HW 9

EE 3015 Signals and Systems

Spring 2020
 University of Minnesota, Twin Cities

Nasser M. Abbasi

May 27, 2020

Contents

1 Problem 10.2 2
2 Problem 10.9 4
3 Problem 10.26 5
3.1 Part a 5
3.2 Part b 5
3.3 Part c 6
4 Problem 10.34 8
4.1 Part a 8
4.2 Part b 9
4.3 Part c 10
5 Problem 10.36 12
6 Problem 10.59 14
6.1 Part (a) 14
6.2 Part (b) 16
6.3 Part (c) 16

1 Problem 10.2

Consider the signal

$$
x[n]=\left(\frac{1}{5}\right)^{n} u[n-3]
$$

Use eq. (10.3)

$$
\begin{equation*}
X[z]=\sum_{n=-\infty}^{n=\infty} x[n] z^{-n} \tag{10.3}
\end{equation*}
$$

to evaluate the Z-transform of this signal, and specify the corresponding region of convergence.
solution

$$
X[z]=\sum_{n=-\infty}^{n=\infty}\left(\frac{1}{5}\right)^{n} u[n-3] z^{-n}
$$

But $u[n-3]$ is zero for $n<3$ and 1 otherwise. Hence the above becomes

$$
X[z]=\sum_{n=3}^{n=\infty}\left(\frac{1}{5}\right)^{n} z^{-n}
$$

Let $m=n-3$. When $n=3, m=0$ therefore the above can be written as

$$
\begin{aligned}
X[z] & =\sum_{m=0}^{m=\infty}\left(\frac{1}{5}\right)^{m+3} z^{-(m+3)} \\
& =\left(\frac{z^{-1}}{5}\right)^{3} \sum_{m=0}^{m=\infty}\left(\frac{1}{5}\right)^{m} z^{-m} \\
& =\frac{z^{-3}}{125} \sum_{m=0}^{m=\infty}\left(\frac{1}{5}\right)^{m} z^{-m}
\end{aligned}
$$

Renaming back to n

$$
\begin{equation*}
X[z]=\frac{z^{-3}}{125} \sum_{n=0}^{\infty}\left(\frac{1}{5}\right)^{n} z^{-n} \tag{1}
\end{equation*}
$$

Now, looking at $\sum_{n=0}^{n=\infty}\left(\frac{1}{5 z}\right)^{n}$ then assuming $|5 z|>1$ and using the formula $\sum_{n=0}^{n=\infty} a^{n}=\frac{1}{1-a}$, where $a=\frac{1}{5 z}$ in this case gives

$$
\sum_{n=0}^{n=\infty}\left(\frac{1}{5 z}\right)^{n}=\frac{1}{1-\frac{1}{5} z^{-1}}
$$

Hence (1) becomes

$$
X[z]=\frac{z^{-3}}{125}\left(\frac{1}{1-\frac{1}{5} z^{-1}}\right)
$$

The above shows a pole at $\frac{1}{5} z^{-1}=1$ or $z=\frac{1}{5}$ and a pole at $z=0$. Since this is right handed signal, then the ROC is outside the outer most pole. Therefore ROC is

$$
|z|>\frac{1}{5}
$$

Which means the region is outside a circle of radius $\frac{1}{5}$. Since this ROC includes the unit circle, meaning a DTFT exist, it shows that this is a stable signal.

