Study notes

EE 3015 Signals and Systems

Spring 2020
 University of Minnesota, Twin Cities

Nasser M. Abbasi

Contents

1 When input is complex exponential 2

1 When input is complex exponential

When input is $x[n]=e^{j \Omega_{0} n}$ and system is given by $H(\Omega)$ then the output is $y[n]=e^{j \Omega_{0} n} H\left(\Omega_{0}\right)$ which is the same as $y[n]=e^{j \Omega_{0} n}\left|H\left(\Omega_{0}\right)\right| e^{j \arg H\left(\Omega_{0}\right)}$.

Figure 1: Output when input is complex exponential

Hence when the input is linear combination of complex exponentials

$$
\begin{aligned}
A \cos \left(\Omega_{0} n+\theta\right) & =\frac{A}{2}\left(e^{j\left(\Omega_{0} n+\theta\right)}+e^{-j\left(\Omega_{0} n+\theta\right)}\right) \\
& =\left(\frac{A}{2} e^{j \theta}\right) e^{j \Omega_{0} n}+\left(\frac{A}{2} e^{-j \theta}\right) e^{-j \Omega_{0} n}
\end{aligned}
$$

Then, and since the system is linear, then the output will be scaled and linear sum of each output corresponding to each term above. In other words, when the input is $\left(\frac{A}{2} e^{i \theta}\right) e^{j \Omega_{0} n}$ then the output is

$$
\begin{align*}
y_{1}[n] & =\left(\frac{A}{2} e^{j \theta}\right) e^{j \Omega_{0} n}\left|H\left(\Omega_{0}\right)\right| e^{j \arg H\left(\Omega_{0}\right)} \\
& =\left|H\left(\Omega_{0}\right)\right| \frac{A}{2} j^{j\left(\Omega_{0} n+\theta+\arg H\left(\Omega_{0}\right)\right)} \tag{1}
\end{align*}
$$

And when the input is $\left(\frac{A}{2} e^{-j \theta}\right) e^{-j \Omega_{0} n}$ then the output is

$$
\begin{aligned}
y_{2}[n] & =\left(\frac{A}{2} e^{-j \theta}\right) e^{-j \Omega_{0} n}\left|H\left(-\Omega_{0}\right)\right| e^{j \arg H\left(-\Omega_{0}\right)} \\
& =\left|H\left(-\Omega_{0}\right)\right| \frac{A}{2} e^{-j\left(\Omega_{0} n+\theta-\arg H\left(-\Omega_{0}\right)\right)}
\end{aligned}
$$

But for real input, which is the case here, $\left|H\left(\Omega_{0}\right)\right|$ is symmetrical. Hence $\left|H\left(\Omega_{0}\right)\right|=\left|H\left(-\Omega_{0}\right)\right|$ and $\arg H\left(-\Omega_{0}\right)=-\arg H\left(\Omega_{0}\right)$ (see table 4.6 for these properties). Hence

$$
\begin{equation*}
y_{2}[n]=\left|H\left(\Omega_{0}\right)\right| \frac{A}{2} e^{-j\left(\Omega_{0} n+\theta+\arg H\left(\Omega_{0}\right)\right)} \tag{2}
\end{equation*}
$$

Therefore, by linearity, $y[n]=y_{1}[n]+y_{2}[n]$ or by adding (1) and (2)

$$
\begin{aligned}
y[n] & =\left|H\left(\Omega_{0}\right)\right| \frac{A}{2} e^{j\left(\Omega_{0} n+\theta+\arg H\left(\Omega_{0}\right)\right)}+\left|H\left(\Omega_{0}\right)\right| \frac{A}{2} e^{-j\left(\Omega_{0} n+\theta+\arg H\left(\Omega_{0}\right)\right)} \\
& =\left|H\left(\Omega_{0}\right)\right| A\left(\frac{e^{j\left(\Omega_{0} n+\theta+\arg H\left(\Omega_{0}\right)\right)}+e^{-j\left(\Omega_{0} n+\theta+\arg H\left(\Omega_{0}\right)\right)}}{2}\right) \\
& =\left|H\left(\Omega_{0}\right)\right| A \cos \left(\Omega_{0} n+\theta+\arg H\left(\Omega_{0}\right)\right)
\end{aligned}
$$

