discussion week 2

EE 3015 Signals and Systems

Spring 2020
 University of Minnesota, Twin Cities

Nasser M. Abbasi

May 27, 2020

Contents

1 Questions 2
2 Problem 4.1 5
2.1 part a 5
2.2 part b 5
2.3 part c 5
3 Problem 4.2 8
3.1 Part a. 8
3.2 Part b 8
4 Problem 4.3 8
4.1 Part a 9
4.2 Part b 10
4.3 Part c 10

1 Questions

4 Convolution

Recommended Discuasion 2
Problems problems 4.1, 4.2 4.3 (if Timè allows)
P4.1
This problem is a simple example of the use of superposition. Suppose that a dis-crete-time linear system has outputs $y[n]$ for the given inputs $x[n]$ as shown in Figure P4.1-1.

Determine the response $y_{4}[n]$ when the input is as shown in Figure P4.1-2.

(a) Express $x_{4}[n]$ as a linear combination of $x_{1}[n], x_{2}[n]$, and $x_{3}[n]$.
(b) Using the fact that the system is linear, determine $y_{4}[n]$, the response to $x_{4}[n]$.
(c) From the input-output pairs in Figure P4.1-1, determine whether the system is time-invariant.

P4.2
Determine the discrete-time convolution of $x[n]$ and $h[n]$ for the following two cases.
(a)

(b)

Figure P4.2-2

P4. 3
Determine the continuous-time convolution of $x(t)$ and $h(t)$ for the following three cases:
(a)

Figure P4.3-1
(b)

Figure P4.3-2
(c)

Figure P4.3-3

P4. 4

Consider a discrete-time, linear, shift-invariant system that has unit sample response $h[n]$ and input $x[n]$.
(a) Sketch the response of this system if $x[n]=\delta\left[n-n_{0}\right]$, for some $n_{0}>0$, and $h[n]=\left(\frac{1}{2}\right)^{n} u[n]$.
(b) Evaluate and sketch the output of the system if $h[n]=\left(\frac{1}{2}\right)^{n} u[n]$ and $x[n]=$ $u[n]$.
(c) Consider reversing the role of the input and system response in part (b). That is,

$$
\begin{aligned}
& h[n]=u[n] \\
& x[n]=\left(\frac{1}{2}\right)^{n} u[n]
\end{aligned}
$$

Evaluate the system output $y[n]$ and sketch.

P4.5
(a) Using convolution, determine and sketch the responses of a linear, time-invariant system with impulse response $h(t)=e^{-t / 2} u(t)$ to each of the two inputs $x_{1}(t), x_{2}(t)$ shown in Figures P4.5-1 and P4.5-2. Use $y_{1}(t)$ to denote the response to $x_{1}(t)$ and use $y_{2}(t)$ to denote the response to $x_{2}(t)$.

2 Problem 4.1

Solution

2.1 part a

We need to find linear combination of $x_{1}[n], x_{2}[n], x_{3}[n]$ which gives $x_{4}[n]$. In other words, looking at samples at $n=0,1,2$ and adding corresponding samples gives

$$
\begin{aligned}
a+b+c & =1 \\
b+c & =-1 \\
c & =1
\end{aligned}
$$

But from second equation $b=-1-1=-2$ and from first equation $a=1-b-c=1+2-1=2$. Hence

$$
2 x_{1}[n]-2 x_{2}[n]+x_{3}[n]=x_{4}[n]
$$

2.2 part b

Therefore by linearity

$$
2 y_{1}[n]-2 y_{2}[n]+y_{3}[n]=y_{4}[n]
$$

Hence

$$
y_{4}[n]=2 \delta[n+1]+\delta[n]+2 \delta[n-1]-2 \delta[n-2]
$$

Figure 1: Plot of $y[n]$

2.3 part c

System is time invariant if shifted input gives same output but also shifted by the same amount as the input is shifted by. Let us consider $x_{1}[n]$. By shifting it to the right by one, then the output should $y_{1}[n]$ but shifted to the right by one which is $y_{1}[n-1]$

