3. The given signal is

$$
\begin{aligned}
x(t) & =2+\frac{1}{2} e^{j(2 \pi / 3) t}+\frac{1}{2} e^{-j(2 \pi / 3) t}-2 j e^{j(5 \pi / 3) t}+2 j e^{-j(5 \pi / 3) t} \\
& =2+\frac{1}{2} e^{j 2(2 \pi / 6) t}+\frac{1}{2} e^{-j 2(2 \pi / 6) t}-2 j e^{j 5(2 \pi / 6) t}+2 j e^{-j 5(2 \pi / 6) t}
\end{aligned}
$$

From this, we may conclude that the fundamental frequency of $x(t)$ is $2 \pi / 6=\pi / 3$. The non-zero Fourier series coeffcients of $x(t)$ are:

$$
a_{0}=2, \quad a_{2}=a_{-2}=\frac{1}{2}, \quad a_{5}=a_{-5}^{*}=-2 j
$$

3.10. Since the Fourier series coeftiecients repeat every N, we have

$$
a_{1}=a_{15}, \quad a_{2}=a_{16} \quad, \text { and } \quad a_{3}=a_{17}
$$

Furthermore, since the signal is real and odd, the Fourier series coefficients a_{k} will be purely imaginary and odd. Therefore, $a_{0}=0$ and

$$
a_{1}=-a_{-1}, \quad a_{2}=-a_{-2} \quad a_{3}=-a_{-3}
$$

Finally,

$$
a_{-1}=-j, \quad a_{-2}=-2 j, \quad a_{-3}=-3 j
$$

3.16. (a) The given signal $x_{1}[n]$ is

$$
x_{1} \mid n_{1}=(-1)=e^{2}=(2 x-/ 2) n
$$

Therefore, $x_{1}[n]$ is periodic with period $N=2$ and it's Fourier series coefficients in the range $0 \leq k \leq 1$ are

$$
a_{0}=0, \quad \text { and } \quad a_{1}=1
$$

Using the results derived in Section 3.8, the output $y_{1}[n]$ is given by

$$
\begin{aligned}
y_{1}[n] & =\sum_{k=0}^{1} a_{k} H\left(e^{j 2 \pi k / 2}\right) e^{k(2 \pi / 2)} \\
& =0+a_{1} H\left(e^{j \pi}\right) e^{j \pi} \\
& =0
\end{aligned}
$$

(b) The signal $x_{2}[n]$ is periodic with period $N=16$. The signal $x_{2}[n]$ may be written as

$$
\begin{aligned}
z_{2}[n] & =e^{j(2 \pi / 16)(0) n}-(j / 2) e^{j(\pi / 4)} e^{j(2 \pi / 26)(3) n}+(j / 2) e^{-j(\pi / 4)} e^{-j(2 \pi / 16)(3) n} \\
& =e^{j(2 \pi / 16)(0) n}-(j / 2) e^{j(\pi / 4)} e^{j(2 \pi / 16)(3) n}+(j / 2) e^{-j(\pi / 4)} e^{j(2 \pi / 16)(13) n}
\end{aligned}
$$

Therefore, the non-zero Fourier series coefficients of $x_{2}[n]$ in the range $0 \leq k \leq 15$ are

$$
a_{0}=1, \quad a_{3}=-(j / 2) e^{j(\pi / 4)}, \quad a_{13}=(j / 2) e^{-j(\pi / 4)}
$$

Using the results derived in Section 3.8, the output $y_{2}[n]$ is given by

$$
\begin{aligned}
y_{2}[n] & =\sum_{k=0}^{15} a_{k} H\left(e^{j 2 \pi k / 16}\right) e^{k(2 \pi / 15)} \\
& =0-(j / 2) e^{j(\pi / 4)} e^{j(2 \pi / 16)(3) n}+(j / 2) e^{-j(\pi / 4)} e^{j(2 \pi / 16)(13) n} \\
& =\sin \left(\frac{3 \pi}{8} n+\frac{\pi}{4}\right)
\end{aligned}
$$

3.20. (a) Current through the capacitor $=C$ 汪亲 .

