EE 3015 Midterm 1 exam Friday Feb 28 ${ }^{\text {th }} .2020$

Duration 50 Minutes, One Crib sheet (8×11 inches) allowed - calculator allowed no use of cell phone. Close book and notes.

Problem 1 (25 pts.)

Given an input $x(t)=u(t)-u(t-3)$ to a LTI system with impulse response $h(t)=u(t)-u(t-2)$, Obtain the output of this system $y(t)$ utilizing convolution method. Show all steps in obtaining the results.

Problem 2. (25pts)

Given the impulse response of a discrete time LTI system: $h(n)$ with $h(n)=\left[\begin{array}{lll}1111-1-10]\end{array}\right]$ Obtain the output of this discrete system $y(n)$ using the convolution method when the input sequence is given by

$$
x(n)=\left[\begin{array}{llllll}
0 & 0 & 1 & 0 & -1 & 0
\end{array}\right] .
$$

(hint: assume the first element starts at $\mathbf{n}=\mathbf{0}$ index point).
You can use either graphical method or analytical method however you must show all your steps in computation.

Problem 3 (30 pts.)

The Fourier transform of a signal $x(t)$ is given by the following expression:

$$
X \omega)=Y(\omega) \cdot e^{\wedge}(-j 2 \omega)
$$

where $Y(\omega)=2$ for $-2<\omega<0$ and $Y(\omega)=-2$ for $0<\omega<2$
Find time domain representation of $x(t)$.

Problem 4. (20 pts.)

The frequency response of a continuous time LTI system is given by the following magnitude and phase profile:

What is the steady state time domain output $y(t)$ for input

$$
x(t)=\cos (1000 \pi t)+2 \cos (50) \pi t)+3 \cos (500 \pi t)
$$

