
1) a) i) Solution 1 (Brute force)

Using the Discrete Fourier Transform analysis equation,

X(ejω) =
∞∑

n=−∞

x[n]e−jωn

Since x[n] = an(u[n]− u[n− 5]), the only non-zero points of x[n] are n ∈ {0, 1, 2, 3, 4}, so

X(ejω) =
4∑

n=0

ane−jωn

=
4∑

n=0

(ae−jω)n

Since this is a partial sum of a geometric series, we can apply the formula

N∑
k=0

bk =
1− bN+1

1− b
, |b| < 1

to compute

X(ejω) =
1− (ae−jω)5

1− ae−jω

ii) Solution 2 (Transform pairs)

Observe that
x[n] = anu[n]− anu[n− 5]

= anu[n]− a5an−5u[n− 5]

= (anu[n])− a5(anu[n]) ∗ δ[n− 5]

= x1[n]− a5x1[n] ∗ δ[n− 5], x1[n] = anu[n]

Using the Fourier transform pair,

F{x1[n]} = F{anu[n]} =
1

1− ae−jω

and the time shift property,

F{x[n] ∗ δ[n− n0]} = e−jωn0X(ejω)

we can then write
X(ejω) = F{x[n]}

= F{x1[n]} − a5F{x1[n] ∗ δ[n− 5]}

= X1(e
jω)− a5e−5jωX1(e

jω)

=
1

1− ae−jω
− a5e−5jω

a− ae−jω



b) i) Solution 1 (Brute force)

I wrote all of this using X(ejω) and x[n] instead of Z(ejω) and z[n] and I don’t want to go

back and change all of them. Soorryyyyyyyyyyy.

We use the Continuous Fourier Transform synthesis equation,

x[n] =
1

2π

∫
2π

X(ejω)ejωndω

We can express X(ejω) in terms of it’s phase and magnitude. By inspecting the slope of

∠X(ejω), we see that ∠X(ejω) = −ω, so

X(ejω) = |X(ejω)| ∗ e∠X(ejω)

= e−jω ∗



2, −π/2 < ω < −π/4

1, −π/4 < ω < π/4

2, π/4 < ω < π/2

0, else

We take the integral in the Continuous Fourier Transform synthesis equation to be from

−π to π so that the bounds are symmetric. Using the piecewise form of X(ejω) to break

up this bound into intervals, we get

x[n] =
1

2π

∫ π

−π
X(ejω)ejωndω

=
1

2π

∫ −π/4
−π/2

2 ∗ e−jω ∗ ejωndω +
1

2π

∫ π/4

−π/4
1 ∗ e−jω ∗ ejωndω +

1

2π

∫ π/2

π/4

2 ∗ e−jω ∗ ejωndω

=
2

2π

∫ −π/4
−π/2

ejω(n−1)dω +
1

2π

∫ π/4

−π/4
ejω(n−1)dω +

2

2π

∫ π/2

π/4

∗ejω(n−1)dω

=
2

2πj(n− 1)
(ejω(n−1))|−π/4−π/2 +

1

j(n− 1)
(ejω(n−1))|π/4−π/4 +

2

j(n− 1)
(ejω(n−1))|π/2π/4

=
1

2πj(n− 1)
(2e−jπ(n−1)/4 − 2e−jπ(n−1)/2 + ejπ(n−1)/4 − e−jπ(n−1)/4 + 2ejπ(n−1)/2 − 2ejπ(n−1)/4)

Rearranging terms,

x[n] =
1

2πj(n− 1)
((2ejπ(n−1)/2 − 2e−jπ(n−1)/2) + (2e−jπ(n−1)/4 − e−jπ(n−1)/4) + (ejπ(n−1)/4 − 2ejπ(n−1)/4))

=
1

2πj(n− 1)
((2ejπ(n−1)/2 − 2e−jπ(n−1)/2) + e−jπ(n−1)/4 − ejπ(n−1)/4)

=
1

π(n− 1)
(2(

1

2j
ejπ(n−1)/2 − 1

2j
e−jπ(n−1)/2)− (

1

2j
ejπ(n−1)/4 − 1

2j
e−jπ(n−1)/4)

Using the definition of the sin function,

sin(x) =
1

2j
ejx − 1

2j
e−jx

, We can rewrite this as

1

π(n− 1)
(2 sin(π(n− 1)/2)− sin(π(n− 1)/4))



ii) Solution 2 (Transform pairs) (Extra credit)

Consider a version X1(e
jω of X(ejω) with zero phase, that is

|X1(e
jω)| = |X(ejω)|, ∠X1(e

jω) = 0

Such that
X1(e

jω) = |X1(e
jω)|ej∠X1(ejω)

= |X(ejω)|ej∗0

= |X(ejω)|

Then we can write X(ejω) as

X(ejω) = |X(ejω)|ej∠X(ejω)

= X1(e
jω)e−jω

When comparing this expression with the time delay property, we can see that the phase

e−jω is really just shifting the signal x1[n] by 1 unit, so that

x[n] = x1[n− 1]

Effectively, this allows us to just find the inverse Fourier transform of the magnitude on it’s

own, and then apply a time shift of 1 unit at the end to account for the phase of the system.

