .
$$

The solutions satisfy the relations:

$$
\begin{equation*}
y=0 \quad \text { or } \quad 1+x-y^{2}=0, \quad \text { and } \quad x=0 \quad \text { or } \quad 1+y-x^{2}=0 \tag{2}
\end{equation*}
$$

This results in the following pairs:

$$
(0,0),(\pm 1,0),(0, \pm 1),\left(\frac{1}{2} \pm \frac{\sqrt{5}}{2}, \frac{1}{2} \pm \frac{\sqrt{5}}{2}\right)
$$

The two last solution pairs, result from searching solutions such that $x=y$, in which case $1+x-x^{2}=0$ must hold.
2. The Jacobian matrix (that is, the matrix of the partial derivatives of $f(x, y)$ and $g(x, y))$ is given by

$$
\left[\begin{array}{cc}
y & 1+x-3 y^{2} \\
1+y-3 x^{2} & x
\end{array}\right] .
$$

The corresponding matrix near the equilibrium points is:
$(0,0): \quad\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. Eigenvalues ± 1. Saddle point.
$(0,1): \quad\left[\begin{array}{cc}1 & -2 \\ 2 & 0\end{array}\right]$. Eigenvalues $\frac{1}{2} \pm \frac{\sqrt{3}}{2} i$. Focus, negative attractor.
$(0,-1): \quad\left[\begin{array}{cc}-1 & -2 \\ 0 & 0\end{array}\right]$. Eigenvalues $0,-1$. Degenerate.
$(1,0)$: $\quad\left[\begin{array}{cc}0 & 2 \\ -3 & 1\end{array}\right]$. Eigenvalues $\frac{1}{2}(1 \pm \sqrt{23} i)$. Focus, negative atttractor.
$(-1,0): \quad\left[\begin{array}{cc}0 & 0 \\ 3 & -1\end{array}\right]$. Eigenvalues $0,-1$. Degenerate.
$\left(\frac{1}{2}+\frac{\sqrt{5}}{2}, \frac{1}{2}+\frac{\sqrt{5}}{2}\right): \quad$ saddle point
$\left(\frac{1}{2}-\frac{\sqrt{5}}{2}, \frac{1}{2}-\frac{\sqrt{5}}{2}\right): \quad$ saddle point.
3.3, page 36, textbook. Consider the system

$$
\dot{x}=16 x^{2}+9 y^{2}-25:=f(x, y), \quad \dot{y}=16 x^{2}-16 y^{2}:=g(x, y) .
$$

1. To find the critical points, we solve the algebraic equations

$$
16 x^{2}+9 y^{2}-25=0 \quad \text { and } \quad 16 x^{2}-16 y^{2}=0
$$

Solutions, equilibrium points, are

$$
(1,1),(1,-1),(-1,1),(-1,-1)
$$

2. The Jacobian matrix is given by

$$
\left[\begin{array}{cc}
32 x & 18 y \\
32 x & -32 y
\end{array}\right]
$$

The corresponding matrix near the equilibrium point is:

$$
\begin{aligned}
& (1,1):\left[\begin{array}{cc}
32 & 18 \\
32 & -32
\end{array}\right] . \text { Eigenvalues } \pm 40 . \text { Saddle point. } \\
& (1,-1):\left[\begin{array}{cc}
32 & -18 \\
32 & 32
\end{array}\right] . \text { Eigenvalues } 32 \pm 24 i \text {. Unstable spiral (or negative focus). } \\
& (-1,1):\left[\begin{array}{ll}
-32 & 18 \\
-32 & 32
\end{array}\right] . \text { Eigenvalues }-32 \pm 24 i \text {. Stable spiral (or positive focus). } \\
& (-1,-1):\left[\begin{array}{cc}
-32 & 18 \\
-32 & 32
\end{array}\right] . \text { Eigenvalues } \pm 40 . \quad \text { Saddle point. }
\end{aligned}
$$

3. Sketch the phase-plane of the system.
3.5, page 36, textbook. Consider the second order ODE:

$$
x^{\prime \prime}+c x^{\prime}-x(1-x)=0 .
$$

The limiting conditions imply that $x=0, x^{\prime}=0$ and $x=1, x^{\prime}=0$ are critical points of the equation. Moreover, $x=0$ is unstable and $x=1$ is stable (because the limits correspond to $t \rightarrow-\infty$ and $t \rightarrow \infty$, respectively.)

Figure 1: Phase-plane exercise 3.3.
The matrix of the linear system about $(0,0)$ is $\left[\begin{array}{cc}0 & 1 \\ 1 & -c\end{array}\right]$. Its eigenvalues are

$$
2 \lambda=-c \pm \sqrt{c^{2}+4}
$$

The matrix of the linear system about $(1,0)$ is $\left[\begin{array}{cc}0 & 1 \\ 1 & -c\end{array}\right]$. Its eigenvalues are

$$
2 \lambda=-c \pm \sqrt{c^{2}-4}
$$

Note that the stability of $x=1$ requires $c>0$. Moreover, if $c<2$ the eigenvalues are complex, in which case the equilibrium point is a stable focus. It is easy to see that, in such as case, $x^{\prime}<0$ for some values of t. Hence, we require $c \geqslant 2$, so that both eigenvalues are real and negative and $x=1$ is a stable node.

With $c \geqslant 2$, then $x=0$ is a saddle point.
3.5, page 36, textbook. Consider the system

$$
\dot{x}=x\left(1-x^{2}-6 y^{2}\right), \quad \dot{y}=y\left(1-3 x^{2}-3 y^{2}\right) .
$$

1. To find the critical points, we solve the algebraic equations

$$
x\left(1-x^{2}-6 y^{2}\right)=0 \quad \text { and } \quad y\left(1-3 x^{2}-3 y^{2}\right)=0 .
$$

The critical points are:

- $(0,0)$. Unstable node.
- $\left(0, \pm \frac{1}{\sqrt{3}}\right) .2$ stable nodes.
- $(\pm 1,0) .2$ stable nodes.
- $\left(\pm \frac{1}{\sqrt{5}}, \pm \frac{\sqrt{2}}{\sqrt{15}}\right)$. These are 4 saddle points

