HW 2

EE 3015
 Signals and Systems

Spring 2020
University of Minnesota, Twin Cities

Nasser M. Abbasi

Contents

1 Problem 2.1, Chapter 2

Let $x[n]=\delta[n]+2 \delta[n-1]-\delta[n-3]$ and $h[n]=2 \delta[n+1]+2 \delta[n-1]$. Compute and plot each of the following convolutions (a) $y_{1}[n]=x[n] \circledast h[n]$ (b) $y_{2}[n]=x[n+2] \circledast h[n]$

Solution

1.1 Part a

The following is plot of $x[n], h[n]$

Figure 1: Plot of $x[n], h[n]$

```
x[n_] := If[n == 0, 1, 0];
p1 = DiscretePlot[x[n] + 2x[n-1]-x[n-3],{n, -3, 4},
    Axes }->\mathrm{ {True, False},
    PlotRangePadding ->0.25, PlotLabel }->\mathrm{ " x[n]",
    ImageSize }->\mathrm{ 300,
    PlotStyle }->\mathrm{ {Thick, Red},
    LabelingFunction }->\mathrm{ Above,
    AspectRatio -> Automatic,
    PlotRange }->\mathrm{ {Automatic, {-1, 2}}];
p2 = DiscretePlot[2x[n+1] + 2x[n-1], {n, -3, 3},
    Axes }->\mathrm{ {True, False},
    PlotRangePadding }->0.25\mathrm{ ,
    LabelingFunction }->\mathrm{ Above,
    PlotStyle }->\mathrm{ {Thick, Red},
    PlotRangePadding }->2\mathrm{ ,
    PlotLabel }->\mathrm{ "h[n]",
    ImageSize }->\mathrm{ 300,
    AspectRatio }->\mathrm{ Automatic,
    PlotRange }->\mathrm{ {Automatic, {0, 2}}];
p = Grid[{{p1, p2}}, Spacings }->{1, 1}, Frame -> All, FrameStyle -> LightGray]
```

Figure 2: Code used for the above

Linear convolution is done by flipping $h[n]$ (reflection), then shifting the now flipped $h[n]$ one step to the right at a time. Each step the corresponding entries of $h[n]$ and $x[n]$ are multiplied and added. This is done until no overlapping between the two sequences. Mathematically this is the same as

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
$$

Since $x[n]$ length is 3 and $x[n]=0$ for $n<0$ then the sum is

$$
y[n]=\sum_{k=0}^{3} x[k] h[n-k]
$$

For $\underline{n=-1}$

$$
\begin{aligned}
y[-1] & =\sum_{k=0}^{3} x[k] h[-1-k] \\
& =x[0] h[-1]+x[1] h[0]+x[2] h[1]+x[3] h[2] \\
& =(1)(2)+(2)(0)+(0)(2)+(-1)(0) \\
& =2
\end{aligned}
$$

For $\underline{n=0}$

$$
\begin{aligned}
y[0] & =\sum_{k=0}^{3} x[k] h[-k] \\
& =x[0] h[0]+x[1] h[-1]+x[2] h[-2]+x[3] h[-3] \\
& =0+(2)(2)+0+0 \\
& =4
\end{aligned}
$$

For $n=1$

$$
\begin{aligned}
y[1] & =\sum_{k=0}^{3} x[k] h[1-k] \\
& =x[0] h[1]+x[1] h[0]+x[2] h[-1]+x[3] h[-2] \\
& =(1)(2)+(2)(0)+(0)(1)+(-1)(0) \\
& =2
\end{aligned}
$$

For $n=2$

$$
\begin{aligned}
y[2] & =\sum_{k=0}^{3} x[k] h[2-k] \\
& =x[0] h[2]+x[1] h[1]+x[2] h[0]+x[3] h[-1] \\
& =(1)(0)+(2)(2)+(0)(0)+(-1)(2) \\
& =2
\end{aligned}
$$

For $n=3$

$$
\begin{aligned}
y[3] & =\sum_{k=0}^{3} x[k] h[3-k] \\
& =x[0] h[3]+x[1] h[2]+x[2] h[1]+x[3] h[0] \\
& =(1)(0)+(2)(0)+(0)(2)+(-1)(2) \\
& =0
\end{aligned}
$$

