my cheat sheet

EE 3015
Signals and Systems

Spring 2020
University of Minnesota, Twin Cities

Nasser M. Abbasi

Contents

■ Fourier series. Periodic signals, Continuous time

Let $\omega_{0}=\frac{2 \pi}{T_{0}}$ be the fundamental frequency ($\mathrm{rad} / \mathrm{sec}$), and T_{0} the fundamental period, then

$$
\begin{aligned}
x(t) & =\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0} t} \\
a_{k} & =\frac{1}{T_{0}} \int_{T_{0}} x(t) e^{-j k \omega_{0} t} d t
\end{aligned}
$$

- Fourier series. Periodic signals, Discrete time

Let $\Omega_{0}=\frac{2 \pi}{N}$ be the fundamental frequency (rad/sample), and N the fundamental period, then

$$
\begin{aligned}
x[n] & =\sum_{k=0}^{N-1} a_{k} e^{j k \Omega_{0} n}=\sum_{k=\langle N\rangle} a_{k} e^{j k \Omega_{0} n} \\
a_{k} & =\frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j k \Omega_{0} n}=\frac{1}{N} \sum_{n=\langle N\rangle} x[n] e^{-j k \Omega_{0} n}
\end{aligned}
$$

Fourier transform. Non periodic signal, Continuous time.

$$
\begin{aligned}
x(t) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) e^{i \omega t} d \omega \\
X(\omega) & =\int_{-\infty}^{\infty} x(t) e^{-i \omega t} d t
\end{aligned}
$$

It is also possible to obtain a Fourier transform for periodic signal. For $x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{i k \omega_{0} t}$ its Fourier transform becomes ($\omega_{0}=\frac{2 \pi}{T_{0}}$)

$$
X(\omega)=2 \pi \sum_{k=-\infty}^{\infty} a_{k} \delta\left(\omega-k \omega_{0}\right)
$$

■ Fourier transform. Non periodic signal, Discrete time.

$$
\begin{aligned}
x[n] & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} X(\Omega) e^{j \Omega n} d \Omega \\
X(\Omega) & =\sum_{n=-\infty}^{\infty} x[n] e^{-j \Omega n}
\end{aligned}
$$

It is also possible to obtain a Fourier transform for periodic discrete signal, where $\Omega_{0}=\frac{2 \pi}{\mathrm{~N}}$

$$
X(\Omega)=2 \pi \sum_{k=-\infty}^{\infty} a_{k} \delta\left(\Omega-k \Omega_{0}\right)
$$

\square When input to LTI system is $x(t)=e^{j \omega t}$ and system has impulse response $h(t)$ then output is

$$
\begin{aligned}
y(t) & =\int_{-\infty}^{\infty} h(\tau) x(t-\tau) d \tau \\
& =\int_{-\infty}^{\infty} h(\tau) e^{j \omega(t-\tau)} d \tau \\
& =e^{j \omega t} \int_{-\infty}^{\infty} h(\tau) e^{-j \omega \tau} d \tau \\
& =e^{j \omega t} H(\omega)
\end{aligned}
$$

Where $H(\omega)$ is the Fourier transform of $h(t)$. In the above $e^{j \omega t}$ is called eigenfucntions of the system and $H(\omega)$ the eigenvalues.
■ If input $x(t)=a \cos \left(5 \omega_{0} t+\theta\right)$ and $H(\omega)$ is the Fourier transform of the system, then

$$
y(t)=a\left|H\left(5 \omega_{0}\right)\right| \cos \left(5 \omega_{0} t+\theta+\arg H\left(5 \omega_{0}\right)\right)
$$

Same for discrete time.

