HW 5

EE 3015
 Signals and Systems

Spring 2020
University of Minnesota, Twin Cities

Nasser M. Abbasi

Contents

1 Problem 5.3, Chapter 5

Determine the Fourier transform for $-\pi \leq \omega<\pi$ in the case of each of the following periodic signals (a) $\sin \left(\frac{\pi}{3} n+\frac{\pi}{4}\right)$ (b) $2+\cos \left(\frac{\pi}{6} n+\frac{\pi}{8}\right)$
solution

1.1 Part a

Since the signal is periodic, then the Fourier transform is given by

$$
\begin{equation*}
X(\Omega)=2 \pi \sum_{k=-\infty}^{\infty} a_{k} \delta\left(\Omega-k \Omega_{0}\right) \tag{1}
\end{equation*}
$$

Where a_{k} are the Fourier series coefficients of $x[n]$. To determine a_{k} we can expression $x[n]$ using Euler relation. To find the period, $\frac{\pi}{3} N=m 2 \pi$. Hence $\frac{m}{N}=\frac{1}{6}$. Hence

$$
N=6
$$

Therefore $\Omega_{0}=\frac{2 \pi}{N}=\frac{\pi}{3}$. Now, using Euler relation

$$
\begin{align*}
\sin \left(\frac{\pi}{3} n+\frac{\pi}{4}\right) & =\frac{e^{\left(\frac{\pi}{3} n+\frac{\pi}{4}\right) j}-e^{-\left(\frac{\pi}{3} n+\frac{\pi}{4}\right) j}}{2 j} \\
& =\frac{1}{2 j} e^{j \frac{\pi}{4}}\left(e^{j \frac{\pi}{3} n}\right)-\frac{1}{2 j} e^{-j \frac{\pi}{4}}\left(e^{-j \frac{\pi}{3} n}\right) \tag{2}
\end{align*}
$$

Comparing (2) to Fourier series expansion of periodic signal given by

$$
\begin{aligned}
x[n] & =\sum_{k=0}^{N-1} a_{k} e^{j k \Omega_{0} n} \\
& =\sum_{k=0}^{5} a_{k} e^{j k \Omega_{0} n} \\
& =\sum_{k=-2}^{3} a_{k} e^{j k \Omega_{0} n}
\end{aligned}
$$

Since $\Omega_{0}=\frac{\pi}{3}$ then the above becomes

$$
x[n]=\sum_{k=-2}^{3} a_{k} e^{i k \frac{\pi}{3} n}
$$

Comparing the above with (2) shows that $a_{1}=\frac{1}{2 j} e^{j \frac{\pi}{4}}$ and $a_{-1}=-\frac{1}{2 j} e^{-j \frac{\pi}{4}}$ and all other $a_{k}=0$ for $k=-2,0,2,3$. Hence (1) becomes

$$
\begin{aligned}
X(\Omega) & =2 \pi\left(a_{-1} \delta\left(\Omega+\Omega_{0}\right)+a_{1} \delta\left(\Omega-\Omega_{0}\right)\right) \\
& =2 \pi\left(-\frac{1}{2 j} e^{-j \frac{\pi}{4}} \delta\left(\Omega+\frac{\pi}{3}\right)+\frac{1}{2 j} e^{j \frac{\pi}{4}} \delta\left(\Omega-\frac{\pi}{3}\right)\right) \\
& =\frac{\pi}{j}\left(-e^{-j \frac{\pi}{4}} \delta\left(\Omega+\frac{\pi}{3}\right)+e^{j \frac{\pi}{4}} \delta\left(\Omega-\frac{\pi}{3}\right)\right)
\end{aligned}
$$

1.2 Part b

Since the signal $2+\cos \left(\frac{\pi}{6} n+\frac{\pi}{8}\right)$ is periodic, then the Fourier transform is given by

$$
\begin{equation*}
X(\Omega)=2 \pi \sum_{k=-\infty}^{\infty} a_{k} \delta\left(\Omega-k \Omega_{0}\right) \tag{1}
\end{equation*}
$$

