HW 8

EE 3015
 Signals and Systems

Spring 2020
University of Minnesota, Twin Cities

Nasser M. Abbasi

Contents

1 Problem 9.3

Consider the signal $x(t)=e^{-5 t} u(t)+e^{-\beta t} u(t)$ and denote its Laplace transform by $X(s)$ What are the constraints placed on the
real and imaginary parts of β if the region of convergence of $X(s)$ is $\operatorname{Re}(s)>-3$?
solution
The Laplace transform is

$$
\begin{aligned}
X(s) & =\int_{-\infty}^{\infty} x(t) e^{-s t} d t \\
& =\int_{0}^{\infty}\left(e^{-5 t}+e^{-\beta t}\right) e^{-s t} d t \\
& =\int_{0}^{\infty} e^{-5 t} e^{-s t} d t+\int_{0}^{\infty} e^{-\beta t} e^{-s t} d t \\
& =\int_{0}^{\infty} e^{-t(5+s)} d t+\int_{0}^{\infty} e^{-t(\beta+s)} d t \\
& =\frac{1}{-(s+5)}\left[e^{-t(5+s)}\right]_{0}^{\infty}-\frac{1}{\beta+s}\left[e^{-t(\beta+s)}\right]_{0}^{\infty}
\end{aligned}
$$

For the first term $\frac{1}{-(s+5)}\left[e^{-t(5+s)}\right]_{0}^{\infty}=\frac{1}{-(s+5)}\left[e^{-\infty(5+s)}-1\right]$. For this term to converge we need $5+\operatorname{Re}(s)>0$ or

$$
\operatorname{Re}(s)>-5
$$

For the second term, let $\beta=a+i b$ and let $s=\sigma+j \omega$, hence the second term becomes

$$
\begin{aligned}
\frac{1}{\beta+s}\left[e^{-t(\beta+s)}\right]_{0}^{\infty} & =\frac{1}{\beta+s}\left[e^{-t((a+i b)+(\sigma+j \omega))}\right]_{0}^{\infty} \\
& =\frac{1}{\beta+s}\left[e^{-t(a+\sigma+j(b+\omega))}\right]_{0}^{\infty} \\
& =\frac{1}{\beta+s}\left[e^{-t(a+\sigma)} e^{-j t(b+\omega)}\right]_{0}^{\infty} \\
& =\frac{1}{\beta+s}\left[e^{-\infty(a+\sigma)} e^{-j \infty(b+\omega)}-1\right]
\end{aligned}
$$

The complex exponential terms always converges since its norm is bounded by 1 . For the real exponential term, we need $a+\sigma>0$ or $a+\operatorname{Re}(s)>0$ or $\operatorname{Re}(s)>-a$. Since we are told that $\operatorname{Re}(s)>-3$, then

$$
a=3
$$

Is the requirement on real part of β. There is no restriction on the imaginary part of β.

2 Problem 9.9

Given that $e^{-a t} u(t) \Longleftrightarrow \frac{1}{s+a}$ for $\operatorname{Re}(s)>\operatorname{Re}(-a)$, determine the inverse Laplace transform of

$$
X(s)=\frac{2(s+2)}{s^{2}+7 s+12} \quad \operatorname{Re}(s)>-3
$$

solution
Writing $X(s)$ as

$$
\begin{aligned}
X(s) & =\frac{2(s+2)}{(s+4)(s+3)} \\
& =\frac{A}{(s+4)}+\frac{B}{(s+3)}
\end{aligned}
$$

Hence $A=\left.\frac{2(s+2)}{(s+3)}\right|_{s=-4}=\frac{2(-4+2)}{(-4+3)}=4$ and $B=\left.\frac{2(s+2)}{(s+4)}\right|_{s=-3}=\frac{2(-3+2)}{(-3+4)}=-2$, therefore the above becomes

$$
X(s)=\frac{4}{(s+4)}-\frac{2}{(s+3)}
$$

Using $e^{-a t} u(t) \Longleftrightarrow \frac{1}{s+a}$ gives the inverse Laplace transform as

$$
\begin{aligned}
x(t) & =4 e^{-4 t} u(t)-2 e^{-3 t} u(t) \\
& =\left(4 e^{-4 t}-2 e^{-3 t}\right) u(t)
\end{aligned}
$$

With $\operatorname{Re}(s)>-4$ and also $\operatorname{Re}(s)>-3$. Therefore the ROC for both is $\operatorname{Re}(s)>-3$.