2 Problem 10.9

Using partial-fraction expansion and the fact that

$$
a^{n} u[n] \stackrel{Z}{\longleftrightarrow} \frac{1}{1-a z^{-1}} \quad|z|>|a|
$$

Find the inverse Z-transform of

$$
X(z)=\frac{1-\frac{1}{3} z^{-1}}{\left(1-z^{-1}\right)\left(1+2 z^{-1}\right)} \quad|z|>2
$$

solution

Let

$$
\frac{1-\frac{1}{3} z^{-1}}{\left(1-z^{-1}\right)\left(1+2 z^{-1}\right)}=\frac{A}{\left(1-z^{-1}\right)}+\frac{B}{\left(1+2 z^{-1}\right)}
$$

Hence $A=\left(\frac{1-\frac{1}{3} z^{-1}}{1+2 z^{-1}}\right)_{z^{-1}=1}=\frac{1-\frac{1}{3}}{1+2}=\frac{2}{9}$ and $B=\left(\frac{1-\frac{1}{3} z^{-1}}{\left(1-z^{-1}\right)}\right)_{z^{-1}=-\frac{1}{2}}=\frac{1-\frac{1}{3}\left(-\frac{1}{2}\right)}{\left(1-\left(-\frac{1}{2}\right)\right)}=\frac{7}{9}$ Therefore the above becomes

$$
X(z)=\frac{2}{9} \frac{1}{\left(1-z^{-1}\right)}+\frac{7}{9} \frac{1}{\left(1+2 z^{-1}\right)}
$$

The pole of first term at $z^{-1}=1$ or $z=1$ and the pole for second term is $2 z^{-1}=-1$ or $z=-2$. Since the ROC is outside the out most pole, then this is right handed signal. Hence

$$
\begin{aligned}
x[n] & =\frac{2}{9} u[n]+\frac{7}{9}(-2)^{n} u[n] \\
& =\left(\frac{2}{9}+\frac{7}{9}(-2)^{n}\right) u[n]
\end{aligned}
$$

Which is valid when $X(z)$ defined for $|z|>2$ since this is the common region for $|z|>1$ and $|z|>2$ at the same time. We notice the ROC does not include the unit circle and hence it is not stable signal. This is confirmed by looking at the term $(-2)^{n}$ which grows with n with no limit.

3 Problem 10.26

Consider a left-sided sequence $x[n]$ with z-transform

$$
X(z)=\frac{1}{\left(1-\frac{1}{2} z^{-1}\right)\left(1-z^{-1}\right)}
$$

a Write $X(z)$ as a ratio of polynomials in z instead of z^{-1}
b Using a partial-fraction expression, express $X(z)$ as a sum of terms, where each term represents a pole from your answer in part (a).
c Determine $x[n]$
solution

3.1 Part a

$$
\begin{aligned}
X(z) & =\frac{z}{z\left(1-\frac{1}{2} z^{-1}\right)\left(1-z^{-1}\right)} \\
& =\frac{z}{\left(z-\frac{1}{2}\right)\left(1-z^{-1}\right)} \\
& =\frac{z^{2}}{z\left(z-\frac{1}{2}\right)\left(1-z^{-1}\right)} \\
& =\frac{z^{2}}{\left(z-\frac{1}{2}\right)(z-1)} \\
& =\frac{z^{2}}{z^{2}-\frac{3}{2} z+\frac{1}{2}}
\end{aligned}
$$

One pols at $z=\frac{1}{2}$ and one pole at $z=1$.

3.2 Part b

$$
X(z)=\frac{z^{2}}{\left(z-\frac{1}{2}\right)(z-1)}
$$

To do partial fractions, the degree in numerator must be smaller than in the denominator,
which is not the case here. Hence we start by factoring out a z which gives

$$
\begin{aligned}
X(z) & =z^{2}\left(\frac{1}{\left(z-\frac{1}{2}\right)(z-1)}\right) \\
& =z^{2}\left(\frac{A}{z-\frac{1}{2}}+\frac{B}{z-1}\right)
\end{aligned}
$$

Hence

$$
\frac{1}{\left(z-\frac{1}{2}\right)(z-1)}=\frac{A}{z-\frac{1}{2}}+\frac{B}{z-1}
$$

Therefore $A=\left(\frac{1}{(z-1)}\right)_{z=\frac{1}{2}}=\frac{1}{\left(\frac{1}{2}-1\right)}=-2$ and $B=\left(\frac{1}{z-\frac{1}{2}}\right)_{z=1}=\frac{1}{1-\frac{1}{2}}=2$. Hence the above becomes

$$
\begin{aligned}
X(z) & =z^{2}\left(-\frac{2}{z-\frac{1}{2}}+\frac{2}{z-1}\right) \\
& =2 z^{2}\left(-\frac{1}{z-\frac{1}{2}}+\frac{1}{z-1}\right)
\end{aligned}
$$

Pole at $z=\frac{1}{2}$ and one at $z=1$.