Where a_{k} are the Fourier series coefficients of $x[n]$. To determine a_{k} we can expression $x[n]$ using Euler relation. To find the period, $\frac{\pi}{6} N=m 2 \pi$. Hence $\frac{m}{N}=\frac{1}{12}$. Hence

$$
N=12
$$

Therefore $\Omega_{0}=\frac{2 \pi}{N}=\frac{\pi}{6}$. Now, using Euler relation

$$
\begin{align*}
2+\cos \left(\frac{\pi}{6} n+\frac{\pi}{8}\right) & =2+\frac{e^{\left(\frac{\pi}{6} n+\frac{\pi}{8}\right) j}+e^{-\left(\frac{\pi}{6} n+\frac{\pi}{8}\right) j}}{2} \\
& =2+\frac{1}{2} e^{j \frac{\pi}{8}}\left(e^{j \frac{\pi}{6} n}\right)+\frac{1}{2} e^{-j \frac{\pi}{8}}\left(e^{-j \frac{\pi}{6} n}\right) \tag{2}
\end{align*}
$$

Comparing (2) to Fourier series expansion of periodic signal given by

$$
\begin{aligned}
x[n] & =\sum_{k=0}^{N-1} a_{k} e^{j k \Omega_{0} n} \\
& =\sum_{k=0}^{11} a_{k} e^{j k \Omega_{0} n} \\
& =\sum_{k=-5}^{6} a_{k} e^{j k \Omega_{0} n}
\end{aligned}
$$

Since $\Omega_{0}=\frac{\pi}{6}$ then the above becomes

$$
x[n]=\sum_{k=-5}^{6} a_{k} e^{j k \frac{\pi}{6} n}
$$

Comparing the above with (2) shows that $a_{0}=2, a_{1}=\frac{1}{2} e^{j \frac{\pi}{8}}$ and $a_{-1}=\frac{1}{2} e^{-j \frac{\pi}{8}}$ and all other $a_{k}=0$. Hence (1) becomes

$$
\begin{aligned}
X(\Omega) & =2 \pi\left(a_{0} \delta(\Omega)+a_{-1} \delta\left(\Omega+\Omega_{0}\right)+a_{1} \delta\left(\Omega-\Omega_{0}\right)\right) \\
& =2 \pi\left(2 \delta(\Omega)+\frac{1}{2} e^{-j \frac{\pi}{8}} \delta\left(\Omega+\frac{\pi}{6}\right)+\frac{1}{2} e^{j \frac{\pi}{8}} \delta\left(\Omega-\frac{\pi}{6}\right)\right) \\
& =4 \pi \delta(\Omega)+\pi e^{-j \frac{\pi}{8}} \delta\left(\Omega+\frac{\pi}{6}\right)+\pi e^{j \frac{\pi}{8}} \delta\left(\Omega-\frac{\pi}{6}\right)
\end{aligned}
$$

2 Problem 5.5, Chapter 5

Use the Fourier transform synthesis equation (5.8)

$$
\begin{align*}
x[n] & =\frac{1}{2 \pi} \int_{2 \pi} X(\Omega) e^{j \Omega n} d \Omega \tag{5.8}\\
X(\Omega) & =\sum_{n=-\infty}^{\infty} x[n] e^{-j \Omega n} \tag{5.9}
\end{align*}
$$

To determine the inverse Fourier transform of $X(\Omega)=|X(\Omega)| e^{j \arg H(\Omega)}$, where $|X(\Omega)|=$ $\left\{\begin{array}{ll}1 & 0 \leq|\Omega|<\frac{\pi}{4} \\ 0 & \frac{\pi}{4} \leq|\Omega|<\pi\end{array}\right.$ and $\arg H(\Omega)=\frac{-3 \Omega}{2}$. Use your answer to determine the values of n for which $x[n]=0$.
solution

