discussion week 3

EE 3015 Signals and Systems

Spring 2020 University of Minnesota, Twin Cities

Nasser M. Abbasi

May 27, 2020 Compiled on May 27, 2020 at 12:27am

Contents

1	Questions	2
2	Problem 1	3
3	Key solution	5

Discussion 4 - practice problems For MidExaml. Wed oct 10
problem 1. Consider The convolution g(t) = x(t) * h(t) with x(t) = Go(nt).[u(t+1) - u(t-1)] h(t) = u(t+1) - u(t-1)
Compute g(t) For t 20
problems. Calculate all Fourier Series Coeff. of Signal X(4) X(4) = Siù $\left(\frac{3\pi t}{2}\right) + Gos(7\pi t)$ identify all frequencies? - what is The fundamento? Frequency Wo
problems. Obtain Discrete Convolution of S(n) = X(n) = h(n) where X(n) = a u[n-5] h(n) = u(-n) Assuming [a] < 1
problems. The impulse response of a discrete LTI system is $\frac{1}{2} \int_{-1}^{1/2} \frac{1}{2} h(n) = L_1 \ge 2 J$ when input x(n) is $x(n) = L_2 = b J$ n = 0
if The output $y(n)$ is $\int \frac{y(n)}{1 + \frac{1}{2}} dr = \frac{1}{2}$ Find $\begin{bmatrix} \alpha^{2} \cdot \frac{1}{2} & b = \frac{1}{2} \\ C = \frac{1}{2} & d = \frac{1}{2} \end{bmatrix}$

2 Problem 1

Solution

Folding $h(\tau)$ to becomes $h(-\tau)$. Therefore, when 1 + t < -1 or t < -2, then y(t) = 0 since there is no overlap.

When -1 < 1 + t < 1, or -2 < t < 0, then there is partial overlap. In this case

$$y(t) = \int_{-1}^{1+t} \cos(\pi \tau) d\tau - 2 < t < 0$$

= $\frac{1}{\pi} [\sin(\pi \tau)]_{-1}^{1+t}$
= $\frac{1}{\pi} [\sin(\pi (1+t)) - \sin(-\pi)]$
= $\frac{1}{\pi} \sin(\pi (1+t))$

When 1 < 1 + t < 3, or 0 < t < 2, then there is partial overlap. In this case

$$y(t) = \int_{t-1}^{1} \cos(\pi\tau) d\tau \qquad 0 < t < 2$$

= $\frac{1}{\pi} [\sin(\pi\tau)]_{t-1}^{1}$
= $\frac{1}{\pi} [\sin(\pi) - \sin(\pi(t-1))]$
= $\frac{-1}{\pi} \sin(\pi(t-1))$

When 3 < 1 + t or t > 2 then y(t) = 0 since there is no overlap any more. Hence solution is

$$y(t) = \begin{cases} 0 & t \le -2\\ \frac{1}{\pi} \sin(\pi (1+t)) & -2 < t \le 0\\ \frac{-1}{\pi} \sin(\pi (t-1)) & 0 < t \le 2\\ 0 & t > 2 \end{cases}$$

The following is a plot of y(t)

Figure 1: Plot of y(t)