3.3 Part c

Writing the above as

$$
X(z)=2 z^{2} X_{1}(z)
$$

Where $x_{1}[n] \Longleftrightarrow X_{1}(z)$ where ROC for $X_{1}(z)$ is inside the inner most pole (since left sided). Hence ROC for $X_{1}(z)$ is $|z|<\frac{1}{2}$. What is left is to find $x_{1}[n]$ which is the inverse Z transform of $\frac{-1}{z-\frac{1}{2}}+\frac{1}{z-1}$. We want to use $a^{n} u[n] \stackrel{Z}{\longleftrightarrow} \frac{1}{1-a z^{-1}}$ so rewriting this as

$$
\begin{aligned}
X_{1}(z) & =\frac{-1}{z-\frac{1}{2}}+\frac{1}{z-1} \\
& =\frac{-z^{-1}}{1-\frac{1}{2} z^{-1}}+\frac{z^{-1}}{1-z^{-1}}
\end{aligned}
$$

Hence

$$
\begin{align*}
X(z) & =2 z^{2} X_{1}(z) \\
& =2 z^{2}\left(\frac{-z^{-1}}{1-\frac{1}{2} z^{-1}}+\frac{z^{-1}}{1-z^{-1}}\right) \\
& =2 z\left(\frac{-1}{1-\frac{1}{2} z^{-1}}+\frac{1}{1-z^{-1}}\right) \tag{1}
\end{align*}
$$

Then (since left handed) then $\frac{-1}{1-\frac{1}{2} z^{-1}} \longleftrightarrow\left(\frac{1}{2}\right)^{n} u[-n-1]$. Similarly for $\frac{1}{1-z^{-1}} \longleftrightarrow-u[-n-1]$. Hence

$$
x[n]=\left(\frac{1}{2}\right)^{n} u[-n-1]-u[-n-1]
$$

Substituting the above in (1) gives

$$
x[n]=2\left(\left(\frac{1}{2}\right)^{n} u[-n-2]-u[-n-2]\right)
$$

Where $u[-n-1]$ is changed to $u[-n-2]$ because of the extra z in (1) outside, which causes extra shift and same for $u[-n-1]$ changed to $u[-n-2]$. Therefore the final answer is

$$
x[n]=2\left(\frac{1}{2}\right)^{n} u[-n-2]-2 u[-n-2]
$$

4 Problem 10.34

A causal LTI system is described by the difference equation

$$
y[n]=y[n-1]+y[n-2]+x[n-1]
$$

a Find the system function $H(z)=\frac{Y(z)}{X(z)}$ for this system. Plot the poles and zeros of $H(z)$ and indicate the region of convergence.
b Find the unit sample response of the system.
c You should have found the system to be unstable. Find a stable (non causal) unit sample response that satisfies the difference equation.

solution

4.1 Part a

Taking the Z transform of the difference equation gives

$$
\begin{aligned}
Y(z) & =z^{-1} Y(z)+z^{-2} Y(z)+z^{-1} X(z) \\
Y(z)\left(1-z^{-1}-z^{-2}\right) & =z^{-1} X(z) \\
\frac{Y(z)}{X(z)} & =\frac{z^{-1}}{1-z^{-1}-z^{-2}} \\
& =\frac{z}{z^{2}-z-1} \\
& =\frac{z}{\left(z-\left(\frac{1}{2} \sqrt{5}+\frac{1}{2}\right)\right)\left(z-\left(\frac{1}{2}-\frac{1}{2} \sqrt{5}\right)\right)}
\end{aligned}
$$