3 Problem 9.15

Consider the two right-sides signals $x(t), y(t)$ related through the differential equations

$$
\begin{aligned}
& \frac{d x(t)}{d t}=-2 y(t)+\delta(t) \\
& \frac{d y(t)}{d t}=2 x(t)
\end{aligned}
$$

Determine $Y(s), X(s)$ along with their ROC.
solution
The Laplace transform of $\delta(t)$ is 1 . Taking the Laplace transform of both the ODE's above, and assuming zero initial conditions gives

$$
\begin{align*}
& s X(s)=-2 Y(s)+1 \tag{1}\\
& s Y(s)=2 X(s) \tag{2}
\end{align*}
$$

Using the second equation in the first gives

$$
\begin{aligned}
s X(s) & =-2\left(\frac{2 X(s)}{s}\right)+1 \\
& =\frac{-4 X(s)+s}{s} \\
s^{2} X(s) & =-4 X(s)+s \\
\left(s^{2}+4\right) X(s) & =s \\
X(s) & =\frac{s}{\left(s^{2}+4\right)}
\end{aligned}
$$

Using the above in (2) gives $Y(s)$

$$
\begin{aligned}
s Y(s) & =2 \frac{s}{\left(s^{2}+4\right)} \\
Y(s) & =\frac{2}{\left(s^{2}+4\right)}
\end{aligned}
$$

Considering $X(s)$ to find its ROC, let us write it as

$$
X(s)=\frac{s}{\left(s^{2}+4\right)}=\frac{s}{(s+2 j)(s-2 j)}=\frac{A}{(s+2 j)}+\frac{B}{(s-2 j)}
$$

We see that the ROC for first term is $\operatorname{Re}(s)>-\operatorname{Re}(2 j)$ which means $\operatorname{Re}(s)>0$ since real part is zero. Same for the second term. Hence we see that for $X(s)$ the ROC is $\operatorname{Re}(s)>0$. Similarly for $Y(s)$. Therefore the overall ROC is

$$
\operatorname{Re}(s)>0
$$

4 Problem 9.32

A causal LTI system with impulse response $h(t)$ has the following properties: (1) When the input to the system is $x(t)=e^{2 t}$ for all t, the output is $y(t)=\frac{1}{6} e^{2 t}$ for all t. (2) The impulse response $h(t)$ satisfies the differential equation

$$
\frac{d h(t)}{d t}+2 h(t)=e^{-4 t} u(t)+b u(t)
$$

Where b is unknown constant. Determine the system function $H(s)$ of the system, consistent with the information above. There should be no unknown constants in your answer; that is, the constant b should not appear in the answer
solution
First $H(s)$ is found from the differential equation. Taking Laplace transform gives (assuming zero initial conditions)

$$
\begin{align*}
s H(s)+2 H(s) & =\frac{1}{s+4}+\frac{b}{s} \\
H(s)(2+s) & =\frac{1}{s+4}+\frac{b}{s} \\
H(s) & =\frac{1}{(s+4)(s+2)}+\frac{b}{s(s+2)} \\
& =\frac{s+b(s+4)}{s(s+4)(s+2)} \tag{1}
\end{align*}
$$

Now we are told when the input is $e^{2 t}$ then the output is $\frac{1}{6} e^{2 t}$. In Laplace domain this means $Y(s)=X(s) H(s)$. Therefore

$$
\begin{array}{lr}
Y(s)=\frac{1}{6} \frac{1}{s-2} & \operatorname{Re}(s)>2 \\
X(s)=\frac{1}{s-2} & \operatorname{Re}(s)>2
\end{array}
$$

Hence

$$
\begin{align*}
H(s) & =\frac{Y(s)}{X(s)} \\
H(s) & =\frac{\frac{1}{6} \frac{1}{s-2}}{\frac{1}{s-2}} \\
& =\frac{1}{6} \tag{2}
\end{align*}
$$

Comparing (1,2) then

$$
\frac{1}{6}=\frac{s+b(s+4)}{s(s+4)(s+2)}
$$

Solving for b gives

$$
\begin{aligned}
\frac{s(s+4)(s+2)}{6} & =s+b(s+4) \\
\frac{s(s+4)(s+2)}{6(s+4)}-\frac{s}{(s+4)} & =b \\
b & =\frac{s(s+2)}{6}-\frac{s}{(s+4)} \\
& =\frac{s(s+2)(s+4)-6 s}{6(s+4)} \\
& =\frac{s\left(s^{2}+6 s+2\right)}{6(s+4)}
\end{aligned}
$$

This is true for $\operatorname{Re}(s)>2$. Hence for $s=2$ the above reduces to

$$
\begin{aligned}
b & =\frac{2(4+12+2)}{6(2+4)} \\
& =1
\end{aligned}
$$

Therefore (1) becomes

$$
\begin{aligned}
H(s) & =\frac{s+(s+4)}{s(s+4)(s+2)} \\
& =\frac{2 s+4}{s(s+4)(s+2)} \\
& =\frac{2(s+2)}{s(s+4)(s+2)} \\
& =\frac{2}{s(s+4)}
\end{aligned}
$$

5 Problem 9.40

Consider the system S characterized by the differential equation

$$
y^{\prime \prime \prime}(t)+6 y^{\prime \prime}(t)+11 y^{\prime}(t)+6 y(t)=x(t)
$$

(a) Determine the zero-state response of this system for the input $x(t)=e^{-4 t} u(t)$ (b) Determine the zero-input response of the system for $t>0^{-}$given the initial conditions $y\left(0^{-}\right)=1,\left.\frac{d y}{d t}\right|_{t=0^{-}}=-1,\left.\frac{d^{2} y}{d t^{2}}\right|_{t=0^{-}}=1$. (c) Determine the output of S when the input is $x(t)=e^{-4 t} u(t)$ and the initial conditions are the same as those specified in part (b).