For $n=4$

$$
\begin{aligned}
y[4] & =\sum_{k=0}^{3} x[k] h[4-k] \\
& =x[0] h[4]+x[1] h[3]+x[2] h[2]+x[3] h[1] \\
& =(1)(0)+(2)(0)+(0)(2)+(-1)(2) \\
& =-2
\end{aligned}
$$

All higher n values give $y[n]=0$. Therefore

$$
y_{1}[n]=2 \delta[n+1]+4 \delta[n]+2 \delta[n-1]+2 \delta[n-2]-2 \delta[n-4]
$$

Figure 3: Plot of $y[n]$

1.2 Part b

First $x[n]$ is shifted to the left by 2 to obtain $x[n+2]$ and the result is convolved with $h[n]$ The following is plot of $x[n+2], h[n]$

Figure 4: Plot of $x[n+2], h[n]$

Since Linear time invariant system, then shifted input convolved with $h[n]$ will give the shifted output found in part (a). Hence $y_{2}[n]=y_{1}[n+2]$. Hence

$$
y_{2}[n]=2 \delta[n+3]+4 \delta[n+2]+2 \delta[n+1]+2 \delta[n]-2 \delta[n-2]
$$

To show this explicitly, the convolution of shifted input is now computed directly. Linear convolution is

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
$$

Since $x[n+2]$ length is 3 and $x[n]=0$ for $n<-2$ then the sum is

$$
y[n]=\sum_{k=-2}^{1} x[k] h[n-k]
$$

For $n=-3$

$$
\begin{aligned}
y[-3] & =\sum_{k=-2}^{1} x[k] h[-3-k] \\
& =x[-2] h[-1]+x[-1] h[-2]+x[0] h[-3]+x[1] h[-4] \\
& =(1)(2)+(2)(0)+(0)(0)+(-1)(0) \\
& =2
\end{aligned}
$$

For $n=-2$

$$
\begin{aligned}
y[-2] & =\sum_{k=-2}^{1} x[k] h[-2-k] \\
& =x[-2] h[0]+x[-1] h[-1]+x[0] h[-2]+x[1] h[-3] \\
& =(1)(0)+(2)(2)+0+(-1)(0) \\
& =4
\end{aligned}
$$

For $n=-1$

$$
\begin{aligned}
y[-1] & =\sum_{k=-2}^{1} x[k] h[-1-k] \\
& =x[-2] h[1]+x[-1] h[0]+x[0] h[-1]+x[1] h[-2] \\
& =(1)(2)+(2)(0)+0+(-1)(0) \\
& =2
\end{aligned}
$$

For $\underline{n=0}$

$$
\begin{aligned}
y[0] & =\sum_{k=-2}^{1} x[k] h[0-k] \\
& =x[-2] h[2]+x[-1] h[1]+x[0] h[0]+x[1] h[-1] \\
& =(1)(0)+(2)(2)+0+(-1)(2) \\
& =2
\end{aligned}
$$

For $n=1$

$$
\begin{aligned}
y[1] & =\sum_{k=-2}^{1} x[k] h[1-k] \\
& =x[-2] h[3]+x[-1] h[2]+x[0] h[1]+x[1] h[0] \\
& =(1)(0)+(2)(2)+0+(-1)(0) \\
& =4
\end{aligned}
$$

For $n=2$

$$
\begin{aligned}
y[2] & =\sum_{k=-2}^{1} x[k] h[2-k] \\
& =x[-2] h[4]+x[-1] h[3]+x[0] h[2]+x[1] h[1] \\
& =(1)(0)+(2)(0)+0+(-1)(2) \\
& =-2
\end{aligned}
$$

Hence

$$
y[n]=2 \delta[n+3]+4 \delta[n+2]+2 \delta[n+1]+2 \delta[n]-2 \delta[n-2]
$$

Which is the shifted output found in part (a)

2 Problem 2.6, Chapter 2

Compute and plot the convolution $y[n]=x[n] \circledast h[n]$ where $x[n]=\left(\frac{1}{3}\right)^{-n} u[-n-1]$ and $h[n]=u[n-1]$

Solution

It is easier to do this using graphical method. $y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]$. We could either flip and shift $x[n]$ or $h[n]$. Let us flip and shift $h[n]$. This below is the result for $n=0$ when $h[n-k]$ and $x[k]$ are plotted on top of each others

