HW 3

EE 3015
 Signals and Systems

Spring 2020
University of Minnesota, Twin Cities

Nasser M. Abbasi

Contents

1 Problem 3 Chapter 3

For the continuous-time periodic signal $x(t)=2+\cos \left(\frac{2 \pi}{3} t\right)+4 \sin \left(\frac{5 \pi}{3} t\right)$ determine the fundamental frequency ω_{0} and the Fourier series coefficients a_{k} such that $x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0} t}$

Solution

The signal $\cos \left(\frac{2 \pi}{3} t\right)$ has period $\frac{2 \pi}{T_{1}}=\frac{2 \pi}{3}$. Hence $T_{1}=3$ and the signal $\sin \left(\frac{5 \pi}{3} t\right)$ has period $\frac{2 \pi}{T_{2}}=\frac{5 \pi}{3}$ or $T_{2}=\frac{6}{5}$. Therefore the LCM of $3, \frac{6}{5}$ is

$$
\begin{aligned}
3 m & =\frac{6}{5} n \\
\frac{m}{n} & =\frac{2}{5}
\end{aligned}
$$

Hence $m=2$ and $n=5$. Therefore $T_{0}=6$. Therefore

$$
\begin{aligned}
\omega_{0} & =\frac{2 \pi}{T_{0}} \\
& =\frac{2 \pi}{6} \\
& =\frac{\pi}{3}
\end{aligned}
$$

Hence

$$
\begin{equation*}
x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0} t} \tag{1}
\end{equation*}
$$

Where

$$
\begin{equation*}
a_{k}=\frac{1}{T_{0}} \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t) e^{-j k \omega_{0} t} \tag{2}
\end{equation*}
$$

To find a_{k} for the given signal, instead of using the above integration formula, we could write the signal $x(t)$ in exponential form using Euler relation and just read the a_{k} coefficients directly from the result. The signal $x(t)$ can be written as

$$
\begin{align*}
x(t) & =2+\frac{e^{j \frac{2 \pi}{3} t}+e^{-j \frac{2 \pi}{3} t}}{2}+4 \frac{e^{j \frac{5 \pi}{3} t}-e^{-j \frac{5 \pi}{3} t}}{2 i} \\
& =2+\frac{e^{j 2 \omega_{0} t}+e^{-j 2 \omega_{0} t}}{2}+4 \frac{e^{j 5 \omega_{0} t}-e^{-j 5 \omega_{0} t}}{2 i} \\
& =2+\frac{1}{2} e^{j 2 \omega_{0} t}+\frac{1}{2} e^{-j 2 \omega_{0} t}+2 i e^{j 5 \omega_{0} t}-2 i e^{-j 5 \omega_{0} t} \tag{3}
\end{align*}
$$

Comparing (3) to (1) shows that the coefficients are

$$
\begin{aligned}
a_{0} & =2 \\
a_{2} & =\frac{1}{2} \\
a_{-2} & =\frac{1}{2} \\
a_{5} & =2 j \\
a_{-5} & =-2 j
\end{aligned}
$$

2 Problem 10 Chapter 3

Let $x[n]$ be real and odd periodic signal with period $N=7$ and Fourier coefficients a_{k}. Given that $a_{15}=j, a_{16}=2 j, a_{17}=3 j$, determine the values of $a_{0}, a_{-1}, a_{-2}, a_{-3}$.

Solution

For discrete signal

$$
\begin{aligned}
x[n] & =\sum_{k=0}^{N-1} a_{k} e^{j k \omega_{0} n} \\
& =\sum_{k=0}^{N-1} a_{k} e^{j k \frac{2 \pi}{N} n}
\end{aligned}
$$

Where

$$
\begin{aligned}
a_{k} & =\frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j k \omega_{0} n} \\
& =\frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j k \frac{2 \pi}{N} n}
\end{aligned}
$$