$$
\begin{aligned}
x[n] & =\frac{1}{2 \pi} \int_{2 \pi} X(\Omega) e^{j \Omega n} d \Omega \\
& =\frac{1}{2 \pi} \int_{2 \pi}|X(\Omega)| e^{j \arg H(\Omega)} e^{j \Omega n} d \Omega \\
& =\frac{1}{2 \pi} \int_{0}^{\frac{\pi}{4}} e^{j \arg H(\Omega)} e^{j \Omega n} d \Omega \\
& =\frac{1}{2 \pi} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} e^{j \frac{-3 \Omega}{2}} e^{j \Omega n} d \Omega \\
& =\frac{1}{2 \pi} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} e^{j \Omega\left(\frac{-3}{2}+n\right)} d \Omega \\
& =\frac{1}{2 \pi} \frac{1}{j\left(\frac{-3}{2}+n\right)}\left[e^{j \Omega\left(\frac{-3}{2}+n\right)}\right]_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \\
& =\frac{1}{2 \pi} \frac{1}{j\left(\frac{-3}{2}+n\right)}\left[e^{j \frac{\pi}{4}\left(\frac{-3}{2}+n\right)}-e^{-j \frac{\pi}{4}\left(\frac{-3}{2}+n\right)}\right] \\
& =\frac{1}{\pi} \frac{1}{\left(\frac{-3}{2}+n\right)}\left[\frac{e^{j \frac{\pi}{4}\left(\frac{-3}{2}+n\right)}-e^{-j \frac{\pi}{4}\left(\frac{-3}{2}+n\right)}}{2 j}\right] \\
& =\frac{1}{\pi} \frac{1}{\left(\frac{-3}{2}+n\right)} \sin \left(\frac{\pi}{4}\left(\frac{-3}{2}+n\right)\right) \\
& =\frac{1}{\pi} \frac{\sin \left(\frac{\pi}{4}\left(n-\frac{3}{2}\right)\right)}{n-\frac{3}{2}} \\
&
\end{aligned}
$$

Now the above is zero when $\sin \left(\frac{\pi}{4}\left(n-\frac{3}{2}\right)\right)=0$ or $\frac{\pi}{4}\left(n-\frac{3}{2}\right)=m \pi$ for integer m. Hence $n-\frac{3}{2}=4 m$. Or $n=4 m+\frac{3}{2}$. Since m is integer, and since n must be an integer as well, then there is no finite n where $\sin \left(\frac{\pi}{4}\left(n-\frac{3}{2}\right)\right)=0$. The other option is to look at denominator of $\frac{\sin \left(\frac{\pi}{4}\left(n-\frac{3}{2}\right)\right)}{n-\frac{3}{2}}$ and ask where is that ∞. This happens when $n \rightarrow \pm \infty$ and only then $x[n]=0$.

3 Problem 5.9, Chapter 5

The following four facts are given about a real signal $x[n]$ with Fourier transform $X(\Omega)$

1. $x[n]=0$ for $n>0$
2. $x[0]>0$
3. $\operatorname{Im}(X(\Omega))=\sin \Omega-\sin (2 \Omega)$
4. $\frac{1}{2 \pi} \int_{-\pi}^{\pi}|X(\Omega)|^{2} d \Omega=3$

Determine $x[n]$

solution
From tables we know that the odd part of $x[n]$ has Fourier transform which is $j \operatorname{Im}(X(\Omega))$.
Hence using (3) above, this means that odd part of $x[n]$ has Fourier transform of $j(\sin \Omega-\sin (2 \Omega))$ or $j\left(\frac{e^{j \Omega}-e^{-j \Omega}}{2 j}-\frac{e^{j 2 \Omega}-e^{-j 2 \Omega}}{2 j}\right)$ or $\frac{1}{2}\left(e^{j \Omega}-e^{-j \Omega}-e^{j 2 \Omega}+e^{-j 2 \Omega}\right)$. From tables, we know find the inverse Fourier transform of this. Hence odd part of $x[n]$ is $\frac{1}{2}(\delta[n+1]-\delta[n-1]-\delta[n+2]+\delta[n-2])$. So now we know what the odd part of $x[n]$ is.
But since $x[n]=0$ for $n>0$ then the odd part of $x[n]$ reduces to $\frac{1}{2}(\delta[n+1]-\delta[n+2])$.
But we also know that any function can be expressed as the sum of its odd part and its even part. But since $x[n]=0$ for $n>0$ then this means $x[n]=2\left(\frac{1}{2}(\delta[n+1]-\delta[n+2])\right)$ for $n<0$. Hence

$$
x[n]=\delta[n+1]-\delta[n+2] \quad n<0
$$

Finally, using (4) above,

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi}|X(\Omega)|^{2} d \Omega=3=\sum_{n=-\infty}^{\infty}|x[n]|^{2}=\sum_{n=-\infty}^{0}|x[n]|^{2}
$$