■ Modulation. $y(t)=x(t) h(t)$ in CTFT becomes $Y(\omega)=\frac{1}{2 \pi} X(\omega) \circledast H(\omega)$ where $X(\omega) \circledast$ $H(\omega)=\int_{-\infty}^{\infty} X(z) H(\omega-z) d z$. Notice the extra $\frac{1}{2 \pi}$ factor.
\square To find discrete period given a signal, write $x[n]=x[n+N]$ and then solve for N. See HW's.
■ $\sum_{n=0}^{\infty} a^{n}=\frac{1}{1-a}$ and $\sum_{n=N}^{\infty} a^{n}=\frac{a^{N}}{1-a}$ and $\sum_{n=0}^{N} a^{n}=\frac{a^{1+N}-1}{a-1}$, and $\sum_{n=N_{1}}^{N_{2}} a^{n}=\frac{a^{N_{1}-a^{N} N_{2}}}{1-a}$
■ Fourier transform relations. $y(t) \Longleftrightarrow Y(\omega)$ then $y(a t) \Longleftrightarrow \frac{1}{a} Y\left(\frac{\omega}{a}\right)$
■ Euler relations. $\cos x=\frac{e^{j x}+e^{-j x}}{2}, \sin x=\frac{e^{j x}-e^{-j x}}{2 j}$
■ Circuit. Voltage cross resistor R is $V(t)=R i(t)$. Voltage cross inductor L is $V(t)=L \frac{d i}{d t}$ and current across capacitor C is $i(t)=C \frac{d V}{d t}$
\square Partial fractions.

$\frac{f(x)}{(x-a)(x-b)}$	$\frac{A}{x-a}+\frac{B}{x-b}$
$\frac{f(x)}{(x-a)^{2}}$	$\frac{A}{x-a}+\frac{B}{(x-a)^{2}}$
$\frac{f(x)}{(x-a)\left(x^{2}+b x+c\right)}$	$\frac{A}{x-a}+\frac{B x+C}{x^{2}+b x+c}$
$\frac{f(x)}{(x-a)(x+d)^{2}}$	$\frac{A}{x-a}+\frac{B}{x+d}+\frac{C}{(x+d)^{2}}$
$\frac{f(x)}{(x+d)^{2}}$	$\frac{A}{x+d}+\frac{B}{(x+d)^{2}}$
$\frac{f(x)}{(x-a)\left(x^{2}-b^{2}\right)}$	$\frac{A}{x+d}+\frac{B x+C}{x^{2}-b^{2}}$
$\frac{f(x)}{\left(x^{2}-a\right)\left(x^{2}-b\right)}$	$\frac{A x+B}{x^{2}-a}+\frac{C x+D}{x^{2}-b}$
$\frac{f(x)}{\left(x^{2}-a\right)^{2}}$	$\frac{A x+B}{x^{2}-a}+\frac{C x+D}{\left(x^{2}-a\right)^{2}}$

Parsevel's. For non-periodic cont. time: $\int_{-\infty}^{\infty}|x(t)|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|X(\omega)|^{2} d \omega$. For periodic cont. time : $\frac{1}{T} \int_{T}|x(t)|^{2} d t=\sum_{k=-\infty}^{\infty}\left|a_{k}\right|^{2}$. For discrete: $\frac{1}{2 \pi} \int_{-\infty}^{\infty}|X(\Omega)|^{2} d \Omega=\sum_{n=-\infty}^{\infty}|x[n]|^{2}$.

- Properties Fourier series. If $a_{k}=a_{-k}^{*}$ then $x(t)$ is real. If a_{k} is even, then $x(t)$ is even. For $x(t)$ real and odd, then a_{k} are pure imaginary and odd. i.e. $a_{k}=-a_{-k}$, and $a_{0}=0$.
- More Fourier transform relations. Continuos time

$e^{-a\|t\|}$	$\frac{2 a}{a^{2}+\omega^{2}}$
$x(t) e^{-j \omega_{0} t}$	$X\left(\omega+\omega_{0}\right)$
$x(t) e^{j \omega_{0} t}$	$X\left(\omega-\omega_{0}\right)$
$\frac{\sin (a \omega)}{\omega}$	Box from $t=-a \cdots a$

Discrete time

$u[n]$	$\frac{1}{1-e^{-j \Lambda}}$
$u[n-1]$	$e^{-j \Omega} U(\Omega)=e^{-j \Omega} \frac{1}{1-e^{-j \Omega}}$
$a^{n} u[n]$	$\frac{1}{1-a e^{-j \Omega}}$
$e^{j \Omega_{0} n} x[n]$	$X\left(\Omega-\Omega_{0}\right)$

From above we see that unit delay in discrete time means multiplying by $e^{-j \Omega}$.

