discussion week 3

EE 3015
Signals and Systems

Spring 2020
University of Minnesota, Twin Cities

Nasser M. Abbasi

Contents

1 Questions

Discussion 4 - practice problems For MidExaml. Wed oct 10
problem 1. Consider The convolution $y(t)=x(t) * h(t)$ with
$x(t)=\cos (\pi t) \cdot[u(t+1)-u(t-1)]$
$h(t)=u(t+1)-u(t-1)$
Compute $y(t)$ For $t<0$
problem. Calculate all Fourier Series Coat. of signal $x(t)$ $x(t)=\sin \left(\frac{3 \pi t}{2}\right)+\cos (7 \pi t)$ identify all frequencies? - what is the fundamale
frequency ω_{0} ?
problem 3. obtain Discrete Convolution of
$y(n)=x(n) * h(n)$ where $x(n)=a^{n} u[n-5]$
Assuming $|a|<1$
problem. The impulse response of a discrete. LTI system is

$$
\text { when in pot } x(n) \text { is } x(n)=\left[\begin{array}{ll}
a & b
\end{array}\right]
$$

if the output $y(n)$ is

$$
\text { Find }\left[\begin{array}{ll}
a^{?}! & b=? \\
c & b \\
=? & d=?
\end{array}\right]
$$

2 Problem 1

Solution

Folding $h(\tau)$ to becomes $h(-\tau)$. Therefore, when $1+t<-1$ or $t<-2$, then $y(t)=0$ since there is no overlap.

When $-1<1+t<1$, or $-2<t<0$, then there is partial overlap. In this case

$$
\begin{aligned}
y(t) & =\int_{-1}^{1+t} \cos (\pi \tau) d \tau \quad-2<t<0 \\
& =\frac{1}{\pi}[\sin (\pi \tau)]_{-1}^{1+t} \\
& =\frac{1}{\pi}[\sin (\pi(1+t))-\sin (-\pi)] \\
& =\frac{1}{\pi} \sin (\pi(1+t))
\end{aligned}
$$

When $1<1+t<3$, or $0<t<2$, then there is partial overlap. In this case

$$
\begin{aligned}
y(t) & =\int_{t-1}^{1} \cos (\pi \tau) d \tau \quad 0<t<2 \\
& =\frac{1}{\pi}[\sin (\pi \tau)]_{t-1}^{1} \\
& =\frac{1}{\pi}[\sin (\pi)-\sin (\pi(t-1))] \\
& =\frac{-1}{\pi} \sin (\pi(t-1))
\end{aligned}
$$

When $3<1+t$ or $t>2$ then $y(t)=0$ since there is no overlap any more. Hence solution is

$$
y(t)=\left\{\begin{array}{cc}
0 & t \leq-2 \\
\frac{1}{\pi} \sin (\pi(1+t)) & -2<t \leq 0 \\
\frac{-1}{\pi} \sin (\pi(t-1)) & 0<t \leq 2 \\
0 & t>2
\end{array}\right.
$$

The following is a plot of $y(t)$

Figure 1: Plot of $y(t)$

3
 Key solution

Discussion 4 - practice problems nor MidExaml. wed oct 10
problem 1. Consider The convolution $y(t)=x(t) * h(t)$ with $x(t)=\cos (\pi t) \cdot[u(t+1)-u(t-1)]$ $h(t)=u(t+1)-u(t-1)$ Compute $y(t)$ For $t<0$
problem 2. Calculate all Fouriar Series Coot. of signal $x(t)$ $x(t)=\sin \left(\frac{3 \pi t}{2}\right)+\cos (7 \pi t)$ identify all frequencies? - what is The fundamello ?
problems. obtain Discrete Cunvolutie of
$y(n)=x(n) * h|n|$ where $x(n)=a^{n} u[n-5]$

Assuming $|a|<1$
problem. The impulse response of a discrete LTI system

$h(n)=\left[\begin{array}{lll}1 & 2 & 2\end{array}\right]$
when input $x(n)$ is $x(n)=\left[\begin{array}{ll}a & b\end{array}\right]$

$$
\text { Find }\left[\begin{array}{lll}
a^{?} \cdot \frac{1}{n} & b=? \\
c & d & d \\
=? & & =?
\end{array}\right]
$$