Solution

5.1 Part a

Applying Laplace transform on the ODE and using zero initial conditions gives

$$
\begin{align*}
s^{3} Y(s)+6 s^{2} Y(s)+11 s Y(s)+6 Y(s) & =\frac{1}{s+4} \\
Y(s)\left(s^{3}+6 s^{2}+11 s+6\right) & =\frac{1}{s+4} \\
Y(s) & =\frac{1}{(s+4)\left(s^{3}+6 s^{2}+11 s+6\right)} \\
& =\frac{1}{(s+4)(s+1)(s+2)(s+3)} \tag{1}
\end{align*}
$$

Using partial fractions

$$
\frac{1}{(s+4)(s+1)(s+2)(s+3)}=\frac{A}{(s+4)}+\frac{B}{(s+1)}+\frac{C}{(s+2)}+\frac{D}{(s+3)}
$$

Hence

$$
\begin{aligned}
& A=\left.\frac{1}{(s+1)(s+2)(s+3)}\right|_{s=-4}=\frac{1}{(-4+1)(-4+2)(-4+3)}=-\frac{1}{6} \\
& B=\left.\frac{1}{(s+4)(s+2)(s+3)}\right|_{s=-1}=\frac{1}{(-1+4)(-1+2)(-1+3)}=\frac{1}{6} \\
& C=\left.\frac{1}{(s+4)(s+1)(s+3)}\right|_{s=-2}=\frac{1}{(-2+4)(-2+1)(-2+3)}=\frac{-1}{2} \\
& D=\left.\frac{1}{(s+4)(s+1)(s+2)}\right|_{s=-3}=\frac{1}{(-3+4)(-3+1)(-3+2)}=\frac{1}{2}
\end{aligned}
$$

Hence (1) becomes

$$
\begin{array}{rll}
Y(s) & =\frac{A}{(s+4)}+\frac{B}{(s+1)}+\frac{C}{(s+2)}+\frac{D}{(s+3)} \\
& =-\frac{1}{6} \frac{1}{(s+4)}+\frac{1}{6} \frac{1}{(s+1)}-\frac{1}{2} \frac{1}{(s+2)}+\frac{1}{2} \frac{1}{(s+3)} & \operatorname{Re}(s)>-1
\end{array}
$$

From tables, the inverse Laplace transform is (one sided) is

$$
y(t)=-\frac{1}{6} e^{-4 t} u(t)+\frac{1}{6} e^{-t} u(t)-\frac{1}{2} e^{-2 t} u(t)+\frac{1}{2} e^{-3 t} u(t)
$$

5.2 Part b

Applying Laplace transform on the ODE $y^{\prime \prime \prime}(t)+6 y^{\prime \prime}(t)+11 y^{\prime}(t)+6 y(t)=0$ and using the non-zero initial conditions given above gives

$$
\begin{array}{r}
\left(s^{3} Y(s)-s^{2} y(0)-s y^{\prime}(0)-y^{\prime \prime}(0)\right)+6\left(s^{2} Y(s)-s y(0)-y^{\prime}(0)\right)+11(s Y(s)-y(0))+6 Y(s)=0 \\
\left(s^{3} Y(s)-s^{2}+s-1\right)+6\left(s^{2} Y(s)-s+1\right)+11(s Y(s)-1)+6 Y(s)=0 \\
s^{3} Y(s)-s^{2}+s-1+6 s^{2} Y(s)-6 s+6+11 s Y(s)-11+6 Y(s)=0 \\
Y(s)\left(s^{3}+6 s^{2}+11 s+6\right)-s^{2}+s-1-6 s+6-11=0 \tag{1}
\end{array}
$$

Hence

$$
\begin{aligned}
Y(s)\left(s^{3}+6 s^{2}+11 s+6\right) & =s^{2}-s+1+6 s-6+11 \\
Y(s) & =\frac{s^{2}+5 s+6}{s^{3}+6 s^{2}+11 s+6} \\
& =\frac{(s+3)(s+2)}{(s+1)(s+2)(s+3)} \\
& =\frac{1}{s+1} \quad \operatorname{Re}(s)>-1
\end{aligned}
$$

Hence the inverse Laplace transform (one sided) gives

$$
y(t)=e^{-t} u(t)
$$

5.3 Part c

This is the sum of the response of part(a) and part(b) since the system is linear ODE. Hence

$$
\begin{aligned}
y(t) & =-\frac{1}{6} e^{-4 t} u(t)+\frac{1}{6} e^{-t} u(t)-\frac{1}{2} e^{-2 t} u(t)+\frac{1}{2} e^{-3 t} u(t)+e^{-t} u(t) \\
& =\left(-\frac{1}{6} e^{-4 t}+\frac{1}{6} e^{-t}-\frac{1}{2} e^{-2 t}+\frac{1}{2} e^{-3 t}+e^{-t}\right) u(t) \\
& =\left(-\frac{1}{6} e^{-4 t}+\frac{7}{6} e^{-t}-\frac{1}{2} e^{-2 t}+\frac{1}{2} e^{-3 t}\right) u(t)
\end{aligned}
$$