Since the signal $x[n]$ is real, then we know that $a_{k}=a_{-k}^{*}$. And since $x[n]$ is odd then we know that a_{k} is purely imaginary and odd. The Fourier coefficients repeat every N samples which is 7 . Hence $a_{15}=a_{9}=a_{1}$ and $a_{16}=a_{9}=a_{2}$ and $a_{17}=a_{10}=a_{3}$. And since a_{k} is odd then

$$
\begin{aligned}
& a_{0}=0 \\
& a_{1}=-a_{-1} \\
& a_{2}=-a_{-2} \\
& a_{3}=-a_{-3}
\end{aligned}
$$

But we know from above that $a_{1}=a_{15}=j$ and $a_{2}=a_{16}=2 j$ and $a_{3}=a_{17}=3 j$ then the above gives

$$
\begin{aligned}
a_{0} & =0 \\
a_{-1} & =-j \\
a_{-2} & =-2 j \\
a_{-3} & =-3 j
\end{aligned}
$$

3 Problem 16 Chapter 3

For what values of k is it guaranteed that $a_{k}=0$?
3.16. Determine the output of the filter shown in Figure P 3.16 for the following periodic inputs:
(a) $x_{1}[n]=(-1)^{n}$
(b) $x_{2}[n]=1+\sin \left(\frac{3 \pi}{8} n+\frac{\pi}{4}\right)$
(c) $x_{3}[n]=\sum_{k=-\infty}^{\infty}\left(\frac{1}{2}\right)^{n-4 k} u[n-4 k]$

Figure 1: Problem description

Solution

The output of discrete LTI system when the input is $x[n]=a_{n} e^{j n \omega}$ is given by $y[n]=$ $a_{n} H\left(e^{j \omega}\right) e^{j n \omega}$ where $H\left(e^{j \omega}\right)$ is given to us in the problem statement. Hence, to find $y[n]$ we need to express each input in its Fourier series representation in order to determine the a_{n}.

3.1 Part a

Here $x_{1}[n]=(-1)^{n}=\left(e^{j \pi}\right)^{n}=e^{j n \pi}$. To find the period N, let $x_{1}[n]=x_{1}[n+N]$ or

$$
\begin{aligned}
e^{j n \pi} & =e^{j(n+N) \pi} \\
& =e^{j n \pi} e^{j N \pi}
\end{aligned}
$$

Hence $\underline{N=2}$. Therefore $\omega_{0}=\frac{2 \pi}{N}=\frac{2 \pi}{2}=\pi$ and $x_{1}[n]=\sum_{k=0}^{N-1} a_{k} e^{j k \omega_{0} n}=a_{0}+a_{1} e^{j \pi n}$. Comparing this to $e^{j n \pi}$ shows that

$$
\begin{aligned}
& a_{0}=0 \\
& a_{1}=1
\end{aligned}
$$

Now that we found the Fourier coefficients for $x_{1}[n]$ then the output is

$$
\begin{aligned}
y_{1}[n] & =\sum_{k=0}^{N-1} a_{n} H\left(j k \omega_{0}\right) e^{j n k \omega_{0}} \\
& =a_{0} H(0) e^{0}+a_{1} H(j \pi) e^{j n \pi}
\end{aligned}
$$

But $a_{0}=1, a_{1}=1$ and the above becomes

$$
y_{1}[n]=H(j \pi) e^{j n \pi}
$$

From the graph of $H\left(j k \omega_{0}\right)$ given, we see that at $\omega=\pi, H(j \pi)=0$. Therefore

$$
y_{1}[n]=0
$$

3.2 Part b

Here $x_{2}[n]=1+\sin \left(\frac{3 \pi}{8} n+\frac{\pi}{4}\right)$. The first step is to find the period N

$$
\begin{aligned}
x_{2}[n] & =x_{2}[n+N] \\
1+\sin \left(\frac{3 \pi}{8} n+\frac{\pi}{4}\right) & =1+\sin \left(\frac{3 \pi}{8}(n+N)+\frac{\pi}{4}\right) \\
& =1+\sin \left(\frac{3 \pi}{8} n+\frac{3 \pi}{8} N+\frac{\pi}{4}\right) \\
& =1+\sin \left(\left(\frac{3 \pi}{8} n+\frac{\pi}{4}\right)+\frac{3 \pi}{8} N\right)
\end{aligned}
$$