Hence a pole at $z=\frac{1}{2} \sqrt{5}+\frac{1}{2}=1.618$ and a pole at $z=\left(\frac{1}{2}-\frac{1}{2} \sqrt{5}\right)=-0.618$ and zero at $z=0$
Since this is a causal $H(z)$ then ROC is always to the right of the right most pole. Hence ROC is

$$
|z|>\frac{1}{2} \sqrt{5}+\frac{1}{2}=1.618
$$

Here is a plot of the poles and zeros. The ROC is all the region to the right of 1.618 pole.

Figure 1: $H(z)$ Pole Zero plot. Red points are poles. Blue is zeros

```
p = Graphics [
    {
        {Dashed, Circle[{0, 0}, 1]},
        {PointSize[.04], {Red, Point[{-0.618, 0}]},
            {Red, Point[{1.618, 0}]}, {Blue, Point[{0, 0}]}}
    }, Axes }->\mathrm{ True, AxesLabel }->{"Re(z)", "Im(z)"}, BaseStyle -> 12]
```

Figure 2: Code used for the above

4.2 Part b

If the input $x[n]=\delta[n]$ then the difference equation is now

$$
y[n]=y[n-1]+y[n-2]+\delta[n-1]
$$

Hence taking the Z transform gives

$$
\begin{align*}
Y(z) & =z^{-1} Y(z)+z^{-2} Y(z)+z^{-1} \\
Y(z)\left(1-z^{-2}-z^{-1}\right) & =z^{-1} \\
Y(z) & =\frac{z^{-1}}{1-z^{-1}-z^{-2}} \\
& =\frac{-z^{-1}}{z^{-2}+z^{-1}-1} \\
& =\frac{-z^{-1}}{\left(z^{-1}-\left(-\frac{1}{2}+\frac{1}{2} \sqrt{5}\right)\right)\left(z^{-1}-\left(-\frac{1}{2}-\frac{1}{2} \sqrt{5}\right)\right)} \tag{1}
\end{align*}
$$

Applying partial fractions gives

$$
\frac{-z^{-1}}{\left(z^{-1}-\left(-\frac{1}{2}+\frac{1}{2} \sqrt{5}\right)\right)\left(z^{-1}-\left(-\frac{1}{2}-\frac{1}{2} \sqrt{5}\right)\right)}=\frac{A}{z^{-1}-\left(-\frac{1}{2}+\frac{1}{2} \sqrt{5}\right)}+\frac{B}{z^{-1}-\left(-\frac{1}{2}-\frac{1}{2} \sqrt{5}\right)}
$$

Hence

$$
A=\left(\frac{-z^{-1}}{\left(z^{-1}-\left(-\frac{1}{2}-\frac{1}{2} \sqrt{5}\right)\right)}\right)_{z^{-1}=\left(-\frac{1}{2}+\frac{1}{2} \sqrt{5}\right)}=\frac{-\left(-\frac{1}{2}+\frac{1}{2} \sqrt{5}\right)}{\left(-\frac{1}{2}+\frac{1}{2} \sqrt{5}\right)-\left(-\frac{1}{2}-\frac{1}{2} \sqrt{5}\right)}=\frac{1}{10} \sqrt{5}-\frac{1}{2}
$$

And

$$
B=\left(\frac{-z^{-1}}{z^{-1}-\left(-\frac{1}{2}+\frac{1}{2} \sqrt{5}\right)}\right)_{z=\left(-\frac{1}{2}-\frac{1}{2} \sqrt{5}\right)}=\frac{-\left(-\frac{1}{2}-\frac{1}{2} \sqrt{5}\right)}{\left(-\frac{1}{2}-\frac{1}{2} \sqrt{5}\right)-\left(-\frac{1}{2}+\frac{1}{2} \sqrt{5}\right)}=-\frac{1}{10} \sqrt{5}-\frac{1}{2}
$$