Figure 5: Convolution sum for $n=0$

By multiplying corresponding values and summing the result can be seen to be $\sum_{k=1}^{\infty}\left(\frac{1}{3}\right)^{k}$. Let $r=\frac{1}{3}$ then this sum is $\left(\sum_{k=0}^{\infty} r^{k}\right)-1$ But $\sum_{k=0}^{\infty} r^{k}=\frac{1}{1-r}$ since $r<1$. Therefore

$$
\begin{aligned}
\sum_{k=1}^{\infty}\left(\frac{1}{3}\right)^{k} & =\frac{1}{1-\frac{1}{3}}-1 \\
& =\frac{3}{3-1}-1 \\
& =\frac{3}{2}-1 \\
& =\frac{1}{2}
\end{aligned}
$$

Hence $y[0]=\frac{1}{2}$. Now, the signal $h[n-k]$ is shifted to the right by 1 then 2 then 3 and so on. This gives $y[1], y[2], \cdots$. Each time, the same sum result which is $\frac{1}{2}$. Here is a diagram for $n=1$ and $n=2$ for illustration

Figure 6: Convolution sum for $n=1$

Figure 7: Convolution sum for $n=2$

Therefore $y[n]=\frac{1}{2}$ for $n \geq 0$. Now we will look to see what happens when $h[-k]$ is shifted to the left. For $n=-1$ this is the result

Figure 8: Convolution sum for $n=-1$

When multiplying the corresponding elements and adding, now the element $\frac{1}{3}$ is multiplied by a zero and not by 1 . Hence the sum becomes $\left(\sum_{k=1}^{\infty}\left(\frac{1}{3}\right)^{k}\right)-\frac{1}{3}$ which is $\frac{1}{2}-\frac{1}{3}=\frac{1}{6}=\left(\frac{1}{2}\right)\left(\frac{1}{3}\right)$. Therefore $y[-1]=\frac{1}{6}$. When $h[-k]$ is shifted to the left one more step, it gives $y[-2]$ which is

Figure 9: Convolution sum for $n=-2$

We see from the above diagram that now $\frac{1}{3}$ and $\frac{1}{9}$ do not contribute to the sum since both are multiplied by zero. This means $y[-2]=\left(\sum_{k=1}^{\infty}\left(\frac{1}{3}\right)^{k}\right)-\left(\frac{1}{3}+\frac{1}{9}\right)=\frac{1}{2}-\left(\frac{1}{3}+\frac{1}{9}\right)=\frac{1}{18}=\left(\frac{1}{2}\right)\left(\frac{1}{9}\right)$.

Each time $h[-k]$ is shifted to the left by one, the sum reduces. From the above we see that

$$
\begin{aligned}
& y[-1]=\left(\frac{1}{2}\right)\left(\frac{1}{3}\right) \\
& y[-2]=\left(\frac{1}{2}\right)\left(\frac{1}{3^{2}}\right)
\end{aligned}
$$

Hence by extrapolation the pattern is

$$
\begin{aligned}
y[-n] & =\left(\frac{1}{2}\right)\left(\frac{1}{3^{-n}}\right) \\
& =\frac{3^{n}}{2}
\end{aligned}
$$

Therefore the final result is

$$
y[n]=\left\{\begin{array}{cl}
\frac{1}{2} & n \geq 0 \\
\frac{3^{n}}{2} & n<0
\end{array}\right.
$$

Here is plot of $y[n]=x[n] \circledast h[n]$ given by the above

Figure 10: Plot of $y[n]$

3 Problem 2.11, Chapter 2

Let $x(t)=u(t-3)-u(t-5)$ and $h(t)=e^{-3 t} u(t)$. (a) compute $y(t)=x(t) \circledast h(t)$. (b) Compute $g(t)=\frac{d x}{d t} \circledast h(t)$. (c) How is $g(t)$ related to $y(t)$?

Solution

3.1 Part (a)

It is easier to do this using graphical method. This is plot of $x(t)$ and $h(t)$.