Hence $\frac{3 \pi}{8} N=2 \pi m$ or $\frac{N}{m}=\frac{16}{3}$. Since these are relatively prime, then $N=16$ is the fundamental period. Therefore

$$
x_{2}[n]=\sum_{k=0}^{N-1} a_{k} e^{j k \omega_{0} n}
$$

where $\omega_{0}=\frac{2 \pi}{N}=\frac{2 \pi}{16}=\frac{\pi}{8}$. The above becomes

$$
\begin{equation*}
x_{2}[n]=\sum_{k=0}^{15} a_{k} e^{j k \frac{\pi}{8} n} \tag{1}
\end{equation*}
$$

But

$$
\begin{align*}
1+\sin \left(\frac{3 \pi}{8} n+\frac{\pi}{4}\right) & =1+\frac{e^{j\left(\frac{3 \pi}{8} n+\frac{\pi}{4}\right)}-e^{-j\left(\frac{3 \pi}{8} n+\frac{\pi}{4}\right)}}{2 j} \\
& =1+\frac{1}{2 j^{j \frac{3 \pi}{8}} n e^{j \frac{\pi}{4}}-\frac{1}{2 j} e^{-j \frac{3 \pi}{8} n} e^{-j \frac{\pi}{4}}} \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that $a_{0}=1, a_{3}=\frac{1}{2 j} e^{j \frac{\pi}{4}}, a_{-3}=-\frac{1}{2 j} e^{-j \frac{\pi}{4}}$. But $a_{-3}=a_{-3+16}=a_{13}$ due to periodicity (and since we want to keep the index from 0 to 15 . Therefore

$$
\begin{aligned}
a_{0} & =1 \\
a_{3} & =\frac{1}{2 j} e^{j \frac{\pi}{4}} \\
a_{13} & =-\frac{1}{2 j} e^{-j \frac{\pi}{4}}
\end{aligned}
$$

And all other $a_{k}=0$. Now that we found the Fourier coefficient, then the response $y_{2}[n]$ is found from

$$
\begin{aligned}
y_{2}[n] & =\sum_{k=0}^{N-1} a_{n} H\left(j k \omega_{0}\right) e^{j k n \omega_{0}} \\
& =a_{0} H(0)+a_{3} H\left(j 3 \frac{\pi}{8}\right) e^{j 3 \frac{\pi}{8} n}+a_{13} H\left(j 13 \frac{\pi}{8}\right) e^{j 13 \frac{\pi}{8} n} \\
& =H(0)+\left(\frac{1}{2 j} e^{j \frac{\pi}{4}}\right) H\left(j \frac{3 \pi}{8}\right) e^{j \frac{3 \pi}{8} n}+\left(-\frac{1}{2 j} e^{-j \frac{\pi}{4}}\right) H\left(j \frac{13 \pi}{8}\right) e^{j \frac{13 \pi}{8} n}
\end{aligned}
$$

From the graph of $H\left(j k \omega_{0}\right)$ given, we see that at $\omega=0, H(0)=0$ and at $\omega=\frac{3 \pi}{8}, H\left(j \frac{3 \pi}{8}\right)=1$ and that at $\omega=\frac{13 \pi}{8}, H\left(j \frac{13 \pi}{8}\right)=1$. Hence the above becomes

$$
y_{2}[n]=\left(\frac{1}{2 j} e^{j \frac{\pi}{4}}\right) e^{j \frac{3 \pi}{8} n}+\left(-\frac{1}{2 j} e^{-j \frac{\pi}{4}}\right) e^{j \frac{13 \pi}{8} n}
$$

But $e^{j \frac{13 \pi}{8} n}=e^{j \frac{-3 \pi}{8} n}$ since period is $N=16$. Therefore the above simplifies to

$$
\begin{aligned}
y_{2}[n] & =\left(\frac{1}{2 j} e^{j \frac{\pi}{4}}\right) e^{j \frac{3 \pi}{8} n}+\left(-\frac{1}{2 j} e^{-j \frac{\pi}{4}}\right) e^{j \frac{3 \pi}{8} n} \\
& =\frac{\left.e^{j\left(\frac{\pi}{4}+\frac{3 \pi}{8} n\right.}\right)-e^{-j\left(\frac{\pi}{4}+\frac{3 \pi}{8} n\right)}}{2 j} \\
& =\sin \left(\frac{3 \pi}{8} n+\frac{\pi}{4}\right)
\end{aligned}
$$

