5.3. We note from Section 5.2 that a periodic signal $\leq[n]$ with Fourier series representation

$$
x[n]=\sum_{k=\langle N\rangle} a_{k} e^{j k(2 \pi / N) n}
$$

has a Fourier transform

$$
X\left(e^{j \omega}\right)=\sum_{k=-\infty}^{\infty} 2 \pi a_{k} \delta\left(\omega-\frac{2 \pi k}{N}\right)
$$

(a) Consider the signal $x_{1}[n]=\sin \left(\frac{\pi}{3} n+\frac{\pi}{4}\right)$. We note that the fundamental period of the signal $x_{1}[n]$ is $N=6$. The signal may be written as

$$
x_{1}[n]=(1 / 2 j) e^{j\left(\frac{\pi}{3} n+\frac{\pi}{4}\right)}-(1 / 2 j) e^{-j\left(\frac{\pi}{3} n+\frac{\pi}{4}\right)}=(1 / 2 j) e^{j \frac{\pi}{4}} e^{j \frac{2 \pi}{6} n}-(1 / 2 j) e^{-j \frac{\pi}{4}} e^{-j \frac{2 \pi}{6} n} .
$$

From this, we obtain the non-zero Fourier series coefficients a_{k} of $x_{1}[n]$ in the range $-2 \leq k \leq 3$ as

$$
a_{1}=(1 / 2 j) e^{j \frac{\pi}{4}}, \quad a_{-1}=-(1 / 2 j) e^{-j \frac{\pi}{4}} .
$$

Therefore, in the range $-\pi \leq \omega \leq \pi$, we obtain

$$
\begin{aligned}
X\left(e^{j \omega}\right) & =2 \pi a_{1} \delta\left(\omega-\frac{2 \pi}{6}\right)+2 \pi a_{-1} \delta\left(\omega+\frac{2 \pi}{6}\right) \\
& =(\pi / j)\left\{e^{j \pi / 4} \delta(\omega-2 \pi / 6)-e^{-j \pi / 4} \delta(\omega+2 \pi / 6)\right\}
\end{aligned}
$$

(b) Consider the signal $x_{2}[n]=2+\cos \left(\frac{\pi}{6} n+\frac{\pi}{8}\right)$. We note that the fundamental period of the signal $x_{1}[n]$ is $N=12$. The signal may be written as

$$
x_{1}[n]=2+(1 / 2) e^{j\left(\frac{\pi}{6} n+\frac{\pi}{6}\right)}+(1 / 2) e^{-j\left(\frac{2}{6} n+\frac{\pi}{8}\right)}=2+(1 / 2) e^{j \frac{\pi}{8}} e^{j \frac{2 \pi}{12} n}+(1 / 2) e^{-j \frac{\pi}{6}} e^{-j \frac{3 \pi}{12} n}
$$

From this, we obtain the non-zero Fourier series coefficients a_{k} of $x_{2}[n]$ in the range $-5 \leq k \leq 6$ as

$$
a_{0}=2, \quad a_{1}=(1 / 2) e^{j \frac{\pi}{1}}, \quad a_{-1}=(1 / 2) e^{-j \frac{\pi}{B}} .
$$

Therefore, in the range $-\pi \leq \omega \leq \pi$, we obtain

$$
\begin{aligned}
X\left(e^{j \omega}\right) & =2 \pi a_{0} \delta(\omega)+2 \pi a_{1} \delta\left(\omega-\frac{2 \pi}{12}\right)+2 \pi a_{-1} \delta\left(\omega+\frac{2 \pi}{12}\right) \\
& =4 \pi \delta(\omega)+\pi\left\{e^{j \pi / 8} \delta(\omega-\pi / 6)+e^{-j \pi / 8} \delta(\omega+\pi / 6)\right\}
\end{aligned}
$$

5.5. From the given information,

$$
\begin{aligned}
x[n] & =(1 / 2 \pi) \int_{-\pi}^{\pi} X\left(e^{j \omega}\right) e^{j \omega n} d \omega \\
& =(1 / 2 \pi) \int_{-\pi}^{\pi}\left|X\left(e^{j \omega}\right)\right| e^{j \triangleleft\left\{X\left(e^{j \omega}\right)\right\}} e^{j \omega n} d \omega \\
& =(1 / 2 \pi) \int_{-\pi / 4}^{\pi / 4} e^{-\frac{3}{2} \omega} e^{j \omega n} d \omega \\
& =\frac{\sin \left(\frac{\pi}{4}(n-3 / 2)\right)}{\pi(n-3 / 2)}
\end{aligned}
$$

The signal $x[n]$ is zero when $\frac{\pi}{4}(n-3 / 2)$ is a nonzero integer multiple of π or when $|n| \rightarrow \infty$. The value of $\frac{\pi}{4}(n-3 / 2)$ can never be such that it is a nonzero integer multiple of π. Therefore, $x[n]=0$ only for $n= \pm \infty$.
5.9. From Property 5.3 .4 in Table 5.1 , we know that for a real signal $x[n]$,

$$
\mathcal{O d}\{x[n]\} \stackrel{F T}{\longleftrightarrow} j I m\left\{X\left(e^{j \omega}\right)\right\}
$$

