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1 Problem 2.1, Chapter 2

Let 𝑥 [𝑛] = 𝛿 [𝑛] + 2𝛿 [𝑛 − 1] − 𝛿 [𝑛 − 3] and ℎ [𝑛] = 2𝛿 [𝑛 + 1] + 2𝛿 [𝑛 − 1]. Compute and plot
each of the following convolutions (a) 𝑦1 [𝑛] = 𝑥 [𝑛] ⊛ ℎ [𝑛] (b) 𝑦2 [𝑛] = 𝑥 [𝑛 + 2] ⊛ ℎ [𝑛]

Solution

1.1 Part a

The following is plot of 𝑥 [𝑛] , ℎ [𝑛]
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Figure 1: Plot of 𝑥[𝑛], ℎ[𝑛]

x[n_] := If[n ⩵ 0, 1, 0];

p1 = DiscretePlot[x[n] + 2 x[n - 1] - x[n - 3], {n, -3, 4},

Axes → {True, False},

PlotRangePadding → 0.25, PlotLabel → "x[n]",

ImageSize → 300,

PlotStyle → {Thick, Red},

LabelingFunction → Above,

AspectRatio → Automatic,

PlotRange → {Automatic, {-1, 2}}];

p2 = DiscretePlot[2 x[n + 1] + 2 x[n - 1], {n, -3, 3},

Axes → {True, False},

PlotRangePadding → 0.25,

LabelingFunction → Above,

PlotStyle → {Thick, Red},

PlotRangePadding → 2,

PlotLabel → "h[n]",

ImageSize → 300,

AspectRatio → Automatic,

PlotRange → {Automatic, {0, 2}}];

p = Grid[{{p1, p2}}, Spacings → {1, 1}, Frame → All, FrameStyle → LightGray];

Figure 2: Code used for the above

Linear convolution is done by flipping ℎ [𝑛] (reflection), then shifting the now flipped
ℎ [𝑛] one step to the right at a time. Each step the corresponding entries of ℎ [𝑛] and 𝑥 [𝑛]
are multiplied and added. This is done until no overlapping between the two sequences.
Mathematically this is the same as

𝑦 [𝑛] =
∞
�
𝑘=−∞

𝑥 [𝑘] ℎ [𝑛 − 𝑘]

Since 𝑥 [𝑛] length is 3 and 𝑥 [𝑛] = 0 for 𝑛 < 0 then the sum is

𝑦 [𝑛] =
3
�
𝑘=0

𝑥 [𝑘] ℎ [𝑛 − 𝑘]

For 𝑛 = −1

𝑦 [−1] =
3
�
𝑘=0

𝑥 [𝑘] ℎ [−1 − 𝑘]

= 𝑥 [0] ℎ [−1] + 𝑥 [1] ℎ [0] + 𝑥 [2] ℎ [1] + 𝑥 [3] ℎ [2]
= (1) (2) + (2) (0) + (0) (2) + (−1) (0)
= 2
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For 𝑛 = 0

𝑦 [0] =
3
�
𝑘=0

𝑥 [𝑘] ℎ [−𝑘]

= 𝑥 [0] ℎ [0] + 𝑥 [1] ℎ [−1] + 𝑥 [2] ℎ [−2] + 𝑥 [3] ℎ [−3]
= 0 + (2) (2) + 0 + 0
= 4

For 𝑛 = 1

𝑦 [1] =
3
�
𝑘=0

𝑥 [𝑘] ℎ [1 − 𝑘]

= 𝑥 [0] ℎ [1] + 𝑥 [1] ℎ [0] + 𝑥 [2] ℎ [−1] + 𝑥 [3] ℎ [−2]
= (1) (2) + (2) (0) + (0) (1) + (−1) (0)
= 2

For 𝑛 = 2

𝑦 [2] =
3
�
𝑘=0

𝑥 [𝑘] ℎ [2 − 𝑘]

= 𝑥 [0] ℎ [2] + 𝑥 [1] ℎ [1] + 𝑥 [2] ℎ [0] + 𝑥 [3] ℎ [−1]
= (1) (0) + (2) (2) + (0) (0) + (−1) (2)
= 2

For 𝑛 = 3

𝑦 [3] =
3
�
𝑘=0

𝑥 [𝑘] ℎ [3 − 𝑘]

= 𝑥 [0] ℎ [3] + 𝑥 [1] ℎ [2] + 𝑥 [2] ℎ [1] + 𝑥 [3] ℎ [0]
= (1) (0) + (2) (0) + (0) (2) + (−1) (2)
= 0