Therefore (1) becomes

$$
\begin{aligned}
Y(z) & =\left(\frac{1}{10} \sqrt{5}-\frac{1}{2}\right) \frac{1}{z^{-1}-\left(-\frac{1}{2}+\frac{1}{2} \sqrt{5}\right)}-\left(\frac{1}{10} \sqrt{5}+\frac{1}{2}\right) \frac{1}{z^{-1}-\left(-\frac{1}{2}-\frac{1}{2} \sqrt{5}\right)} \\
& =\frac{\left(\frac{1}{10} \sqrt{5}-\frac{1}{2}\right)}{-\frac{1}{2}+\frac{1}{2} \sqrt{5}} \frac{1}{-\frac{1}{2}+\frac{1}{2} \sqrt{5}} z^{-1}-1 \\
& -\frac{\left(\frac{1}{10} \sqrt{5}+\frac{1}{2}\right)}{\left(-\frac{1}{2}-\frac{1}{2} \sqrt{5}\right)} \frac{1}{\left(-\frac{1}{2}-\frac{1}{2} \sqrt{5}\right)} z^{-1}-1 \\
& =\frac{1}{5} \sqrt{5} \frac{1}{1-\left(\frac{2}{-1+\sqrt{5}}\right) z^{-1}}-\frac{1}{5} \sqrt{5} \frac{1}{1-\frac{2}{(-1-\sqrt{5})} z^{-1}} \\
& =\frac{1}{5} \sqrt{5} \frac{1}{1-\left(\frac{1}{2} \sqrt{5}+\frac{1}{2}\right) z^{-1}}-\frac{1}{5} \sqrt{5} \frac{1}{1-\left(\frac{1}{2}-\frac{1}{2} \sqrt{5}\right) z^{-1}}
\end{aligned}
$$

Now we can use the table $\frac{1}{1-a z^{-1}} \rightarrow a^{n} u[n]$ for $|z|>a$. Taking the inverse Z transform of the above gives

$$
\begin{aligned}
y[n] & =-\left(\frac{1}{5} \sqrt{5}\right)\left(\frac{1+\sqrt{5}}{2}\right)^{n} u[n]+\left(\frac{1}{5} \sqrt{5}\right)\left(\frac{1-\sqrt{5}}{2}\right)^{n} u[n] \\
& =\left(-(0.44721)(1.618)^{n}+(0.44721)(-0.618)^{n}\right) u[n]
\end{aligned}
$$

This is unstable response $y[n]$ due to the term $(1.618)^{n}$ which grows with no limit as $n \rightarrow \infty$.

4.3 Part c

Using the ROC where $0.618<|z|<1.618$ instead of $|z|>1.618$, then

$$
\begin{aligned}
y[n] & =\left(\frac{1}{5} \sqrt{5}\right)\left(\frac{1+\sqrt{5}}{2}\right)^{n} u[-n-1]+\left(\frac{1}{5} \sqrt{5}\right)\left(\frac{1-\sqrt{5}}{2}\right)^{n} u[n] \\
& =\left((0.44721)(1.618)^{n} u[-n-1]+(0.44721)(-0.618)^{n}\right) u[n]
\end{aligned}
$$

which is now stable since the index on 1.618^{n} run is negative instead of positive.

5 Problem 10.36

Consider the linear, discrete-time, shift-invariant system with input $x[n]$ and output $y[n]$ for which

$$
y[n-1]-\frac{10}{3} y[n]+y[n+1]=x[n]
$$

is stable. Determine the unit sample response.

solution

Taking the Z transform of the difference equation gives

$$
\begin{array}{r}
z^{-1} Y(z)-\frac{10}{3} Y(z)+z Y(z)=X(z) \\
Y(z)\left(z^{-1}-\frac{10}{3}+z\right)=X(z)
\end{array}
$$