From the given information,

$$
\begin{aligned}
j \operatorname{Im}\left\{X\left(e^{j \omega}\right)\right\} & =j \sin \omega-j \sin 2 \omega \\
& =(1 / 2)\left(e^{j \omega}-e^{-j \omega}-e^{2 j \omega}+e^{-2 j \omega}\right)
\end{aligned}
$$

Therefcre,

$$
\mathcal{O} d\{x[n]\}=\operatorname{IF} \mathcal{T}\left\{j \operatorname{Im}\left\{X\left(e^{j \omega}\right)\right\}\right\}=(1 / 2)(\delta[n+1]-\delta[n-1]-\delta[n+2]+\delta[n-2])
$$

We also know that

$$
\mathcal{O} d\{x[n]\}=\frac{x[n]-x[-n]}{2}
$$

and that $x[n]=0$ for $n>0$. Therefore,

$$
x[n]=2 O d\{x[n]\}=\delta[n+1]-\delta[n+2], \quad \text { for } n<0
$$

Now we only have to find $x[0]$. Using Parseval's relation, we have

$$
\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left|X\left(e^{j \omega}\right)\right|^{2} d \omega=\sum_{n=-\infty}^{\infty}|x[n]|^{2} .
$$

From the given information, we can write

$$
\left.3=(x[0])^{2}+\sum_{n=-\infty}^{-1}|x| n\right]\left.\right|^{2}=(x[0])^{2}+2
$$

This gives $x[0]= \pm 1$. But since we are given that $x[0]>0$, we conclude that $x[0]=1$. Therefore,

$$
x[n]=\delta[n]+\delta[n+1]-\delta[n+2]
$$

5.13. When two LTI systems are connected in parallel, the impulse response of the overall system is the sum of the impulse responses of the individual systems. Therefore,

$$
h[n]=h_{1}[n]+h_{2}[n] .
$$

Using the linearity property (Table 5.1, Property 5.3.2),

$$
H\left(e^{j \omega}\right)=H_{1}\left(e^{j \omega}\right)+H_{2}\left(e^{j \omega}\right)
$$

Given that $h_{1}[n]=(1 / 2)^{n_{u}}[n]$, we obtain

$$
H_{1}\left(e^{j \omega}\right)=\frac{1}{1-\frac{1}{2} e^{-j \omega}}
$$

Therefore,

$$
H_{2}\left(e^{j \omega}\right)=\frac{-12+5^{-j \omega}}{12-7 e^{-j \omega}+e^{-2 j \omega}}-\frac{1}{1-\frac{1}{2} e^{-j \omega}}=\frac{-2}{1-\frac{1}{4} e^{-j \omega}} .
$$

Taking the inverse Fourier transform,

$$
h_{2}[n]=-2\left(\frac{1}{4}\right)^{n} u[n]
$$

5.19. (a) Taking the Fourier transform of both sides of the difference equation, we have

$$
Y\left(e^{j \omega}\right)\left[1-\frac{1}{6} e^{-j \omega}-\frac{1}{6} e^{-2 j \omega}\right]=X\left(e^{j \omega}\right) .
$$

Therefore,

$$
H(e j \omega)=\frac{Y\left(e^{j \omega}\right)}{X\left(e^{j \omega}\right)}=\frac{1}{1-\frac{1}{6} e^{-j \omega}-\frac{1}{6} e^{-2 j \omega}}=\frac{1}{\left(1-\frac{1}{2} e^{-j \omega}\right)\left(1+\frac{1}{3} e^{-\jmath \omega}\right)} .
$$

(b) Using Partial fraction expansion,

$$
H(e j \omega)=\frac{3 / 5}{1-\frac{1}{2} e^{-j \omega}}+\frac{2 / 5}{1+\frac{1}{3} e^{-j \omega}} .
$$

Using Table 5.2, and taking the inverse Fourier trasform, we obtain

$$
h[n]=\frac{3}{5}\left(\frac{1}{2}\right)^{n} u[n]+\frac{2}{5}\left(-\frac{1}{3}\right)^{n} u[n] .
$$

(a) The frequency response of the system is as shown in Figure S5.30.
(b) The Fourier transform $X\left(e^{j \omega}\right)$ of $x[n]$ is as shown in Figure $S 5.30$.
(i) The frequency response $H\left({ }^{j}{ }^{j}\right)$ is as shown in Figure S5.30. Therefore, $y[n]=$ $\sin (\pi n / 8)$.
(ii) The frequency response $H\left(e^{j \omega}\right)$ is as shown in Figure S5.30. Therefore, $y[n]=$ $2 \sin (\pi n / 8)-2 \cos (\pi n / 4)$.

(a)

