my cheat sheet

EE 3015 Signals and Systems

Spring 2020 University of Minnesota, Twin Cities

Nasser M. Abbasi

May 27, 2020 Compiled on May 27, 2020 at 12:27am

Contents

Let $\omega_0 = \frac{2\pi}{T_0}$ be the fundamental frequency (rad/sec), and T_0 the fundamental period, then

$$\begin{aligned} x(t) &= \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} \\ a_k &= \frac{1}{T_0} \int_{T_0} x(t) e^{-jk\omega_0 t} dt \end{aligned}$$

■ Fourier series. Periodic signals, Discrete time

Let $\Omega_0 = \frac{2\pi}{N}$ be the fundamental frequency (rad/sample), and N the fundamental period, then

$$x[n] = \sum_{k=0}^{N-1} a_k e^{jk\Omega_0 n} = \sum_{k=\langle N \rangle} a_k e^{jk\Omega_0 n}$$
$$a_k = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-jk\Omega_0 n} = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-jk\Omega_0 n}$$

■ Fourier transform. Non periodic signal, Continuous time.

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{i\omega t} d\omega$$
$$X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-i\omega t} dt$$

It is also possible to obtain a Fourier transform for periodic signal. For $x(t) = \sum_{k=-\infty}^{\infty} a_k e^{ik\omega_0 t}$ its Fourier transform becomes $(\omega_0 = \frac{2\pi}{T_0})$

$$X(\omega) = 2\pi \sum_{k=-\infty}^{\infty} a_k \delta(\omega - k\omega_0)$$

■ Fourier transform. Non periodic signal, Discrete time.

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\Omega) e^{j\Omega n} d\Omega$$
$$X(\Omega) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\Omega n}$$

It is also possible to obtain a Fourier transform for periodic discrete signal, where $\Omega_0 = \frac{2\pi}{N}$

$$X(\Omega) = 2\pi \sum_{k=-\infty}^{\infty} a_k \delta \left(\Omega - k\Omega_0\right)$$

■ When input to LTI system is $x(t) = e^{j\omega t}$ and system has impulse response h(t) then output is

$$y(t) = \int_{-\infty}^{\infty} h(\tau) x(t-\tau) d\tau$$
$$= \int_{-\infty}^{\infty} h(\tau) e^{j\omega(t-\tau)} d\tau$$
$$= e^{j\omega t} \int_{-\infty}^{\infty} h(\tau) e^{-j\omega \tau} d\tau$$
$$= e^{j\omega t} H(\omega)$$

Where $H(\omega)$ is the Fourier transform of h(t). In the above $e^{j\omega t}$ is called eigenfunctions of the system and $H(\omega)$ the eigenvalues.

If input $x(t) = a \cos(5\omega_0 t + \theta)$ and $H(\omega)$ is the Fourier transform of the system, then

$$y(t) = a \left| H(5\omega_0) \right| \cos \left(5\omega_0 t + \theta + \arg H(5\omega_0) \right)$$

Same for discrete time.

■ Modulation. y(t) = x(t)h(t) in CTFT becomes $Y(\omega) = \frac{1}{2\pi}X(\omega) \circledast H(\omega)$ where $X(\omega) \circledast H(\omega) = \int_{-\infty}^{\infty} X(z)H(\omega - z)dz$. Notice the extra $\frac{1}{2\pi}$ factor.

■ To find discrete period given a signal, write x[n] = x[n+N] and then solve for *N*. See HW's.

$$\blacksquare \sum_{n=0}^{\infty} a^n = \frac{1}{1-a} \text{ and } \sum_{n=N}^{\infty} a^n = \frac{a^N}{1-a} \text{ and } \sum_{n=0}^{N} a^n = \frac{a^{1+N}-1}{a-1}, \text{ and } \sum_{n=N_1}^{N_2} a^n = \frac{a^{N_1}-a^{N_2}+1}{1-a}$$

Fourier transform relations. $y(t) \iff Y(\omega)$ then $y(at) \iff \frac{1}{a}Y\left(\frac{\omega}{a}\right)$

• Euler relations.
$$\cos x = \frac{e^{jx} + e^{-jx}}{2}$$
, $\sin x = \frac{e^{jx} - e^{-jx}}{2j}$

■ Circuit. Voltage cross resistor *R* is V(t) = Ri(t). Voltage cross inductor *L* is $V(t) = L\frac{di}{dt}$ and current across capacitor *C* is $i(t) = C\frac{dV}{dt}$

Partial fractions.

f(x)	AB
$\overline{(x-a)(x-b)}$	$\frac{1}{x-a} + \frac{1}{x-b}$
$f(\mathbf{x})$	
$\overline{(x-a)^2}$	$\frac{1}{x-a} + \frac{1}{(x-a)^2}$
f(x)	A $Bx+C$
$\overline{(x-a)(x^2+bx+c)}$	$\frac{1}{x-a} + \frac{1}{x^2+bx+c}$
f(x)	A B C
$(x-a)(x+d)^2$	$\overline{x-a} + \overline{x+d} + \overline{(x+d)^2}$
f(x)	A B
$\overline{(x+d)^2}$	$\frac{1}{x+d} + \frac{1}{(x+d)^2}$
f(x)	A = Bx + C
$\overline{(x-a)(x^2-b^2)}$	$\frac{1}{x+d} + \frac{1}{x^2-b^2}$
f(x)	Ax+B $Cx+D$
$\overline{(x^2-a)(x^2-b)}$	$\frac{1}{x^2-a} + \frac{1}{x^2-b}$
f(x)	Ax+B $Cx+D$
$\overline{(x^2-a)^2}$	$\frac{1}{x^2-a} + \frac{1}{(x^2-a)^2}$
L \ _ /	