Figure 11: Plot $x(t)$ and $h(t)$

```
p1 = Plot[(UnitStep[t-3] - UnitStep[t-5]), {t, - 3, 6},
    Exclusions }->\mathrm{ None, AxesLabel }->\mathrm{ {MaTeX["\\tau"], MaTeX["x(\\tau)"]},
    BaseStyle }->\mathrm{ 12, Ticks }->{{3,5},\mathrm{ Automatic}];
p2 = Plot[Exp[-3t] UnitStep[t], {t, -1, 3}, AxesLabel }->{MaTeX["\\tau"], MaTeX["h(\\tau)"]}
    BaseStyle }->\mathrm{ 12, PlotRange }->\mathrm{ All];
p=Grid[{{p1, p2}}];
```

Figure 12: Code used for the above plot

The next step is to fold one of the signals and then slide it to the right. We can folder either $x(t)$ or $h(t)$. Let us fold $x(t)$. Hence the integral is

$$
y(t)=\int_{-\infty}^{\infty} x(t-\tau) h(\tau) d \tau
$$

If we have chosen to fold $h(t)$ instead, then the integral would have been

$$
y(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau
$$

This is the result after folding (reflection) of $x(t)$

Figure 13: Folding $x(t)$

Next we label each edge of the folded signal before shifting it to the right as follows

Figure 14: Folding $x(t)$ and labeling the edges

We see from the above that for $t-3<0$ or for $t<3$ the integral is zero since there is no overlapping between the folded $x(\tau)$ and $h(\tau)$. As we slide the folded $x(\tau)$ more to the right, we end up with $x(\tau)$ partially under $h(\tau)$ like this

Figure 15: Shifting $x(\tau)$ to the right, partially inside

From the above, we see that for $0<t-3<2$ (since 2 is the width of $x(\tau)$) or for $3<t<5$, then the overlap is partial. Hence the integral now becomes

$$
\begin{aligned}
y(t) & =\int_{0}^{t-3} x(t-\tau) h(\tau) d \tau \quad 3<t \leq 5 \\
& =\int_{0}^{t-3} e^{-3 \tau} d \tau \\
& =\frac{-1}{3}\left[e^{-3 \tau}\right]_{0}^{t-3} \\
& =\frac{-1}{3}\left[e^{-3(t-3)}-1\right] \\
& =\frac{1}{3}\left(1-e^{-3(t-3)}\right)
\end{aligned}
$$

The next step is when folded $x(\tau)$ is fully inside $h(\tau)$ as follows

Figure 16: Shifting $x(\tau)$ to the right, fully inside

From the above, we see that for $0<t-5$ or $t>5$, then the overlap is complete. Hence the integral now becomes

$$
\begin{aligned}
y(t) & =\int_{t-5}^{t-3} x(t-\tau) h(\tau) d \tau \quad 5<t \leq \infty \\
& =\int_{t-5}^{t-3} e^{-3 \tau} d \tau \\
& =\frac{-1}{3}\left[e^{-3 \tau}\right]_{t-5}^{t-3} \\
& =\frac{-1}{3}\left(e^{-3(t-3)}-e^{-3(t-5)}\right) \\
& =\frac{1}{3}\left(e^{-3(t-5)}-e^{-3(t-3)}\right)
\end{aligned}
$$

The above result $y(t)=\frac{1}{3}\left[e^{-3(t-5)}-e^{-3(t-3)}\right]$ can be rewritten as $\frac{1}{3}\left[\left(1-e^{-6}\right) e^{-3(t-5)}\right]$ if needed to match the book. Therefore the final answer is

$$
y(t)=\left\{\begin{array}{cc}
0 & -\infty<t \leq 3 \\
\frac{1}{3}\left(1-e^{-3(t-3)}\right) & 3<t \leq 5 \\
\frac{1}{3}\left(e^{-3(t-5)}-e^{-3(t-3)}\right) & 5<t \leq \infty
\end{array}\right.
$$

Here is a plot of the above

Figure 17: $y(t)$
$y\left[t_{-}\right]:=P$ Piecewise $[\{\{0, t<3\},\{1 / 3(1-\operatorname{Exp}[-3(t-3)]), 3<t<5\}$,
$\{1 / 3(\operatorname{Exp}[-3(\mathrm{t}-5)]-\operatorname{Exp}[-3(\mathrm{t}-3)]), \mathrm{t}>5\}\}] ;$
$\mathrm{p}=\operatorname{Plot}[y[t],\{t,-1,7\}, \operatorname{AxesLabel} \rightarrow\{\operatorname{MaTeX}[" t "], \operatorname{MaTeX}[" y(t) "]\}$,
PlotStyle \rightarrow Red, GridLines \rightarrow Automatic, GridLinesStyle \rightarrow LightGray];

Figure 18: Code for the above

4 Problem 2.24, Chapter 2

2.24. Consider the cascade interconnection of three causal LTI systems, illustrated in Figure $\mathrm{P} 2.24(\mathrm{a})$. The impulse response $h_{2}[n]$ is

$$
h_{2}[n]=u[n]-u[n-2],
$$

and the overall impulse response is as shown in Figure $\mathrm{P} 2.24(\mathrm{~b})$.