For 𝑛 = 4

𝑦 [4] =
3
�
𝑘=0

𝑥 [𝑘] ℎ [4 − 𝑘]

= 𝑥 [0] ℎ [4] + 𝑥 [1] ℎ [3] + 𝑥 [2] ℎ [2] + 𝑥 [3] ℎ [1]
= (1) (0) + (2) (0) + (0) (2) + (−1) (2)
= −2

All higher 𝑛 values give 𝑦 [𝑛] = 0. Therefore

𝑦1 [𝑛] = 2𝛿 [𝑛 + 1] + 4𝛿 [𝑛] + 2𝛿 [𝑛 − 1] + 2𝛿 [𝑛 − 2] − 2𝛿 [𝑛 − 4]
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Figure 3: Plot of 𝑦[𝑛]
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1.2 Part b

First 𝑥 [𝑛] is shifted to the left by 2 to obtain 𝑥 [𝑛 + 2] and the result is convolved with ℎ [𝑛]

The following is plot of 𝑥 [𝑛 + 2] , ℎ [𝑛]
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Figure 4: Plot of 𝑥[𝑛 + 2], ℎ[𝑛]

Since Linear time invariant system, then shifted input convolved with ℎ [𝑛] will give the
shifted output found in part (a). Hence 𝑦2 [𝑛] = 𝑦1 [𝑛 + 2]. Hence

𝑦2 [𝑛] = 2𝛿 [𝑛 + 3] + 4𝛿 [𝑛 + 2] + 2𝛿 [𝑛 + 1] + 2𝛿 [𝑛] − 2𝛿 [𝑛 − 2]

To show this explicitly, the convolution of shifted input is now computed directly. Linear
convolution is

𝑦 [𝑛] =
∞
�
𝑘=−∞

𝑥 [𝑘] ℎ [𝑛 − 𝑘]

Since 𝑥 [𝑛 + 2] length is 3 and 𝑥 [𝑛] = 0 for 𝑛 < −2 then the sum is

𝑦 [𝑛] =
1
�
𝑘=−2

𝑥 [𝑘] ℎ [𝑛 − 𝑘]

For 𝑛 = −3

𝑦 [−3] =
1
�
𝑘=−2

𝑥 [𝑘] ℎ [−3 − 𝑘]

= 𝑥 [−2] ℎ [−1] + 𝑥 [−1] ℎ [−2] + 𝑥 [0] ℎ [−3] + 𝑥 [1] ℎ [−4]
= (1) (2) + (2) (0) + (0) (0) + (−1) (0)
= 2

For 𝑛 = −2

𝑦 [−2] =
1
�
𝑘=−2

𝑥 [𝑘] ℎ [−2 − 𝑘]

= 𝑥 [−2] ℎ [0] + 𝑥 [−1] ℎ [−1] + 𝑥 [0] ℎ [−2] + 𝑥 [1] ℎ [−3]
= (1) (0) + (2) (2) + 0 + (−1) (0)
= 4

For 𝑛 = −1

𝑦 [−1] =
1
�
𝑘=−2

𝑥 [𝑘] ℎ [−1 − 𝑘]

= 𝑥 [−2] ℎ [1] + 𝑥 [−1] ℎ [0] + 𝑥 [0] ℎ [−1] + 𝑥 [1] ℎ [−2]
= (1) (2) + (2) (0) + 0 + (−1) (0)
= 2
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For 𝑛 = 0

𝑦 [0] =
1
�
𝑘=−2

𝑥 [𝑘] ℎ [0 − 𝑘]

= 𝑥 [−2] ℎ [2] + 𝑥 [−1] ℎ [1] + 𝑥 [0] ℎ [0] + 𝑥 [1] ℎ [−1]
= (1) (0) + (2) (2) + 0 + (−1) (2)
= 2

For 𝑛 = 1

𝑦 [1] =
1
�
𝑘=−2

𝑥 [𝑘] ℎ [1 − 𝑘]

= 𝑥 [−2] ℎ [3] + 𝑥 [−1] ℎ [2] + 𝑥 [0] ℎ [1] + 𝑥 [1] ℎ [0]
= (1) (0) + (2) (2) + 0 + (−1) (0)
= 4

For 𝑛 = 2

𝑦 [2] =
1
�
𝑘=−2

𝑥 [𝑘] ℎ [2 − 𝑘]