Hence

$$
\begin{aligned}
3 & =|\delta[-1]|^{2}+|\delta[-2]|^{2}+|x[0]|^{2} \\
& =1+1+x[n]^{2} \\
x[n]^{2} & =3-2 \\
& =1
\end{aligned}
$$

Therefore $x[n]=1$ or $x[n]=-1$. But from (2) $x[0]>0$. Hence $x[0]$. Therefore

$$
x[n]=\delta[n+1]-\delta[n+2]+\delta[n] \quad n \leq 0
$$

4 Problem 5.13, Chapter 5

An LTI system with impulse response $h_{1}[n]=\left(\frac{1}{3}\right)^{n} u[n]$ is connected in parallel with another causal LTI system with impulse response $h_{2}[n]$. The resulting parallel interconnection has the frequency response

$$
H(\Omega)=\frac{-12+5 e^{-j \Omega}}{12-7 e^{-j \Omega}+e^{-j \Omega}}
$$

Determine $h_{2}[n]$.
solution
Since the connection is parallel, then $h[n]=h_{1}[n]+h_{2}[n]$. Or $H(\Omega)=H_{1}(\Omega)+H_{2}(\Omega)$. Hence

$$
\begin{equation*}
H_{2}(\Omega)=H(\Omega)-H_{1}(\Omega) \tag{1}
\end{equation*}
$$

But

$$
\begin{aligned}
H_{1}(\Omega) & =\sum_{n=-\infty}^{\infty} h_{1}[n] e^{-j \Omega n} \\
& =\sum_{n=0}^{\infty}\left(\frac{1}{3}\right)^{n} e^{-j \Omega n} \\
& =\sum_{n=0}^{\infty}\left(\frac{1}{3} e^{-j \Omega}\right)^{n} \\
& =\sum_{n=0}^{\infty} a^{n}=\frac{1}{1-a}=\frac{1}{1-\frac{1}{3} e^{-j \Omega}} \\
& =\frac{3}{3-e^{-j \Omega}}
\end{aligned}
$$

Therefore from (1)

$$
H_{2}(\Omega)=\frac{-12+5 e^{-j \Omega}}{12-7 e^{-j \Omega}+e^{-j 2 \Omega}}-\frac{3}{3-e^{-j \Omega}}
$$

Let $e^{-j \Omega}=x$ to simplify notation. The above becomes

$$
\begin{aligned}
H_{2}(\Omega) & =\frac{-12+5 x}{12-7 x+x^{2}}-\frac{3}{3-x} \\
& =\frac{-12+5 x}{(x-3)(x-4)}+\frac{3}{(x-3)} \\
& =\frac{-12+5 x+3(x-4)}{(x-3)(x-4)} \\
& =\frac{-12+5 x+3 x-12}{(x-3)(x-4)} \\
& =\frac{8 x-24}{(x-3)(x-4)} \\
& =\frac{8(x-3)}{(x-3)(x-4)} \\
& =\frac{8}{(x-4)} \\
& =-2\left(\frac{1}{1-\frac{1}{4} x}\right)
\end{aligned}
$$

Hence

$$
H_{2}(\Omega)=-2\left(\frac{1}{1-\frac{1}{4} e^{-j \Omega}}\right)
$$

from tables, $a^{n} u[n] \Longleftrightarrow \frac{1}{1-a e^{-j \Omega}}$ for $|a|<1$. Comparing this to the above gives

$$
h_{2}[n]=-2\left(\frac{1}{4}\right)^{n} u[n]
$$

5 Problem 5.19, Chapter 5

Consider a causal and stable LTI system S whose input $x[n]$ and output $y[n]$ are related through the second-order difference equation

$$
y[n]-\frac{1}{6} y[n-1]-\frac{1}{6} y[n-2]=x[n]
$$

(a) Determine the frequency response $H(\Omega)$ for the system S. (b) Determine the impulse response $h[n]$ for the system S.
solution