(a)

(b)

Figure P2. 24
(a) Find the impulse response $h_{1}[n]$
(b) Find the response of the overall system to the input

$$
x[n]=\delta[n]-\delta[n-1] .
$$

Figure 19: Problem description

Solution

4.1 Part a

The impulse response $h[n]$ is given. This is the response when the input is $x[n]=\delta[0]$. Hence

$$
h[n]=h_{1}[n] \circledast\left(h_{2}[n] \circledast h_{2}[n]\right)
$$

But $h_{2}[n]$ is given as $h_{2}[n]=\delta[0]+\delta[1]$. Hence, let $H[n]=h_{2}[n] \circledast h_{2}[n]$, therefore

$$
\begin{aligned}
H[n] & =\sum_{k=-\infty}^{\infty} h_{2}[k] h_{2}[n-k] \\
& =\sum_{k=-1}^{2} h_{2}[k] h_{2}[n-k]
\end{aligned}
$$

For $n=0$.

$$
\begin{aligned}
H[0] & =\sum_{k=-1}^{0} h_{2}[k] h_{2}[-k] \\
& =h_{2}[-1] h_{2}[1]+h_{2}[0] h_{2}[0] \\
& =0+1 \\
& =1
\end{aligned}
$$

For $n=1$.

$$
\begin{aligned}
H[1] & =\sum_{k=-1}^{0} h_{2}[k] h_{2}[1-k] \\
& =h_{2}[-1] h_{2}[0]+h_{2}[0] h_{2}[1] \\
& =0+2 \\
& =2
\end{aligned}
$$

For $n=2$.

$$
\begin{aligned}
H[2] & =\sum_{k=-1}^{0} h_{2}[k] h_{2}[2-k] \\
& =h_{2}[-1] h_{2}[3]+h_{2}[0] h_{2}[2] \\
& =0+1 \\
& =1
\end{aligned}
$$

And zero for all other n. Hence

$$
\begin{aligned}
H[n] & =h_{2}[n] \circledast h_{2}[n] \\
& =\delta[n]+2 \delta[n-1]+\delta[n-2]
\end{aligned}
$$

Figure 20: Plot of $h_{2}[n] \circledast h_{2}[n]$

```
h[n_] := DiscreteDelta[n] + 2 DiscreteDelta[n-1] + DiscreteDelta[n-2];
p = DiscretePlot[h[n], {n, -1, 5}, LabelingFunction }->\mathrm{ Above,
        Axes }->\mathrm{ {True, False}, AxesLabel }->\mathrm{ {"n", None}];
```