= 𝑥 [−2] ℎ [4] + 𝑥 [−1] ℎ [3] + 𝑥 [0] ℎ [2] + 𝑥 [1] ℎ [1]
= (1) (0) + (2) (0) + 0 + (−1) (2)
= −2

Hence
𝑦 [𝑛] = 2𝛿 [𝑛 + 3] + 4𝛿 [𝑛 + 2] + 2𝛿 [𝑛 + 1] + 2𝛿 [𝑛] − 2𝛿 [𝑛 − 2]

Which is the shifted output found in part (a)
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2 Problem 2.6, Chapter 2

Compute and plot the convolution 𝑦 [𝑛] = 𝑥 [𝑛] ⊛ ℎ [𝑛] where 𝑥 [𝑛] = �1
3
�
−𝑛
𝑢 [−𝑛 − 1] and

ℎ [𝑛] = 𝑢 [𝑛 − 1]

Solution

It is easier to do this using graphical method. 𝑦 [𝑛] = ∑∞
𝑘=−∞ 𝑥 [𝑘] ℎ [𝑛 − 𝑘]. We could either

flip and shift 𝑥 [𝑛] or ℎ [𝑛]. Let us flip and shift ℎ [𝑛]. This below is the result for 𝑛 = 0 when
ℎ [𝑛 − 𝑘] and 𝑥 [𝑘] are plotted on top of each others

n=0

1

81

1

27

1

9

1

3

0 0 0

-4 -3 -2 -1 0 1 2

x[k]

1 1 1 1

0 0 0

-4 -3 -2 -1 0 1 2

h[n-k]

Figure 5: Convolution sum for 𝑛 = 0

By multiplying corresponding values and summing the result can be seen to be ∑∞
𝑘=1 �

1
3
�
𝑘
.

Let 𝑟 = 1
3 then this sum is �∑∞

𝑘=0 𝑟
𝑘� − 1 But ∑∞

𝑘=0 𝑟
𝑘 = 1

1−𝑟 since 𝑟 < 1. Therefore

∞
�
𝑘=1

�
1
3�

𝑘

=
1

1 − 1
3

− 1

=
3

3 − 1
− 1

=
3
2
− 1

=
1
2

Hence 𝑦 [0] = 1
2 . Now, the signal ℎ [𝑛 − 𝑘] is shifted to the right by 1 then 2 then 3 and so

on. This gives 𝑦 [1] , 𝑦 [2] ,⋯. Each time, the same sum result which is 1
2 . Here is a diagram

for 𝑛 = 1 and 𝑛 = 2 for illustration
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0 0

-4 -3 -2 -1 0 1 2

h[n-k]

Figure 6: Convolution sum for 𝑛 = 1
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n=2

1
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Figure 7: Convolution sum for 𝑛 = 2

Therefore 𝑦 [𝑛] = 1
2 for 𝑛 ≥ 0. Now we will look to see what happens when ℎ [−𝑘] is shifted

to the left. For 𝑛 = −1 this is the result

n=-1

1

81

1
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1

9

1

3
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Figure 8: Convolution sum for 𝑛 = −1

When multiplying the corresponding elements and adding, now the element 1
3 is multiplied

by a zero and not by 1. Hence the sum becomes �∑∞
𝑘=1 �

1
3
�
𝑘
� −

1
3 which is 1

2 −
1
3 =

1
6 = �

1
2
� �1

3
�.

Therefore 𝑦 [−1] = 1
6 . When ℎ [−𝑘] is shifted to the left one more step, it gives 𝑦 [−2] which is

n=-2

1

81

1

27

1
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x[k]

1 1

0 0 0 0 0

-4 -3 -2 -1 0 1 2
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Figure 9: Convolution sum for 𝑛 = −2

We see from the above diagram that now 1
3 and 1

9 do not contribute to the sum since both

are multiplied by zero. This means 𝑦 [−2] = �∑∞
𝑘=1 �

1
3
�
𝑘
�−�

1
3 +

1
9
� = 1

2 −�
1
3 +

1
9
� = 1

18 = �
1
2
� �1

9
�.
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Each time ℎ [−𝑘] is shifted to the left by one, the sum reduces. From the above we see that

𝑦 [−1] = �
1
2� �

1
3�

𝑦 [−2] = �
1
2� �

1
32 �

Hence by extrapolation the pattern is

𝑦 [−𝑛] = �
1
2� �

1
3−𝑛 �

=
3𝑛

2

Therefore the final result is

𝑦 [𝑛] =

⎧⎪⎪⎨
⎪⎪⎩

1
2 𝑛 ≥ 0
3𝑛

2 𝑛 < 0

Here is plot of 𝑦 [𝑛] = 𝑥 [𝑛] ⊛ ℎ [𝑛] given by the above
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n