Figure 2: Plot of $y_{1}[n-1]$

Shifting $x_{1}[n]$ by 2 now the output should be $y_{1}[n-2]$

Figure 3: Plot of $y_{1}[n-2]$

But adding $x_{1}[n]+x_{1}[n-1]+x_{1}[n-2]$ gives $x_{3}[n]$. Which has the output shown. Let us now add $y_{1}[n]+y_{1}[n-1]+y_{1}[n-2]$ and see if this gives same as $y_{3}[n]$

Figure 4: Plot of all shifted inputs of $x_{1}[x]$

Since the above is not the same as $y_{3}[n]$ then the system is not time invariant.

3 Problem 4.2

Solution

3.1 Part a

By folding $x[n]$ and shifting to the right, we see that $y[0]=2, y[1]=2+2=4, y[2]=$ $2+2+2=6, y[3]=8, y[4]=6, y[5]=4, y[6]=2, y[7]=0$ and $y[n]=0$ for all other values.

Figure 5: $y[n]$

3.2 Part b

By folding $x[n]$ and shifting to the right, we see that $y[0]=0, y[1]=0, y[2]=0.5, y[3]=$ $1, y[4]=1.5, y[5]=1, y[6]=0.5, y[7]=0$ and $y[n]=0$ for all other values.

Figure 6: $y[n]$

4 Problem 4.3

Solution

4.1 Part a

By folding $x(t)$ and shifting, we see that for $t<0$ that $y(t)=0$. And for $0<t<4$ the integral becomes

$$
\begin{aligned}
y(t) & =\int_{0}^{t} h(\tau) d \tau \quad 0<t<4 \\
& =\int_{0}^{t} 1 d \tau \\
& =t
\end{aligned}
$$

And for $0<t-4<4$ or $4<t<8$

$$
\begin{aligned}
y(t) & =\int_{t-4}^{4} h(\tau) d \tau \quad 4<t<8 \\
& =\int_{t-4}^{4} 1 d \tau \\
& =4-(t-4) \\
& =8-t
\end{aligned}
$$

And for $4<t-4$ or $t>8$

$$
y(t)=0
$$

Hence $y(t)$ is

$$
y(t)=\left\{\begin{array}{cc}
0 & t<0 \\
t & 0<t<4 \\
8-t & 4<t<8 \\
0 & t>8
\end{array}\right.
$$

Figure 7: $y(t)$

4.2 Part b

By folding $h(t)$ and shifting, we see that for $t<0$ that $y(t)=0$. And for $t>0$ the integral becomes

$$
\begin{aligned}
y(t) & =\int_{1}^{1+t} h(\tau) d \tau \quad t>0 \\
& =\int_{1}^{1+t} e^{-(\tau-1)} d \tau \\
& =\left[\frac{e^{-(\tau-1)}}{-1}\right]_{1}^{1+t} \\
& =-\left[e^{-(\tau-1)}\right]_{1}^{1+t} \\
& =-\left[e^{-((1+t)-1)}-e^{-(1-1)}\right] \\
& =-\left[e^{-t}-1\right] \\
& =1-e^{-t}
\end{aligned}
$$

Hence $y(t)$ is

Figure 8: $y(t)$

4.3 Part c

By folding $h(t)$ and shifting, we see that for $-2+t<-1$ or $t<1$ that $y(t)=0$. And for $-1<-2+t<3$ or $1<t<5$ the integral becomes $x(t)$ itself (i.e. original $x(t)$ but shifted to right by 2). And for $3<-2+t$ or $t>5$ then $y(t)=0$. Hence

$$
y(t)=\left\{\begin{array}{cc}
0 & t<1 \\
x(t-2) & 1<t<5 \\
0 & t>5
\end{array}\right.
$$

Figure 9: $y(t)$