This is a nice property that we can use in general on systems that have linear phase

To determine x1[n], we consider the rectangle wave X1(e
jω) as a difference of two rectangle

waves. Specifically, define

X2(e
jω) =

2, −π/2 < ω < π/2

0, else

X3(e
jω) =

1, −π/4 < ω < π/4

0, else

or graphically,

Then it is clear that

X1(e
jω) = X2(e

jω)−X3(e
jω)



and therefore

x1[n] = x2[n]− x3[n]

In table 5.2, we see the Fourier transform pair

F−1{

1, −W < ω < W

0, else
} =

sin(Wn)

πn

Since X2(e
jω) and X3(e

jω) are already in this form, we can easily find x2[n] and x3[n] as

x2[n] =
2 sin(πn/2)

πn

x3[n] =
sin(πn/4)

πn

Then

x1[n] = x2[n]− x3[n] =
2 sin(πn/2)

πn
− sin(πn/4)

πn

and

x[n] = x1[n− 1] =
2 sin(π(n− 1)/2)

π(n− 1)
− sin(π(n− 1)/4)

π(n− 1)

2) The main focus of this problem is to break the expression up fractally, handle it in small portions,

and then build it back up into the final answer. From our initial expression,

X(jω) = (
4

9 + ω2
) ∗ (e−2jω

sin(2ω)

ω
)

Make the definitions

X1(jω) =
4

9 + ω2

X2(jω) = e−2jω
sin(2ω)

ω

So that

X(jω) = X1(jω) ∗X2(jω)

and, using the multiplication property,

x(t) = 2πx1(t)x2(t)

i) To handle X1(jω) = 4
9+ω2 , we see that this expression has similar form to the Fourier Transform

pair found in the provided tables,

F{e−α|t|} =
2α

α2 + ω2

In order to apply this pair to X1(jω), we need to have it in this exact form. Therefore, we need

to say that

X1(jω) =
4

9 + ω2
=

4

6
∗ 2(3)

32 + ω2

to find that

x1(t) =
4

6
e−3|t|



ii) To handle X2(jω) = e−2jω sin(2ω)
ω

, we again need to break the problem up into smaller parts. We

make the additional definition that

X3(jω) =
sin(2ω)

ω

so that

X2(jω) = e−2jωX3(jω)

From this, we can clearly invoke the same time shifting property that we used in problem 1(b)

to show that

x2(t) = x3(t− 2)

Then, to find x3(t), we see the Fourier transform pair

F{

1, −T1 < t < T1

0, else
} =

2 sin(ωT1)

ω

We again need to exactly match X3(jω) to this form to invoke the property. By rewriting

X3(jω) =
sin(2ω)

ω
=

1

2
∗ 2 sin(2ω)

ω

We can then use this property to say that

x3(t) =


1

2
, −2 < t < 2

0, else

then

x2(t) = x3(t− 2) =


1

2
, −2 < t− 2 < 2

0, else
=


1

2
, 0 < t < 4

0, else

In general, if something says |t| < T , this is the same as −T < t < T .

Now that we know x1(t) and x2(t), we can use our original relation

x(t) = 2πx1(t)x2(t)

to write

x(t) = 2π ∗ 4

6
e−3|t| ∗


1

2
, 0 < t < 4

0, else
=


2π

3
e−3|t|, 0 < t < 4

0, else

4) We start by computing the Nyquist frequency for each signal x1(t), x2(t), x3(t) and x(t). This is

twice the maximum frequency present in each signal. Then

ωNyquist, x1 = 2 ∗ π, fNyquist, x1 =
1

2π
ωNyquist, x1 = 1Hz



ωNyquist, x2 = 2 ∗ 3π, fNyquist, x2 =
1

2π
ωNyquist, x2 = 3Hz

ωNyquist, x3 = 2 ∗ 5π, fNyquist, x3 =
1

2π
ωNyquist, x3 = 5Hz

ωNyquist, x = 2 ∗ 5π, fNyquist, x =
1

2π
ωNyquist, x = 5Hz

a) The sampling rate T = 0.4 corresponds to a sampling frequency fs = 1
T

= 2.5Hz. This is less

than the Nyquist frequencies of x2(t), x3(t), and x(t), so these signals cannot be recovered in

this sort of sampling scheme. However, x1(t) can be.

b) As we showed earlier, fNyquist, x = 1
2π
ωNyquist, x = 5Hz

c) By the multiplication property, for y(t) = x(t)c(t),

Y (jω) =
1

2π
X(jω) ∗ C(jω)

Using the properties of cosines and sines, we can quickly find that

C(jω) = πδ(ω − 20π) + πδ(ω + 20π)

Then

Y (jω) =
1

2π
(πδ(ω − 20π) + πδ(ω + 20π)) ∗X(jω)

Using the properties of convolution with delta functions,

Y (jω) =
1

2
X(j(ω − 20π)) +

1

2
X(j(ω + 20π))

This means that Y (jω) will contain all the frequencies present in X(jω), shifted either up or

down by 20π radians. As the maximum frequency in X(jω) is 5π, the maximum frequency in

Y (jω) will be that shifted up by 20π, so 20π + 5π = 25π. This can be confirmed by finding

X(jω) and substituting this into the above expression for Y (jω), which I will not do here for

sake of legibility.