Figure 10: Plot of 𝑦[𝑛]
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3 Problem 2.11, Chapter 2

Let 𝑥 (𝑡) = 𝑢 (𝑡 − 3) − 𝑢 (𝑡 − 5) and ℎ (𝑡) = 𝑒−3𝑡𝑢 (𝑡). (a) compute 𝑦 (𝑡) = 𝑥 (𝑡) ⊛ ℎ (𝑡). (b) Compute
𝑔 (𝑡) = 𝑑𝑥

𝑑𝑡 ⊛ ℎ (𝑡). (c) How is 𝑔 (𝑡) related to 𝑦 (𝑡)?

Solution

3.1 Part (a)

It is easier to do this using graphical method. This is plot of 𝑥 (𝑡) and ℎ (𝑡).

3 5

0.2

0.4

0.6

0.8

1.0

-1 1 2 3

0.2

0.4

0.6

0.8

1.0

Figure 11: Plot 𝑥(𝑡) and ℎ(𝑡)

p1 = PlotUnitStep[t - 3] - UnitStep[t - 5], {t, -3, 6},

Exclusions → None, AxesLabel → {MaTeX["\\tau"], MaTeX["x(\\tau)"]},

BaseStyle → 12, Ticks → {{3, 5}, Automatic};

p2 = Plot[Exp[-3 t] UnitStep[t], {t, -1, 3}, AxesLabel → {MaTeX["\\tau"], MaTeX["h(\\tau)"]},

BaseStyle → 12, PlotRange → All];

p = Grid[{{p1, p2}}];

Figure 12: Code used for the above plot

The next step is to fold one of the signals and then slide it to the right. We can folder
either 𝑥 (𝑡) or ℎ (𝑡). Let us fold 𝑥 (𝑡). Hence the integral is

𝑦 (𝑡) = �
∞

−∞
𝑥 (𝑡 − 𝜏) ℎ (𝜏) 𝑑𝜏

If we have chosen to fold ℎ (𝑡) instead, then the integral would have been

𝑦 (𝑡) = �
∞

−∞
𝑥 (𝜏) ℎ (𝑡 − 𝜏) 𝑑𝜏

This is the result after folding (reflection) of 𝑥 (𝑡)
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Figure 13: Folding 𝑥(𝑡)

Next we label each edge of the folded signal before shifting it to the right as follows

0.5

1.0

1.5

-1 1 2 3

0.2

0.4

0.6

0.8

1.0

Figure 14: Folding 𝑥(𝑡) and labeling the edges
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We see from the above that for 𝑡 − 3 < 0 or for 𝑡 < 3 the integral is zero since there is no
overlapping between the folded 𝑥 (𝜏) and ℎ (𝜏). As we slide the folded 𝑥 (𝜏) more to the
right, we end up with 𝑥 (𝜏) partially under ℎ (𝜏) like this

0.5

1.0

1.5

Figure 15: Shifting 𝑥(𝜏) to the right, partially inside

From the above, we see that for 0 < 𝑡 − 3 < 2 (since 2 is the width of 𝑥 (𝜏) ) or for 3 < 𝑡 < 5,
then the overlap is partial. Hence the integral now becomes

𝑦 (𝑡) = �
𝑡−3

0
𝑥 (𝑡 − 𝜏) ℎ (𝜏) 𝑑𝜏 3 < 𝑡 ≤ 5

= �
𝑡−3

0
𝑒−3𝜏𝑑𝜏

=
−1
3
�𝑒−3𝜏�

𝑡−3

0

=
−1
3
�𝑒−3(𝑡−3) − 1�

=
1
3
�1 − 𝑒−3(𝑡−3)�

The next step is when folded 𝑥 (𝜏) is fully inside ℎ (𝜏) as follows

0.5

1.0

1.5

Figure 16: Shifting 𝑥(𝜏) to the right, fully inside

From the above, we see that for 0 < 𝑡 − 5 or 𝑡 > 5, then the overlap is complete. Hence the
integral now becomes