Voltage across inductor $=L C \frac{d^{2} y^{(t)}}{d^{2}}$.
Input voltage $=$ Voltage across resistor + Voltage across inductor + Voltage across capacitor.
Therefore,

$$
x(t)=L C \frac{d^{2} y(t)}{d t^{2}}+R C \frac{d y(t)}{d t}+y(t)
$$

Substituting for R, L and C, we have

$$
\frac{d^{2} y(t)}{d t^{2}}+\frac{d y(t)}{d t}+y(t)=z(t)
$$

(b) We will now use an approach similar to the one used in part (b) of the previous problem. If we assume that the input is of the form $e^{j \omega t}$, then the output will be of the form $H(j \omega) e^{j \omega t}$. Substituting in the above differential equation and simplifying, we obtain

$$
H(j \omega)=\frac{1}{-\omega^{2}+j \omega+1}
$$

(c) The signal $x(t)$ is periodic with period 2π. Since $x(t)$ can be expressed in the form

$$
x(t)=\frac{1}{2 j} e^{j(2 \pi / 2 \pi) t}-\frac{1}{2 j} e^{-j(2 \pi / 2 \pi) t},
$$

the non-zero Fourier series coefficients of $x(t)$ are

$$
a_{1}=a_{-1}^{*}=\frac{1}{2 j} .
$$

Using the results derived in Section 3.8 (see eq.(3.124)), we have

$$
\begin{aligned}
y(t) & =a_{1} H(j) e^{j t}-a_{-1} H(-j) e^{-j t} \\
& =(1 / 2 j)\left(\frac{1}{j} e^{j t}-\frac{1}{-j} e^{-j t}\right) \\
& =(-1 / 2)\left(e^{j t}+e^{-j t}\right) \\
& =-\cos (t)
\end{aligned}
$$

3.28. (a) $N=7$,

$$
a_{k}=\frac{1}{7} \frac{e^{-j 4 \pi k / 7} \sin (5 \pi k / 7)}{\sin (\pi k / 7)} .
$$

(b) $N=6, a_{k}$ over one period ($0 \leq k \leq 5$) may be specified as: $a_{0}=4 / 6$,

$$
a_{k}=\frac{1}{6} e^{-j \pi k / 2} \frac{\sin \left(\frac{2 \pi k}{3}\right)}{\sin \left(\frac{\pi k}{6}\right)}, \quad 1 \leq k \leq 5
$$

(c) $N=6$.

$$
a_{k}=1+4 \cos (\pi k / 3)-2 \cos (2 \pi k / 3)
$$

(d) $N=12, a_{k}$ over one period $(0 \leq k \leq 11)$ may be specified as: $a_{1}=\frac{1}{\sqrt{j}}=a_{i 1}^{*}$, $a_{s}=-\frac{1}{4 j}=a_{7}^{*}, a_{k}=0$ otherwise.
(e) $N=4$.

$$
a_{k}=1+2(-1)^{k}\left(1-\frac{1}{\sqrt{2}}\right) \cos \left(\frac{\pi k}{2}\right)
$$

(f) $N=12$,

$$
\begin{aligned}
a_{k} & =1+\left(1-\frac{1}{\sqrt{2}}\right) 2 \cos \left(\frac{\pi k}{6}\right)+2\left(1-\frac{1}{\sqrt{2}}\right) \cos \left(\frac{\pi k}{2}\right) \\
& +2\left(1+\frac{1}{\sqrt{2}}\right) \cos \left(\frac{5 \pi k}{6}\right)+2(-1)^{k}+2 \cos \left(\frac{2 \pi k}{3}\right)
\end{aligned}
$$

3.47. Considering $x(t)$ to be periodic with period 1, the nonzero FS coefficients of $x(t)$ are $a_{1}=$ $a_{-1}=1 / 2$. If we now consider $x(t)$ to be periodic with period 3 , then the the nonzero $F S$ coefficients of $x(t)$ are $b_{3}=b_{-3}=1 / 2$.