4 Problem 20 Chapter 3

(c) Determine the output $y(t)$ if $x(t)=\cos (t)$.
3.20. Consider a causal LTI system implemented as the $R L C$ circuit shown in Figure P3.20. In this circuit, $x(t)$ is the input voltage. The voltage $y(t)$ across the capacitor is considered the system output.

Figure P3.20
(a) Find the differential equation relating $x(t)$ and $y(t)$.
(b) Determine the frequency response of this system by considering the output of the system to inputs of the form $x(t)=e^{j \omega t}$.
(c) Determine the output $y(t)$ if $x(t)=\sin (t)$.

Figure 2: Problem description

Solution

4.1 Part a

Input voltage is $x(t)$. Hence drop in voltage around circuit is

$$
x(t)=R i(t)+L \frac{d i}{d t}+y(t)
$$

Now we need to relate the current $i(t)$ to $y(t)$. Since current across the capacitor is given by $i(t)=C \frac{d y}{d t}$ then replacing $i(t)$ in the above by $C \frac{d y}{d t}$ gives the diffeential equation

$$
x(t)=R C \frac{d y}{d t}+L C \frac{d^{2} y}{d t^{2}}+y(t)
$$

Or

$$
L C y^{\prime \prime}(t)+R C y^{\prime}(t)+y(t)=x(t)
$$

But $L=1, R=1, C=1$ therefore

$$
y^{\prime \prime}(t)+y^{\prime}(t)+y(t)=x(t)
$$

4.2 Part b

Let the input $x(t)=e^{j \omega t}$. Therefore $y(t)=H(\omega) e^{j \omega t}$ where $H(\omega)$ is the frequency response (Book writes this as $H\left(e^{j \omega}\right)$ but $H(\omega)$ is simpler notation).

Hence

$$
\begin{aligned}
y^{\prime}(t) & =H(\omega) j \omega e^{j \omega t} \\
y^{\prime \prime}(t) & =H(\omega)(j \omega)^{2} e^{j \omega t} \\
& =-H(\omega) \omega^{2} e^{j \omega t}
\end{aligned}
$$

Substituting the above into the ODE gives

$$
-H(\omega) \omega^{2} e^{j \omega t}+H(\omega) j \omega e^{j \omega t}+H(\omega) e^{j \omega t}=e^{j \omega t}
$$

Dividing by $e^{j \omega t} \neq 0$ results in

$$
-H(\omega) \omega^{2}+H(\omega) j \omega+H(\omega)=1
$$

Solving for $H(\omega)$ gives

$$
\begin{align*}
H(\omega)\left(-\omega^{2}+j \omega+1\right) & =1 \tag{1}\\
H(\omega) & =\frac{1}{-\omega^{2}+j \omega+1}
\end{align*}
$$

4.3 Part c

Since we now know $H(\omega)$ then the output $y(t)$ when the input is $x(t)=\sin (t)$ is given by

$$
\begin{equation*}
y(t)=\sum_{k=-\infty}^{\infty} a_{k} H\left(k \omega_{0}\right) e^{j k \omega_{0} t} \tag{2}
\end{equation*}
$$

Where a_{k} are the Fourier coefficients of $\sin (t)$ and ω_{0} is the fundamental frequency of $x(t)$. Since $\sin (t)=\sin \left(\frac{2 \pi}{T} t\right)$ then $\frac{2 \pi}{T}=1$ and $T=2 \pi$. Hence $\omega_{0}=1$. And $\operatorname{since} \sin (t)=\frac{1}{2 j}\left(e^{j t}-e^{-j t}\right)$ then $a_{1}=\frac{1}{2 j^{\prime}}, a_{-1}=-\frac{1}{2 j}$. Eq. (2) becomes

$$
\begin{align*}
y(t) & =a_{-1} H\left(-\omega_{0}\right) e^{-j \omega_{0} t}+a_{1} H\left(\omega_{0}\right) e^{j \omega_{0} t} \\
& =-\frac{1}{2 j} H(-1) e^{-j t}+\frac{1}{2 j} H(1) e^{j t} \tag{3}
\end{align*}
$$