Hence the unit sample is when $x[n]=\delta[n]$. Hence $X(z)=1$. Therefore the impulse response is

$$
\begin{aligned}
H(z) & =\frac{1}{z^{-1}-\frac{10}{3}+z} \\
& =\frac{z^{-1}}{z^{-2}-\frac{10}{3} z^{-1}+1} \\
& =\frac{z^{-1}}{\left(z^{-1}-3\right)\left(z^{-1}-\frac{1}{3}\right)}
\end{aligned}
$$

Applying partial fractions

$$
H(z)=\frac{A}{\left(z^{-1}-3\right)}+\frac{B}{\left(z^{-1}-\frac{1}{3}\right)}
$$

Hence $A=\left(\frac{z^{-1}}{\left(z^{-1}-\frac{1}{3}\right)}\right)_{z^{-1}=3}=\frac{3}{\left(3-\frac{1}{3}\right)}=\frac{9}{8}$ and $B=\left(\frac{z^{-1}}{\left(z^{-1}-3\right)}\right)_{z^{-1}=\frac{1}{3}}=\frac{\frac{1}{3}}{\left(\frac{1}{3}-3\right)}=-\frac{1}{8}$. Therefore

$$
\begin{align*}
H(z) & =\frac{9}{8} \frac{1}{\left(z^{-1}-3\right)}-\frac{1}{8} \frac{1}{\left(z^{-1}-\frac{1}{3}\right)} \\
& =\frac{3}{8} \frac{1}{\left(\frac{1}{3} z^{-1}-1\right)}-\frac{3}{8} \frac{1}{\left(3 z^{-1}-1\right)} \\
& =\frac{3}{8} \frac{1}{1-3 z^{-1}}-\frac{3}{8} \frac{1}{1-\frac{1}{3} z^{-1}} \tag{1}
\end{align*}
$$

We see a pole at $z=3$ and a pole at $z=\frac{1}{3}$.

For $\frac{1}{1-3 z^{-1}}$, this is stable only for a left sided signal, this is because a which is 3 here is larger than 1 . Hence its inverse Z transform is of this is $x_{1}[n]=-\frac{3}{8} 3^{n} u[-n-1]$ and for the second term $\frac{1}{1-\frac{1}{3} z^{-1}}$ is stable for right sided signal, since $\frac{1}{3}<1$. Hence its inverse Z transform is $-\frac{3}{8}\left(\frac{1}{3}\right)^{n} u[n]$. Therefore

$$
h[n]=-\frac{3}{8}(3)^{n} u[-n-1]-\frac{3}{8}\left(\frac{1}{3}\right)^{n} u[n]
$$

6 Problem 10.59

phase system.
10.59. Consider the digital filter structure shown in Figure P10.59.

Figure P10.59
(a) Find $H(z)$ for this causal filter. Plot the pole-zero pattern and indicate the region of convergence.
(b) For what values of the k is the system stable?
(c) Determine $y[n]$ if $k=1$ and $x[n]=(2 / 3)^{n}$ for all n.

1060 Concider a cional rinl whoce unilateral 7-trancform ic $\Upsilon^{\prime}(7)$ Show that the unilat-

Figure 3: Problem description
solution

6.1 Part (a)

Let the value at the branch just to the right of $x[n]$ summation sign be called $A[z]$.

Figure 4: Filter diagram

Then we see that

$$
Y(z)=A(z)-\frac{k}{4} z^{-1} A(z)
$$

We just need to find $A(z)$. We see that $A(z)=X(z)-\frac{k}{3} z^{-1} A(z)$. Hence $A(z)\left(1+\frac{k}{3} z^{-1}\right)=X(z)$ or $A(z)=\frac{X(z)}{1+\frac{k}{3} z^{-1}}$. Therefore the above becomes