Figure 21: Code for the above

Now we need to find $h_{1}[n]$ given that $h_{1}[n] \circledast H[n]$ is what is shown in the problem. We do not know $h_{1}[n]$. so let us assume it is the sequence $\left\{h_{1}[0], h_{2}[0], \cdots\right\}$. Then by doing convolution by folding $h_{1}[n]$ and then sliding it to the right one step at a time, we obtain the following relations for each n.
$\underline{n=0} h_{1}[0] H_{1}[0]=1$ and since $H_{1}[0]=1$ then $h_{1}[0]=1$
$n=1 h_{1}[1] H_{1}[0]+h_{1}[0] H_{1}[1]=5$ and since $H_{1}[0]=1, H_{1}[1]=2$ then $h_{1}[1]+2 h_{1}[0]=5$. But $h_{1}[0]=1$ found above. Hence $h_{1}[1]+2=5$ or $h_{1}[1]=3$
$\underline{n=2} h_{1}[2] H_{1}[0]+h_{1}[1] H_{1}[1]+h_{1}[0] H_{1}[2]=10$ and since $H_{1}[0]=1, H_{1}[1]=2, H_{1}[2]=1$ then $h_{1}[2]+2 h_{1}[1]+h_{1}[0]=10$. But $h_{1}[0]=1, h_{1}[1]=3$ found above. Hence $h_{1}[2]+(2)(3)+1=$ 10 or $h_{1}[2]=3$
$n=3 h_{1}[3] H_{1}[0]+h_{1}[2] H_{1}[1]+h_{1}[1] H_{1}[2]=11$ and since $H_{1}[0]=1, H_{1}[1]=2, H_{1}[2]=1$ then $h_{1}[3]+2 h_{1}[2]+h_{1}[1]=11$. But $h_{1}[2]=3, h_{1}[1]=3$ found above. Hence $h_{1}[3]+(2)(3)+3=$ 11 or $h_{1}[3]=2$
$\underline{n=4} h_{1}[4] H_{1}[0]+h_{1}[3] H_{1}[1]+h_{1}[2] H_{1}[2]=8$ and since $H_{1}[0]=1, H_{1}[1]=2, H_{1}[2]=1$ then $h_{1}[4]+2 h_{1}[3]+h_{1}[2]=8$. But $h_{1}[3]=2, h_{1}[2]=3$ found above. Hence $h_{1}[4]+2(2)+3=8$ or $h_{1}[4]=1$
$\underline{n=5} h_{1}[5] H_{1}[0]+h_{1}[4] H_{1}[1]+h_{1}[3] H_{1}[2]=4$ and since $H_{1}[0]=1, H_{1}[1]=2, H_{1}[2]=1$ then $h_{1}[5]+2 h_{1}[4]+h_{1}[3]=4$. But $h_{1}[4]=1, h_{1}[3]=2$ found above. Hence $h_{1}[5]+2(1)+2=4$ or $h_{1}[5]=0$
And since the output is zero for $n>5$ then $h_{1}[n]=0$ for all $n>5$. Therefore

$$
h_{1}[n]=\delta[n]+3 \delta[n-1]+3 \delta[n-2]+2 \delta[n-3]+\delta[n-4]
$$

Figure 22: Plot of $h_{1}[n]$

```
h[n_] := DiscreteDelta[n] + 3 DiscreteDelta[n-1] +
    3 DiscreteDelta[n-2] + 2 DiscreteDelta[n-3] + DiscreteDelta[n-4];
p=DiscretePlot[h[n],{n, -1, 7}, LabelingFunction }->\mathrm{ Above,
    Axes }->\mathrm{ {True, False}, AxesLabel }->{"n", None}]
```

Figure 23: Code for the above

4.2 Part b

When the input is $x[n]=\delta[n]-\delta[n-1]$ then response is given by $y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]$ where $h[n]$ is the impulse response given in the problem P2.24 diagram. Hence we need to convolve the following two signals

Figure 24: Plot of $x[n], h[n]$

By folding $x[n]$ and then shift it one step at a time, we see that we obtain the following

Figure 25: Plot of $x[n], h[n]$

$$
\begin{aligned}
& \begin{array}{l}
n=0 \\
\underline{n=1} \\
(1) \\
\underline{n=2} \\
(1) \\
\underline{n=3} \\
(-1)(1)
\end{array}(1)+(10)+(1)(10)+(1)(11)=1 \\
& \underline{n=4}(-1)(11)+(1)(8)=-3 \\
& \underline{n=5}(-1)(8)+(1)(4)=-4 \\
& \underline{n=6}(-1)(4)+(1)(1)=-3 \\
& \underline{n=7}(-1)(1)+(1)(0)=-1 \\
& \underline{n=8}(-1)(0)+(1)(0)=0
\end{aligned}
$$

And zero for all $n>7$. This is plot of $y[n]$

Figure 26: Plot of $y[n]$

5 Problem 2.32, Chapter 2

Solution

$-2-101234$
n Figure P2.31
2.32. Consider the difference equation

$$
\begin{equation*}
y[n]-\frac{1}{2} y[n-1]=x[n], \tag{P2.32-1}
\end{equation*}
$$

and suppose that

$$
\begin{equation*}
x[n]=\left(\frac{1}{3}\right)^{n} u[n] . \tag{P2.32-2}
\end{equation*}
$$