Now we need to find $H(-1), H(1)$. From (1)

$$
\begin{aligned}
H(-1) & =\frac{1}{-(-1)^{2}-j(-1)+1} \\
& =\frac{1}{-1+j+1} \\
& =\frac{1}{j}
\end{aligned}
$$

And

$$
\begin{aligned}
H(+1) & =\frac{1}{-(+1)^{2}-j(+1)+1} \\
& =\frac{1}{-1-j+1} \\
& =\frac{1}{j}
\end{aligned}
$$

Therefore (3) becomes

$$
\begin{aligned}
y(t) & =-\frac{1}{2 j} \frac{1}{j} e^{-j t}+\frac{1}{2 j} \frac{1}{j} e^{j t} \\
& =-\frac{1}{2 j^{2}} e^{-j t}+\frac{1}{2 j^{2}} e^{j t} \\
& =\frac{1}{2} e^{-j t}-\frac{1}{2} e^{j t} \\
& =-\left(\frac{1}{2} e^{j t}-\frac{1}{2} e^{-j t}\right)
\end{aligned}
$$

Hence

$$
y(t)=-\cos (t)
$$

5 Problem 28 Chapter 3

$$
k=1
$$

3.28. Determine the Fourier series coefficients for each of the following discrete-time periodic signals. Plot the magnitude and phase of each set of coefficients a_{k}.
(a) Each $x[n]$ depicted in Figure P3.28(a)-(c)
(b) $x[n]=\sin (2 \pi n / 3) \cos (\pi n / 2)$
(c) $x[n]$ periodic with period 4 and

$$
x[n]=1-\sin \frac{\pi n}{4} \quad \text { for } 0 \leq n \leq 3
$$

(d) $x[n]$ periodic with period 12 and

$$
x[n]=1-\sin \frac{\pi n}{4} \quad \text { for } 0 \leq n \leq 11
$$

(c)

Figure P3.28

Figure 3: Problem description

Solution

5.1 Part a

First signal

The signal in P3.28(a) has period $\underline{N=7}$. Therefore $x[n]=\sum_{k=0}^{N-1} a_{k} e^{j n\left(k \omega_{0}\right)}$. We need to determine a_{k}. Since $\omega_{0}=\frac{2 \pi}{N}=\frac{2 \pi}{7}$, then

$$
\begin{aligned}
a_{k} & =\frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j k \omega_{0} n} \\
& =\frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j k \frac{2 \pi}{N} n} \\
& =\frac{1}{7} \sum_{n=0}^{6} x[n] e^{-j k \frac{2 \pi}{7} n}
\end{aligned}
$$

We first notice that $x[n]=0$ for $n=5,6$ and $x[n]=1$ otherwise. Hence the above sum simplifies to

$$
a_{k}=\frac{1}{7} \sum_{n=0}^{4} e^{-j k \frac{2 \pi}{7} n}
$$

Using the relation $\sum_{n=0}^{M-1} a^{n}=\left\{\begin{array}{cl}M & a=1 \\ \frac{1-a^{M}}{1-a} & a \neq 1\end{array}\right.$ to simplify the above where now $M=5$ gives

$$
\begin{aligned}
a_{k} & =\frac{1}{7} \frac{1-\left(e^{-j k \frac{2 \pi}{7}}\right)^{5}}{1-e^{-j k \frac{2 \pi}{7}}} \quad k=0,1, \cdots 6 \\
& =\frac{1}{7} \frac{1-e^{-j k \frac{10 \pi}{7}}}{1-e^{-j k \frac{2 \pi}{7}}}
\end{aligned}
$$