$$
\begin{aligned}
Y(z) & =\frac{X(z)}{1+\frac{k}{3} z^{-1}}-\frac{k}{4} z^{-1} \frac{X(z)}{1+\frac{k}{3} z^{-1}} \\
& =X(z)\left(\frac{1}{1+\frac{k}{3} z^{-1}}-\frac{k}{4} \frac{z^{-1}}{1+\frac{k}{3} z^{-1}}\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
H(z) & =\frac{Y(z)}{X(z)} \\
& =\frac{1}{1+\frac{k}{3} z^{-1}}-\frac{k}{4} \frac{z^{-1}}{1+\frac{k}{3} z^{-1}} \\
& =\frac{1-\frac{k}{4} z^{-1}}{1+\frac{k}{3} z^{-1}}
\end{aligned}
$$

The pole is when $\frac{k}{3} z^{-1}=-1$ or $z=-\frac{k}{3}$. Zero is when $1-k z^{-1}=0$ or $k z^{-1}=1$ or $z=k$. Since this causal system, then the ROC is to the right of the most right pole. Hence $|z|>\frac{|k|}{3}$ is the ROC.

Figure 5: Pole zero polt. ROC is $|z|>]$ frac $|k| 3$

6.2 Part (b)

System is stable if it has a Discrete time Fourier transform. This implies the ROC must include the unit circle. Hence $\frac{|k|}{3}<1$ or $|k|<3$.

6.3 Part (c)

From part (a), the unit sample response is $H(z)=\frac{1-\frac{k}{4} z^{-1}}{1+\frac{k}{3} z^{-1}}$. When $k=1$ this becomes $H(z)=$ $\frac{1-\frac{1}{4} z^{-1}}{1+\frac{1}{3} z^{-1}}$
Since $x[n]=\left(\frac{2}{3}\right)^{n}$ for all n and this is casual system, then this means $x[n]=\left(\frac{2}{3}\right)^{n} u[n]$. Therefore

$$
X(z)=\frac{1}{1-\frac{2}{3} z^{-1}}
$$

Hence from part (a)

$$
\begin{aligned}
Y(z) & =H(z) X(z) \\
& =\frac{1-\frac{1}{4} z^{-1}}{1+\frac{1}{3} z^{-1}} \frac{1}{1-\frac{2}{3} z^{-1}} \\
& =\frac{1-\frac{1}{4} z^{-1}}{\left(1+\frac{1}{3} z^{-1}\right)\left(1-\frac{2}{3} z^{-1}\right)} \\
& =\frac{A}{1+\frac{1}{3} z^{-1}}+\frac{B}{1-\frac{2}{3} z^{-1}}
\end{aligned}
$$

Therefore $A=\left(\frac{1-\frac{1}{4} z^{-1}}{\left(1-\frac{2}{3} z^{-1}\right)}\right)_{z^{-1}=-3}=\frac{1-\frac{1}{4}(-3)}{\left(1-\frac{2}{3}(-3)\right)}=\frac{7}{12}$ and $B=\left(\frac{1-\frac{1}{4} z^{-1}}{\left(1+\frac{1}{3} z^{-1}\right)}\right)_{z^{-1}=\frac{3}{2}}=\left(\frac{1-\frac{1}{4}\left(\frac{3}{2}\right)}{\left(1+\frac{1}{3}\left(\frac{3}{2}\right)\right)}\right)=\frac{5}{12}$. Hence

$$
Y(z)=\frac{7}{12} \frac{1}{1+\frac{1}{3} z^{-1}}+\frac{5}{12} \frac{1}{1-\frac{2}{3} z^{-1}}
$$

Therefore

$$
y[n]=\frac{7}{12}\left(-\frac{1}{3}\right)^{n} u[n]+\frac{5}{12}\left(\frac{2}{3}\right)^{n} u[n]
$$

The following is a plot of the solution

Figure 6: Plot of $y[n]$

```
mySol = 午
p=
    DiscretePlot[mySol, {n, 0, 10}, PlotRange }->\mathrm{ {Automatic, {0, 0.3}}, PlotStyle }->\mathrm{ Red];
```

Figure 7: Code used