5.1 part a

Taking DFT of the difference equation gives

$$
\begin{aligned}
Y(\Omega)-\frac{1}{6} e^{-j \Omega} Y(\Omega)-\frac{1}{6} e^{-j 2 \Omega} Y(\Omega) & =X(\Omega) \\
Y(\Omega)\left(1-\frac{1}{6} e^{-j \Omega}-\frac{1}{6} e^{-j 2 \Omega}\right) & =X(\Omega) \\
\frac{Y(\Omega)}{X(\Omega)} & =\frac{1}{1-\frac{1}{6} e^{-j \Omega}-\frac{1}{6} e^{-j 2 \Omega}}
\end{aligned}
$$

Let $e^{-j \Omega}=x$ to simplify the notation, then

$$
\frac{Y(\Omega)}{X(\Omega)}=\frac{1}{1-\frac{1}{6} x-\frac{1}{6} x^{2}}=\frac{6}{6-x-x^{2}}=\frac{-6}{x^{2}+x-6}=\frac{-6}{(x-2)(x+3)}
$$

Hence

$$
\begin{aligned}
H(\Omega) & =\frac{Y(\Omega)}{X(\Omega)} \\
& =\frac{-6}{\left(e^{-j \Omega}-2\right)\left(e^{-j \Omega}+3\right)}
\end{aligned}
$$

5.2 part b

Applying partial fractions

$$
H(\Omega)=\frac{-6}{\left(e^{-j \Omega}-2\right)\left(e^{-j \Omega}+3\right)}=\frac{A}{(x-2)}+\frac{B}{(x+3)}
$$

Hence $A=-\frac{6}{5}, B=\frac{6}{5}$. Therefore

$$
\begin{aligned}
H(\Omega) & =-\frac{6}{5} \frac{1}{e^{-j \Omega}-2}+\frac{6}{5} \frac{1}{e^{-j \Omega}+3} \\
& =-\frac{3}{5} \frac{1}{\frac{1}{2} e^{-j \Omega}-1}+\frac{2}{5} \frac{1}{\frac{1}{3} e^{-j \Omega}+1} \\
& =\frac{3}{5} \frac{1}{1-\frac{1}{2} e^{-j \Omega}}+\frac{2}{5} \frac{1}{1+\frac{1}{3} e^{-j \Omega}}
\end{aligned}
$$

Taking the inverse DFT using tables gives

$$
\begin{aligned}
h[n] & =\frac{3}{5}\left(\frac{1}{2}\right)^{n} u[n]+\frac{2}{5}\left(-\frac{1}{3}\right)^{n} u[n] \\
& =\left(\frac{3}{5}\left(\frac{1}{2}\right)^{n}+\frac{2}{5}\left(-\frac{1}{3}\right)^{n}\right) u[n]
\end{aligned}
$$

6 Problem 5.30, Chapter 5

In Chapter 4, we indicated that the continuous-time LTI system with impulse response

$$
h(t)=\frac{W}{\pi} \sin c\left(\frac{W t}{\pi}\right)=\frac{\sin (W t)}{\pi t}
$$

plays a very important role in LTI system analysis. The same is true of the discrete time LTI system with impulse response

$$
h(n)=\frac{W}{\pi} \operatorname{sinc}\left(\frac{W n}{\pi}\right)=\frac{\sin (W n)}{\pi n}
$$

(a) Determine and sketch the frequency response for the system with impulse response $h[n]$. (b) Consider the signal $x[n]=\sin \left(\frac{\pi n}{8}\right)-2 \cos \left(\frac{\pi n}{4}\right)$. Suppose that this signal is the input to LTI systems with the following impulse responses. Determine the output in each case (i) $h[n]=\frac{\sin \left(\frac{\pi n}{6}\right)}{\pi n}$. (ii) $h[n]=\frac{\sin \left(\frac{\pi n}{6}\right)}{\pi n}+\frac{\sin \left(\frac{\pi n}{2}\right)}{\pi n}$
solution