This is plot of $\left|a_{k}\right|$

Figure 4: Plot of $\left|a_{k}\right|$

This is plot of the phase of a_{k}

Figure 5: Plot of phase of a_{k}
second signal
The signal in P3.28(b) has period $\underline{N=6}$. Therefore $x[n]=\sum_{k=0}^{N-1} a_{k} e^{j n\left(k \omega_{0}\right)}$. We need to determine a_{k}, where $\omega_{0}=\frac{2 \pi}{N}=\frac{2 \pi}{6}$. Hence

$$
\begin{aligned}
a_{k} & =\frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j k \omega_{0} n} \\
& =\frac{1}{6} \sum_{n=0}^{5} x[n] e^{-j k \frac{2 \pi}{6} n}
\end{aligned}
$$

We first notice that $x[n]=0$ for $n=4,5$ and $x[n]=1$ otherwise, Hence the above sum simplifies to

$$
a_{k}=\frac{1}{6} \sum_{n=0}^{3} e^{-j k \frac{2 \pi}{6} n}
$$

Using the relation $\sum_{n=0}^{M-1} a^{n}=\left\{\begin{array}{cl}M & a=1 \\ \frac{1-a^{M}}{1-a} & a \neq 1\end{array}\right.$ to simplify the above, where now $M=4$ gives

$$
\begin{aligned}
a_{k} & =\frac{1}{6} \frac{1-\left(e^{-j k \frac{2 \pi}{6}}\right)^{4}}{1-e^{-j k \frac{2 \pi}{6}}} \quad k=0,1, \cdots 5 \\
& =\frac{1}{6} \frac{1-e^{-j k \frac{8 \pi}{6}}}{1-e^{-j k \frac{2 \pi}{6}}}
\end{aligned}
$$

This is plot of $\left|a_{k}\right|$

Figure 6: Plot of $\left|a_{k}\right|$

This is plot of the phase of a_{k}

```
\operatorname{ln}[v:= ak[k_]:=1/6(1-Exp[-I k8Pi/6])/(1-Exp[-I k2Pi/6])
    akData = Table[Limit[ak[n], n->k],{k, 0, 5}];
    arg = Arg[akData] // N
Outf-]={0., -1.5708, 0., 0., 0., 1.5708}
ln[-]= ListPlot[ 180/Pi arg, Ticks }->{\mathrm{ Range [0, 5], None},
    LabelingFunction }->\mathrm{ (Callout[Round[Last[#1], 0.1], Automatic] &),
        Axes }->\mathrm{ {Automatic, None}, AxesLabel }->{"k", None}, PlotLabel -> "Phase in degrees"
        PlotRange }->\mathrm{ All, DataRange }->{0,5},\mathrm{ Mesh }->\mathrm{ All, Filling }->\mathrm{ Axis]
                Phase in degrees
Out[l]= =-0. 
```

Figure 7: Plot of phase of a_{k}

The signal in P3.28(c) also has period $N=6$. Therefore $x[n]=\sum_{k=0}^{N-1} a_{k} e^{j n\left(k \omega_{0}\right)}$. We need to determine a_{k}. Given that $\omega_{0}=\frac{2 \pi}{N}$ then

$$
\begin{aligned}
a_{k} & =\frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j k \omega_{0} n} \\
& =\frac{1}{6} \sum_{n=0}^{5} x[n] e^{-j k \frac{2 \pi}{6} n}
\end{aligned}
$$

Where $x[0]=1, x[1]=2, x[2]=-1, x[3]=0, x[4]=-1, x[5]=2$. Hence the above sum becomes

$$
\begin{aligned}
a_{k} & =\frac{1}{6}\left(1+2 e^{-j k \frac{2 \pi}{6}}-e^{-j k \frac{2 \pi}{6} 2}+0-e^{-j k \frac{2 \pi}{6} 4}+2 e^{-j k \frac{2 \pi}{6} 5}\right) \\
& =\frac{1}{6}\left(1+2 e^{-j k \frac{2 \pi}{6}}-e^{-j k \frac{4 \pi}{6}}-e^{-j k \frac{8 \pi}{6}}+2 e^{-j k \frac{10 \pi}{6}}\right)
\end{aligned}
$$