Assume that the solution $y[n]$ consists of the sum of a particular solution $y_{p}[n]$ to eq. (P2.32-1) and a homogeneous solution $y_{h}[n]$ satisfying the equation

$$
y_{h}[n]-\frac{1}{2} y_{h}[n-1]=0 .
$$

(a) Verify that the homogeneous solution is given by

$$
y_{h}[n]=A\left(\frac{1}{2}\right)^{n}
$$

(b) Let us consider obtaining a particular solution $y_{p}[n]$ such that

$$
y_{p}[n]-\frac{1}{2} y_{p}[n-1]=\left(\frac{1}{3}\right)^{n} u[n] .
$$

By assuming that $y_{p}[n]$ is of the form $B\left(\frac{1}{3}\right)^{n}$ for $n \geq 0$, and substituting this in the above difference equation, determine the value of B.
(c) Suppose that the LTI system described by eq. (P2.32-1) and initially at rest has as its input the signal specified by eq. (P2.32-2). Since $x[n]=0$ for $n<0$, we have that $y[n]=0$ for $n<0$. Also, from parts (a) and (b) we have that $y[n]$ has the form

$$
y[n]=A\left(\frac{1}{2}\right)^{n}+B\left(\frac{1}{3}\right)^{n}
$$

for $n \geq 0$. In order to solve for the unknown constant A, we must specify a value for $y[n]$ for some $n \geq 0$. Use the condition of initial rest and eqs. (P2.32-1) and (P2.32-2) to determine $y[0]$. From this value determine the constant A. The result of this calculation yields the solution to the difference equation (P2.32-1) under the condition of initial rest, when the input is given by eq. (P2.32-2).
2.33. Consider a system whose input $x(t)$ and output $y(t)$ satisfy the first-order differential

Figure 27: Problem description

5.1 Part a

Substituting $y_{h}[n]=A\left(\frac{1}{2}\right)^{n}$ into the difference equation $y_{h}[n]-\frac{1}{2} y_{h}[n-1]=0$ gives

$$
A\left(\frac{1}{2}\right)^{n}-\frac{1}{2} A\left(\frac{1}{2}\right)^{n-1}=0
$$

Since $A \neq 0$, the above simplifies to

$$
\begin{aligned}
\frac{1}{2^{n}}-\frac{1}{2}\left(\frac{1}{2^{n-1}}\right) & =0 \\
\frac{1}{2^{n}}-\frac{1}{2^{n}} & =0 \\
0 & =0
\end{aligned}
$$

Verified OK.

5.2 Part b

Substituting $y_{p}[n]=B\left(\frac{1}{3^{n}}\right)$ into $y_{p}[n]-\frac{1}{2} y_{p}[n-1]=\frac{1}{3^{n}} u[n]$ gives

$$
\begin{aligned}
B\left(\frac{1}{3^{n}}\right)-\frac{1}{2} B\left(\frac{1}{3^{n-1}}\right) & =\frac{1}{3^{n}} u[n] \\
B\left(\frac{1}{3^{n}}-\frac{1}{2} \frac{1}{3^{n-1}}\right) & =\frac{1}{3^{n}} u[n] \\
B\left(\frac{1}{3^{n}}\left(1-\frac{1}{2} \frac{1}{3^{-1}}\right)\right) & =\frac{1}{3^{n}} u[n] \\
B\left(\frac{1}{3^{n}}\left(1-\frac{3}{2}\right)\right) & =\frac{1}{3^{n}} u[n] \\
B\left(\frac{1}{3^{n}}\left(\frac{-1}{2}\right)\right) & =\frac{1}{3^{n}} u[n] \\
\frac{-1}{2} B & =u[n] \\
B & =-2 u[n]
\end{aligned}
$$

Hence for $n \geq 0$

$$
B=-2
$$

Therefore

$$
y_{p}[n]=-2\left(\frac{1}{3^{n}}\right)
$$

5.3 Part c

The solution is given by the sum of the homogenous and particular solutions. Hence

$$
\begin{align*}
y[n] & =y_{n}[n]+y_{p}[n] \\
& =A\left(\frac{1}{2}\right)^{n}-2\left(\frac{1}{3^{n}}\right) \tag{1}
\end{align*}
$$