6.1 Part a

Given $h(n)=\frac{W}{\pi} \operatorname{sinc}\left(\frac{W n}{\pi}\right)=\frac{\sin (W n)}{\pi n}$. We will show that $H(\Omega)$ is the rectangle function by reverse. Assuming that $H(\Omega)=\begin{array}{ll}1 & |\Omega|<2 W \\ 0 & \text { otherwise }\end{array}$ therefore

$$
\begin{aligned}
x[n] & =\frac{1}{2 \pi} \int_{-W}^{W} X(\Omega) e^{j \Omega n} d \omega \\
& =\frac{1}{2 \pi} \int_{-W}^{W} e^{j \Omega n} d \omega \\
& =\frac{1}{2 \pi} \frac{e^{j W n}-e^{-j W n}}{j n} \\
& =\frac{1}{\pi n} \sin (W n)
\end{aligned}
$$

Which is the $h[n]$ given. Therefore, the above shows that $\frac{\sin (W n)}{\pi n}$ has DFT of $H(\Omega)$ as the rectangle function. Here is sketch

Figure 1: Plot of $H(\Omega)$

6.2 Part b

$$
x[n]=\sin \left(\frac{\pi n}{8}\right)-2 \cos \left(\frac{\pi n}{4}\right)
$$

(i) $h[n]=\frac{\sin \left(\frac{\pi n}{6}\right)}{\pi n}$. Hence $y[n]=x[n] \circledast h[n]$. Or $Y(\Omega)=X(\Omega) H(\Omega)$, and then we find $y[n]$ by taking the inverse discrete Fourier transform. Here is the result and the code used. The result is

$$
y[n]=\sin \left(\frac{n \pi}{8}\right)
$$

```
    ClearAll[h, x, n];
    x[n_] := Sin[\frac{\pin}{8}]-2\operatorname{Cos}[\frac{\pin}{4}];
    h[n_] := 直 }\operatorname{Sin}[\frac{\pin}{6}]
    X = FourierSequenceTransform[x[n], n, w, FourierParameters }->{1,1}]
    H= FourierSequenceTransform[h[n], n, w, FourierParameters }->{1, 1}]
    y = InverseFourierSequenceTransform [X * H, w, n]
Out[0]= Sin[\frac{n\pi}{8}]
```

Figure 2: Code used to generate $y[n]$

Here is plot of $y[n]$ for $n=-8 \cdots 8$

Figure 3: Plot of above $y[n]$
(ii) $h[n]=\frac{\sin \left(\frac{\pi n}{6}\right)}{\pi n}+\frac{\sin \left(\frac{\pi n}{2}\right)}{\pi n}$. Here is the result and the code used. The result is

$$
y[n]=2 \sin \left(\frac{n \pi}{8}\right)-2 \cos \left(\frac{n \pi}{4}\right)
$$

```
In[-]:= ClearAll[h, x, n, w];
    x[n_] := Sin}[\frac{\pin}{8}]-2\operatorname{Cos}[\frac{\pin}{4}]
    h1 [n_] := 直
    h2[n_] := }\frac{1}{\pin}\operatorname{Sin}[\frac{\pin}{2}]
    X = FourierSequenceTransform[x[n], n,w, FourierParameters -> {1, 1}];
    H1 = FourierSequenceTransform[h1 [n] , n, w, FourierParameters -> {1, 1} ];
    H2 = FourierSequenceTransform[h2[n] , n, w, FourierParameters -> {1, 1}];
    y1 = InverseFourierSequenceTransform [X * H1, w, n] ;
    y2 = InverseFourierSequenceTransform [X* H2,w, n];
    y= y1 + y2
Out[-]= - 2 Cos[\frac{n\pi}{4}]+2\operatorname{Sin}[\frac{\textrm{n}\pi}{8}]
```

Figure 4: Code used to generate $y[n]$

Here is plot of $y[n]$ for $n=-8 \cdots 8$

Figure 5: Plot of above $y[n]$