This is plot of $\left|a_{k}\right|$

```
mn[-]:= ak[k_]:=1/6(1+2 Exp[-Ik2Pi/6]-Exp[-Ik4Pi/6]-Exp[-Ik8Pi/6] + 2 Exp[-Ik 10Pi/6])
    akData = Table[Limit[ak[n], n->k],{k, 0, 5}];
    absAk = Abs[akData] // N
```



```
In[f]= ListPlot[absAk, Mesh }->\mathrm{ All, Filling }->\mathrm{ Axis, Axes }->{\mathrm{ True, False}, Ticks }->{\mathrm{ Range [0, 5], None},
        DataRange }->{0,5},\mathrm{ AxesLabel }->{"k", None}, PlotLabel -> "|a[k]|", BaseStyle -> 12
        PlotStyle }->{\mathrm{ Thick, Red}, PlotRange }->\mathrm{ All]
            |a[k]|
Out[0]= ` |
```

Figure 8: Plot of $\left|a_{k}\right|$

This is plot of the phase of a_{k}

Figure 9: Plot of phase of a_{k}

5.2 Part b

$$
x[n]=\sin \left(2 \pi \frac{n}{3}\right) \cos \left(\pi \frac{n}{2}\right)
$$

The first step is to find N, the fundamental period. Since $\sin (A) \cos (B)=\frac{1}{2}(\sin (A+B)+\sin (A-B))$ then

$$
\begin{aligned}
x[n] & =\frac{1}{2}\left(\sin \left(2 \pi \frac{n}{3}+\pi \frac{n}{2}\right)+\sin \left(2 \pi \frac{n}{3}-\pi \frac{n}{2}\right)\right) \\
& =\frac{1}{2}\left(\sin \left(\frac{7}{6} \pi n\right)+\sin \left(\frac{1}{6} \pi n\right)\right)
\end{aligned}
$$

To find the period of $\sin \left(\frac{7}{6} \pi n\right)=\sin \left(\frac{7}{6} \pi(n+N)\right)$ or $\sin \left(\frac{7}{6} \pi n\right)=\sin \left(\frac{7}{6} \pi n+\frac{7}{6} \pi N\right)$. Hence ${ }_{6}^{7} \pi N=2 \pi m$ which gives $\frac{m}{N}=\frac{7}{12}$. Hence $\underline{N=12}$.

The period of $\sin \left(\frac{1}{6} \pi n\right)=\sin \left(\frac{1}{6} \pi(n+N)\right)$ or $\sin \left(\frac{1}{6} \pi n\right)=\sin \left(\frac{1}{6} \pi n+\frac{1}{6} \pi N\right)$. Hence $\frac{1}{6} \pi N=$ $2 \pi m$ or $\frac{m}{N}=\frac{1}{12}$. Hence common period is $\underline{N=12}$. Now that we know N then

$$
a_{k}=\frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j k \omega_{0} n}
$$

Where $\omega_{0}=\frac{2 \pi}{12}$. The above becomes

$$
\begin{aligned}
a_{k} & =\frac{1}{12} \sum_{n=0}^{11} \sin \left(2 \pi \frac{n}{3}\right) \cos \left(\pi \frac{n}{2}\right) e^{-j k \frac{2 \pi}{12} n} \\
12 a_{k} & =0+\sin \left(2 \pi \frac{1}{3}\right) \cos \left(\pi \frac{1}{2}\right) e^{-j k \frac{2 \pi}{12}}+\sin \left(2 \pi \frac{2}{3}\right) \cos \left(\pi \frac{2}{2}\right) e^{-j k \frac{2 \pi}{12} 2}+\sin \left(2 \pi \frac{3}{3}\right) \cos \left(\pi \frac{3}{2}\right) e^{-j k \frac{2 \pi}{12} 3} \\
& +\sin \left(2 \pi \frac{4}{3}\right) \cos \left(\pi \frac{4}{2}\right) e^{-j k \frac{2 \pi}{12} 4}+\sin \left(2 \pi \frac{5}{3}\right) \cos \left(\pi \frac{5}{2}\right) e^{-j k \frac{2 \pi}{12} 5}+\sin \left(2 \pi \frac{6}{3}\right) \cos \left(\pi \frac{6}{2}\right) e^{-j k \frac{2 \pi}{12} 6} \\
& +\sin \left(2 \pi \frac{7}{3}\right) \cos \left(\pi \frac{7}{2}\right) e^{-j k \frac{2 \pi}{12} 7}+\sin \left(2 \pi \frac{8}{3}\right) \cos \left(\pi \frac{8}{2}\right) e^{-j k \frac{2 \pi}{12} 8}+\sin \left(2 \pi \frac{9}{3}\right) \cos \left(\pi \frac{9}{2}\right) e^{-j k \frac{2 \pi}{12} 9} \\
& +\sin \left(2 \pi \frac{10}{3}\right) \cos \left(\pi \frac{10}{2}\right) e^{-j k \frac{2 \pi}{12} 10}+\sin \left(2 \pi \frac{11}{3}\right) \cos \left(\pi \frac{11}{2}\right) e^{-j k \frac{2 \pi}{12} 11}
\end{aligned}
$$