- Difference equations. $y[n-1] \Longleftrightarrow e^{-j \Omega} Y(\Omega)$. For example, given $y[n]-a y[n-1]=x[n]$ then applying DFT gives $Y(\Omega)-a e^{-j \Omega} Y(\Omega)=X(\Omega)$ or $H(\Omega)=\frac{Y(\Omega)}{X(\Omega)}=\frac{1}{1-a e^{-j \Omega}}$. From tables, the inverse DFT of this is $a^{n} u[n]$. Need to know partial fractions sometimes. For example
given $y[n]-\frac{3}{4} y[n-1]+\frac{1}{8} y[n-2]=2 x[n]$ then

$$
\begin{aligned}
Y(\Omega)-\frac{3}{4} e^{-j \Omega} Y(\Omega)+\frac{1}{8} e^{-j 2 \Omega} Y(\Omega) & =2 X(\Omega) \\
H(\Omega) & =\frac{Y(\Omega)}{X(\Omega)} \\
& =\frac{2}{\left(1-\frac{3}{4} e^{-j \Omega}+\frac{1}{8} e^{-j 2 \Omega}\right)} \\
& =\frac{2}{\left(1-\frac{1}{2} e^{-j \Omega}\right)\left(1-\frac{1}{4} e^{-j \Omega}\right)}
\end{aligned}
$$

And using partial fractions gives $H(\Omega)=\frac{4}{1-\frac{1}{2} e^{-j \Omega}}-\frac{2}{1-\frac{1}{4} e^{-j \Omega}}$. Hence using above table gives $h[n]=\left(4\left(\frac{1}{2}\right)^{n}-2\left(\frac{1}{4}\right)^{n}\right) u[n]$
$\left.\square X(\omega)\right|^{2}$ may be interpreted as the energy density spectrum of $x(t)$. This means $\frac{1}{2 \pi}|X(\omega)|^{2} d \omega$ is amount of energy in $d \omega$ range of frequencies. i.e. between ω and $\omega+d \omega$. $|X(\omega)|$ is called the gain of the system and $\arg (H(\omega))$ is called the phase shift of the system. When $\arg (H(\omega))$ is linear function in ω then the effect in time domain is time shift. (delay).
z transforms $X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}$. If $x[n] \rightarrow X(z)$ then $x[n-1] \rightarrow z^{-1} X(z)$.
■ $\frac{\sin (a x)}{a x}=\operatorname{sinc}\left(\frac{a x}{\pi}\right)$ and $\frac{\sin (x)}{x}=\operatorname{sinc}\left(\frac{x}{\pi}\right)$. In class we use $\frac{\sin \left(\omega_{c} t\right)}{\pi t}$. This has FT as rectangle from $-\omega_{c}$ to ω_{c} and amplitude 1.
■ in digital, sampling rate is in hz, but units is samples per second and not cycles per second as with analog.

$$
\Omega=\frac{\omega}{F_{s}}
$$

where F_{s} is sampling rate in samples per second, and Ω is unnormalized digital frequency (radians per sample) and ω is analog frequency (radians per second). This can also be written as

$$
\Omega=\omega T_{s}
$$

where here T_{s} is seconds per sample (i.e. number of seconds to obtain one sample). Per sample is used to make the units come out OK.

- Trig identities

$$
\begin{aligned}
& \sin A \cos B=\frac{1}{2}(\sin (A+B)+\sin (A-B)) \\
& \cos A \cos B=\frac{1}{2}(\cos (A+B)+\cos (A-B)) \\
& \sin A \sin B=\frac{1}{2}(\cos (A-B)-\cos (A+B))
\end{aligned}
$$

■ Group delay is given by $-\frac{d}{d \omega}(\arg (H(\omega)))$. For example, if $H(\omega)=\frac{1}{2+j \omega}$ then $\arg (H(\omega))=$ $-\arctan \left(\frac{\omega}{2}\right)$ which leads to group delay being $\frac{2}{4+\omega^{2}}$.
■ FT of $\cos \left(\omega_{c} t\right)$ has delta at $\pm \omega_{c}$ each of amplitude π. And FT of $\sin \left(\omega_{c} t\right)$ has delta at ω_{c} of amplitude $\frac{\pi}{j}$ and has delta at $-\omega_{c}$ of amplitude $\frac{-\pi}{j}$ and $\frac{\sin \left(\omega_{c} t\right)}{\pi t}$ has FT as rectangle of amplitude 1 and width from $-\omega_{c}$ to $+\omega_{c}$.