Since system initially at rest, then $y[-1]=0$. The recurrence equation is given as

$$
y[n]-\frac{1}{2} y[n-1]=x[n]
$$

Substituting (1) into the above and using $x[n]=\frac{1}{3^{n}} u[n]$ gives

$$
y[n]-\frac{1}{2} y[n-1]=\frac{1}{3^{n}} u[n]
$$

At $n=0$ the above becomes

$$
y[0]-\frac{1}{2} y[-1]=1
$$

But $y[-1]=0$ and $y[0]=\left(A\left(\frac{1}{2}\right)^{n}-2\left(\frac{1}{3^{n}}\right)\right)_{n=0}=A-2$. Hence $A-2=1$ or

$$
A=3
$$

Therefore the solution (1) becomes

$$
y[n]=3\left(\frac{1}{2}\right)^{n}-2\left(\frac{1}{3^{n}}\right)
$$

Figure 28: Plot of $y[n]$

```
y[n_] := 3(1/2)^n-2(1/3)^n
p = DiscretePlot[y[n], {n, -1, 5}, LabelingFunction }->\mathrm{ Above,
    Axes }->\mathrm{ {True, False}, Ticks }->\mathrm{ {Range[-1, 9], None}];
```

Figure 29: Code used for the above

6 Problem 2.42, Chapter 2

Suppose the signal $x(t)=u\left(t+\frac{1}{2}\right)-u\left(t-\frac{1}{2}\right)$ is convolved with the signal $h(t)=e^{j \omega_{0} t}$. (a) Determine the value of ω_{0} which insures that $y(0)=0$. Where $y(t)=x(t) \circledast h(t)$. (b) Is your answer to previous part unique?

Solution

6.1 Part a

$$
x(t) \circledast h(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau
$$

Since $x(t)$ is box function from $t=-\frac{1}{2}$ to $t=\frac{1}{2}$

Figure 30: Plot of $x(n)$

```
x[t_]:= UnitStep[t + 1/2] - UnitStep[t-1/2]
p = Plot[x[t],{t, -2, 2}, Exclusions }->\mathrm{ None, AxesLabel }->{"t", "x(t)"}]
```

Figure 31: Code used for the above

Then by folding $h(t)$ and shifting it over $x(t)$ it is clear that only the region between $\tau=-\frac{1}{2}$ to $\tau=\frac{1}{2}$ will contribute to the integral above since $x(\tau)$ is zero everywhere else. Hence the integral simplifies to

$$
\begin{aligned}
y(t) & =x(t) \circledast h(t) \\
& =\int_{\frac{-1}{2}}^{\frac{1}{2}} h(t-\tau) d \tau \\
& =\int_{\frac{-1}{2}}^{\frac{1}{2}} e^{j \omega_{0}(t-\tau)} d \tau \\
& =e^{j \omega_{0} t} \int_{\frac{-1}{2}}^{\frac{1}{2}} e^{-j \omega_{0} \tau} d \tau \\
& =e^{j \omega_{0} t}\left[\frac{e^{-j \omega_{0} \tau}}{-j \omega_{0}}\right]_{-\frac{1}{2}}^{\frac{1}{2}} \\
& =e^{j \omega_{0} t}\left(\frac{e^{-\frac{1}{2} j \omega_{0}}-e^{\frac{1}{2} j \omega_{0}}}{-j \omega_{0}}\right) \\
& =e^{j \omega_{0} t}\left(\frac{e^{\frac{1}{2} j \omega_{0}}-e^{-\frac{1}{2} j \omega_{0}}}{j \omega_{0}}\right) \\
& =2 \frac{e^{j \omega_{0} t}}{\omega_{0}}\left(\frac{e^{\frac{1}{2} j \omega_{0}}-e^{-\frac{1}{2} j \omega_{0}}}{2 j}\right)
\end{aligned}
$$

But $\frac{e^{\frac{1}{2} j \omega_{0}}-e^{-\frac{1}{2} j \omega_{0}}}{2 j}=\sin \left(\frac{\omega_{0}}{2}\right)$ using Euler relation. Hence the above becomes

$$
y(t)=2 \frac{e^{j \omega_{0} t}}{\omega_{0}} \sin \left(\frac{\omega_{0}}{2}\right)
$$

When $t=0$ we are told $y(0)=0$. The above becomes

$$
0=\frac{2}{\omega_{0}} \sin \left(\frac{\omega_{0}}{2}\right)
$$

A value of ω_{0} which will satisfy the above is $\underline{\omega_{0}=2 \pi}$

6.2 Part b

The value ω_{0} found in part (a) is not unique, since any nonzero integer multiple of 2π will also satisfy $y(0)=0$