Which simplifies to (many terms go to zero)

$$
12 a_{k}=\frac{1}{2} \sqrt{3} e^{-j k \frac{4 \pi}{12}}+\frac{1}{2} \sqrt{3} e^{-j k \frac{8 \pi}{12}}-\frac{1}{2} \sqrt{3} e^{-j k \frac{2 \pi}{12} 8}-\frac{1}{2} \sqrt{3} e^{-j k \frac{2 \pi}{12} 10}
$$

Hence

$$
a_{k}=\frac{\sqrt{3}}{24}\left(e^{-j k \frac{4 \pi}{12}}+e^{-j k \frac{8 \pi}{12}}-e^{-j k \frac{16 \pi}{12}}-e^{-j k \frac{20 \pi}{12}}\right)
$$

Evaluating these for $k=0 \cdots N-1$ gives

k	a_{k}
0	0
1	$\frac{-j}{4}$
2	0
3	0
4	0
5	$\frac{j}{4}$
6	0
7	$\frac{-j}{4}$
8	0
9	0
10	0
11	$\frac{j}{4}$

Hence the $\left|a_{k}\right|$ and phase are

k	a_{k}	$\left\|a_{k}\right\|$	phase (degree)
0	0	0	0
1	$\frac{-j}{4}$	$\frac{1}{4}$	-90
2	0	0	0
3	0	0	0
4	0	0	0
5	$\frac{j}{4}$	$\frac{1}{4}$	90
6	0	0	0
7	$\frac{-j}{4}$	$\frac{1}{4}$	-90
8	0	0	0
9	0	0	0
10	0	0	0
11	$\frac{j}{4}$	$\frac{1}{4}$	90

6 Problem 47 Chapter 3

Consider the signal $x(t)=\cos (2 \pi t)$ since $x(t)$ is periodic with a fundamental period of 1 , it is also periodic with a period of N, where N is any positive integer. What are the Fourier series coefficients of $x(t)$ if we regard it as a periodic signal with period 3?

Solution

The Fourier series coefficients for $\cos (2 \pi t)$ are found from Euler relation. Since $\omega_{0}=2 \pi$ $\mathrm{rad} / \mathrm{sec}$, then

$$
\cos \left(\omega_{0} t\right)=\frac{1}{2} j^{j \omega_{0} t}+\frac{1}{2} e^{-j \omega_{0} t}
$$

Comparing the above to

$$
x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0} t}
$$

Show that $a_{1}=\frac{1}{2}$ and $a_{-1}=\frac{1}{2}$ and all other $a_{k}=0$.
Similarly, if the period happened to be 3 , then $\omega_{0}=\frac{2 \pi}{3}$ and now $x(t)$ can be written as $\cos (2 \pi t)=\cos \left(3 \omega_{0} t\right)$. Therefore doing the same as above gives

$$
\cos \left(3 \omega_{0} t\right)=\frac{1}{2} e^{i 3 \omega_{0} t}+\frac{1}{2} e^{-j 3 \omega_{0} t}
$$

Comparing the above to $x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0} t}$ shows that $a_{3}=\frac{1}{2}$ and $a_{-3}=\frac{1}{2}$ and all other $a_{k}=0$.