■ Parsevel's. For non-periodic cont. time: $\int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(\omega)|^2 d\omega$. For periodic cont. time : $\frac{1}{T} \int_{T} |x(t)|^2 dt = \sum_{k=-\infty}^{\infty} |a_k|^2$. For discrete: $\frac{1}{2\pi} \int_{-\infty}^{\infty} |X(\Omega)|^2 d\Omega = \sum_{n=-\infty}^{\infty} |x[n]|^2$.

■ Properties Fourier series. If $a_k = a_{-k}^*$ then x(t) is real. If a_k is even, then x(t) is even. For x(t) real and odd, then a_k are pure imaginary and odd. i.e. $a_k = -a_{-k}$, and $a_0 = 0$.

■ More Fourier transform relations. Continuos time

$e^{-a t }$	$\frac{2a}{a^2+\omega^2}$
$x(t)e^{-j\omega_0 t}$	$X(\omega + \omega_0)$
$x(t)e^{j\omega_0 t}$	$X(\omega - \omega_0)$
$\frac{\sin(a\omega)}{\omega}$	Box from $t = -a \cdots a$

Discrete time

u [n]	$\frac{1}{1-e^{-j\Omega}}$
u[n-1]	$e^{-j\Omega}U(\Omega) = e^{-j\Omega}\frac{1}{1-e^{-j\Omega}}$
$a^n u [n]$	$\frac{1}{1-ae^{-j\Omega}}$
$e^{j\Omega_0 n}x[n]$	$X(\Omega - \Omega_0)$

From above we see that unit delay in discrete time means multiplying by $e^{-j\Omega}$.

■ Difference equations. $y[n-1] \iff e^{-j\Omega}Y(\Omega)$. For example, given y[n] - ay[n-1] = x[n] then applying DFT gives $Y(\Omega) - ae^{-j\Omega}Y(\Omega) = X(\Omega)$ or $H(\Omega) = \frac{Y(\Omega)}{X(\Omega)} = \frac{1}{1 - ae^{-j\Omega}}$. From tables, the inverse DFT of this is $a^n u[n]$. Need to know partial fractions sometimes. For example

given $y[n] - \frac{3}{4}y[n-1] + \frac{1}{8}y[n-2] = 2x[n]$ then

$$Y(\Omega) - \frac{3}{4}e^{-j\Omega}Y(\Omega) + \frac{1}{8}e^{-j2\Omega}Y(\Omega) = 2X(\Omega)$$
$$H(\Omega) = \frac{Y(\Omega)}{X(\Omega)}$$
$$= \frac{2}{\left(1 - \frac{3}{4}e^{-j\Omega} + \frac{1}{8}e^{-j2\Omega}\right)}$$
$$= \frac{2}{\left(1 - \frac{1}{2}e^{-j\Omega}\right)\left(1 - \frac{1}{4}e^{-j\Omega}\right)}$$

And using partial fractions gives $H(\Omega) = \frac{4}{1-\frac{1}{2}e^{-j\Omega}} - \frac{2}{1-\frac{1}{4}e^{-j\Omega}}$. Hence using above table gives $h[n] = \left(4\left(\frac{1}{2}\right)^n - 2\left(\frac{1}{4}\right)^n\right)u[n]$

 $||X(\omega)||^2$ may be interpreted as the energy density spectrum of x(t). This means $\frac{1}{2\pi} |X(\omega)|^2 d\omega$ is amount of energy in $d\omega$ range of frequencies. i.e. between ω and $\omega + d\omega$. $|X(\omega)|$ is called the gain of the system and $\arg(H(\omega))$ is called the phase shift of the system. When $\arg(H(\omega))$ is linear function in ω then the effect in time domain is time shift. (delay).

$$\blacksquare z \text{ transforms } X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n}. \text{ If } x[n] \to X(z) \text{ then } x[n-1] \to z^{-1}X(z).$$

 $\blacksquare \frac{\sin(ax)}{ax} = \operatorname{sinc}\left(\frac{ax}{\pi}\right) \text{ and } \frac{\sin(x)}{x} = \operatorname{sinc}\left(\frac{x}{\pi}\right). \text{ In class we use } \frac{\sin(\omega_c t)}{\pi t}. \text{ This has FT as rectangle from } -\omega_c \text{ to } \omega_c \text{ and amplitude 1.}$

 \blacksquare in digital, sampling rate is in hz, but units is samples per second and not cycles per second as with analog.

$$\Omega = \frac{\omega}{F_s}$$

where F_s is sampling rate in samples per second, and Ω is unnormalized digital frequency (radians per sample) and ω is analog frequency (radians per second). This can also be written as

$$\Omega = \omega T$$

where here T_s is seconds per sample (i.e. number of seconds to obtain one sample). Per sample is used to make the units come out OK.