$$
\begin{aligned}
X(\Omega) & =\sum_{n=-\infty}^{\infty} x[n] e^{-j \Omega n} \\
& =\sum_{n=-\infty}^{\infty}\left(\frac{1}{2}\right)^{n} \cos \left(\frac{\pi n}{2}\right) u[n] e^{-j \Omega n} \\
& =\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n} \cos \left(\frac{\pi n}{2}\right) e^{-j \Omega n}
\end{aligned}
$$

But $\cos \left(\frac{\pi n}{2}\right)=\frac{1}{2}\left(e^{j \frac{\pi n}{2}}+e^{-j \frac{\pi n}{2}}\right)$ and the above becomes

$$
\begin{aligned}
X(\Omega) & =\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n} \frac{1}{2}\left(e^{j \frac{\pi n}{2}}+e^{-j \frac{\pi n}{2}}\right) e^{-j \Omega n} \\
& =\frac{1}{2}\left(\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n} e^{j \frac{\pi n}{2}} e^{-j \Omega n}+\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n} e^{-j \frac{\pi n}{2}} e^{-j \Omega n}\right) \\
& =\frac{1}{2}\left(\sum_{n=0}^{\infty}\left(\frac{1}{2} e^{j\left(\frac{\pi}{2}-\Omega\right)}\right)^{n}+\sum_{n=0}^{\infty}\left(\frac{1}{2} e^{j\left(-\frac{\pi}{2}-\Omega\right)}\right)^{n}\right)
\end{aligned}
$$

Since $\frac{1}{2} e^{j\left(\frac{\pi}{2}-\Omega\right)}<1$ then we can use $\sum_{n=0}^{\infty} a^{n}=\frac{1}{1-a}$ for both terms and the above becomes

$$
\begin{aligned}
X(\Omega) & =\frac{1}{2}\left(\frac{1}{1-\frac{1}{2} e^{j\left(\frac{\pi}{2}-\Omega\right)}}+\frac{1}{1-\frac{1}{2} e^{j\left(-\frac{\pi}{2}-\Omega\right)}}\right) \\
& =\frac{1}{2}\left(\frac{1}{1-\frac{1}{2} e^{j \frac{\pi}{2}} e^{-j \Omega}}+\frac{1}{1-\frac{1}{2} e^{-j \frac{\pi}{2}} e^{-j \Omega}}\right)
\end{aligned}
$$

But $e^{j \frac{\pi}{2}}=j$ and $e^{-j \frac{\pi}{2}}=-j$ and the above becomes

$$
\begin{aligned}
X(\Omega) & =\frac{1}{2}\left(\frac{1}{1-\frac{1}{2} j e^{-j \Omega}}+\frac{1}{1+\frac{1}{2} j e^{-j \Omega}}\right) \\
& =\frac{1}{2}\left(\frac{1+\frac{1}{2} j e^{-j \Omega}+1-\frac{1}{2} j e^{-j \Omega}}{\left(1-\frac{1}{2} j e^{-j \Omega}\right)\left(1+\frac{1}{2} j e^{-j \Omega}\right)}\right) \\
& =\frac{1}{2}\left(\frac{2}{1+\frac{1}{2} j e e^{-j \Omega}-\frac{1}{2} j e^{-j \Omega}-\frac{1}{4} j^{2} e^{-2 j \Omega}}\right) \\
& =\frac{1}{1+\frac{1}{4} e^{-2 j \Omega}}
\end{aligned}
$$

■ Z transforms

$$
\begin{array}{|l|l|}
\hline u[n] & \mathrm{Z} \\
\hline a^{n} u[n] & \frac{1}{1-a z^{-1}} \\
\hline a^{n-1} u[n-1] & z^{-1} \frac{1}{1-a z^{-1}} \\
\hline a^{n-2} u[n-2] & z^{-2} \frac{1}{1-a z^{-1}} \\
\hline
\end{array}
$$

If the ROC outside the out most pole, then right-handed signal. (Causal). If the ROC isinside the inner most pole, then left-handed signal (non causal).