■ Trig identities

$$\sin A \cos B = \frac{1}{2} \left(\sin \left(A + B \right) + \sin \left(A - B \right) \right)$$
$$\cos A \cos B = \frac{1}{2} \left(\cos \left(A + B \right) + \cos \left(A - B \right) \right)$$
$$\sin A \sin B = \frac{1}{2} \left(\cos \left(A - B \right) - \cos \left(A + B \right) \right)$$

Group delay is given by $-\frac{d}{d\omega} (\arg(H(\omega)))$. For example, if $H(\omega) = \frac{1}{2+j\omega}$ then $\arg(H(\omega)) = -\arctan(\frac{\omega}{2})$ which leads to group delay being $\frac{2}{4+\omega^2}$.

■ FT of $\cos(\omega_c t)$ has delta at $\pm \omega_c$ each of amplitude π . And FT of $\sin(\omega_c t)$ has delta at ω_c of amplitude $\frac{\pi}{j}$ and has delta at $-\omega_c$ of amplitude $\frac{-\pi}{j}$ and $\frac{\sin(\omega_c t)}{\pi t}$ has FT as rectangle of amplitude 1 and width from $-\omega_c$ to $+\omega_c$.

$$X(\Omega) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\Omega n}$$
$$= \sum_{n=-\infty}^{\infty} \left(\frac{1}{2}\right)^n \cos\left(\frac{\pi n}{2}\right) u[n] e^{-j\Omega n}$$
$$= \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \cos\left(\frac{\pi n}{2}\right) e^{-j\Omega n}$$

But $\cos\left(\frac{\pi n}{2}\right) = \frac{1}{2}\left(e^{j\frac{\pi n}{2}} + e^{-j\frac{\pi n}{2}}\right)$ and the above becomes

$$X(\Omega) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \frac{1}{2} \left(e^{j\frac{\pi n}{2}} + e^{-j\frac{\pi n}{2}}\right) e^{-j\Omega n}$$

= $\frac{1}{2} \left(\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n e^{j\frac{\pi n}{2}} e^{-j\Omega n} + \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n e^{-j\frac{\pi n}{2}} e^{-j\Omega n}\right)$
= $\frac{1}{2} \left(\sum_{n=0}^{\infty} \left(\frac{1}{2} e^{j\left(\frac{\pi}{2} - \Omega\right)}\right)^n + \sum_{n=0}^{\infty} \left(\frac{1}{2} e^{j\left(-\frac{\pi}{2} - \Omega\right)}\right)^n\right)$

Since $\frac{1}{2}e^{i\left(\frac{\pi}{2}-\Omega\right)} < 1$ then we can use $\sum_{n=0}^{\infty} a^n = \frac{1}{1-a}$ for both terms and the above becomes

$$X(\Omega) = \frac{1}{2} \left(\frac{1}{1 - \frac{1}{2}e^{j\left(\frac{\pi}{2} - \Omega\right)}} + \frac{1}{1 - \frac{1}{2}e^{j\left(-\frac{\pi}{2} - \Omega\right)}} \right)$$
$$= \frac{1}{2} \left(\frac{1}{1 - \frac{1}{2}e^{j\frac{\pi}{2}}e^{-j\Omega}} + \frac{1}{1 - \frac{1}{2}e^{-j\frac{\pi}{2}}e^{-j\Omega}} \right)$$

But $e^{j\frac{\pi}{2}} = j$ and $e^{-j\frac{\pi}{2}} = -j$ and the above becomes

$$\begin{split} X\left(\Omega\right) &= \frac{1}{2} \left(\frac{1}{1 - \frac{1}{2}je^{-j\Omega}} + \frac{1}{1 + \frac{1}{2}je^{-j\Omega}} \right) \\ &= \frac{1}{2} \left(\frac{1 + \frac{1}{2}je^{-j\Omega} + 1 - \frac{1}{2}je^{-j\Omega}}{\left(1 - \frac{1}{2}je^{-j\Omega}\right)\left(1 + \frac{1}{2}je^{-j\Omega}\right)} \right) \\ &= \frac{1}{2} \left(\frac{2}{1 + \frac{1}{2}je^{-j\Omega} - \frac{1}{2}je^{-j\Omega} - \frac{1}{4}j^2e^{-2j\Omega}} \right) \\ &= \frac{1}{1 + \frac{1}{4}e^{-2j\Omega}} \end{split}$$

■ Z transforms

u [n]	Ζ
$a^n u[n]$	$\frac{1}{1-az^{-1}}$
$a^{n-1}u\left[n-1\right]$	$z^{-1} \frac{1}{1-az^{-1}}$
$a^{n-2}u\left[n-2\right]$	$z^{-2} \frac{1}{1-az^{-1}}$

If the ROC outside the out most pole, then right-handed signal. (Causal). If the ROC is inside the inner most pole, then left-handed signal (non causal).