𝑦 (𝑡) = �
𝑡−3

𝑡−5
𝑥 (𝑡 − 𝜏) ℎ (𝜏) 𝑑𝜏 5 < 𝑡 ≤ ∞

= �
𝑡−3

𝑡−5
𝑒−3𝜏𝑑𝜏

=
−1
3
�𝑒−3𝜏�

𝑡−3

𝑡−5

=
−1
3
�𝑒−3(𝑡−3) − 𝑒−3(𝑡−5)�

=
1
3
�𝑒−3(𝑡−5) − 𝑒−3(𝑡−3)�
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The above result 𝑦 (𝑡) = 1
3
�𝑒−3(𝑡−5) − 𝑒−3(𝑡−3)� can be rewritten as 1

3
��1 − 𝑒−6� 𝑒−3(𝑡−5)� if needed

to match the book. Therefore the final answer is

𝑦 (𝑡) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 −∞ < 𝑡 ≤ 3
1
3
�1 − 𝑒−3(𝑡−3)� 3 < 𝑡 ≤ 5

1
3
�𝑒−3(𝑡−5) − 𝑒−3(𝑡−3)� 5 < 𝑡 ≤ ∞

Here is a plot of the above

2 4 6

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Figure 17: 𝑦(𝑡)

y[t_] := Piecewise{0, t < 3}, 1  3 1 - Exp-3 t - 3, 3 < t < 5,

1  3 Exp-3 t - 5 - Exp-3 t - 3, t > 5;

p = Plot[y[t], {t, -1, 7}, AxesLabel → {MaTeX["t"], MaTeX["y(t)"]},

PlotStyle → Red, GridLines → Automatic, GridLinesStyle → LightGray];

Figure 18: Code for the above
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4 Problem 2.24, Chapter 2

Chap. 2 Problems 143 

h(t) 

-1 

(a) 

···t t t t { t t t t t t··· 
- 2T - T 0 T 2T 3T 

(b) Figure P2.23 

2.24. Consider the cascade interconnection of three causal LTI systems, illustrated in Fig
ure P2.24(a). The impulse response h2[n] is 

h2[n] = u[n] - u[n - 2], 

and the overall impulse response is as shown in Figure P2.24(b ). 

x[n] y[n] 

(a) 

• • -1 0 1 2 3 4 5 6 7 n 

(b) Figure P2.24 

(a) Find the impulse response h1 [n]. 
(b) Find the response of the overall system to the input 

x[n] = o[n] - o[n- 1]. 

Figure 19: Problem description

Solution

4.1 Part a

The impulse response ℎ [𝑛] is given. This is the response when the input is 𝑥 [𝑛] = 𝛿 [0].
Hence

ℎ [𝑛] = ℎ1 [𝑛] ⊛ (ℎ2 [𝑛] ⊛ ℎ2 [𝑛])

But ℎ2 [𝑛] is given as ℎ2 [𝑛] = 𝛿 [0] + 𝛿 [1]. Hence, let 𝐻[𝑛] = ℎ2 [𝑛] ⊛ ℎ2 [𝑛], therefore

𝐻 [𝑛] =
∞
�
𝑘=−∞

ℎ2 [𝑘] ℎ2 [𝑛 − 𝑘]

=
2
�
𝑘=−1

ℎ2 [𝑘] ℎ2 [𝑛 − 𝑘]

For 𝑛 = 0.

𝐻[0] =
0
�
𝑘=−1

ℎ2 [𝑘] ℎ2 [−𝑘]

= ℎ2 [−1] ℎ2 [1] + ℎ2 [0] ℎ2 [0]
= 0 + 1
= 1
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For 𝑛 = 1.

𝐻 [1] =
0
�
𝑘=−1

ℎ2 [𝑘] ℎ2 [1 − 𝑘]

= ℎ2 [−1] ℎ2 [0] + ℎ2 [0] ℎ2 [1]
= 0 + 2
= 2

For 𝑛 = 2.

𝐻 [2] =
0
�
𝑘=−1

ℎ2 [𝑘] ℎ2 [2 − 𝑘]

= ℎ2 [−1] ℎ2 [3] + ℎ2 [0] ℎ2 [2]
= 0 + 1
= 1

And zero for all other 𝑛. Hence

𝐻[𝑛] = ℎ2 [𝑛] ⊛ ℎ2 [𝑛]
= 𝛿 [𝑛] + 2𝛿 [𝑛 − 1] + 𝛿 [𝑛 − 2]

0

1

2

1

0 0 0

-1 0 1 2 3 4 5
n

Figure 20: Plot of ℎ2[𝑛] ⊛ ℎ2[𝑛]

h[n_] := DiscreteDelta[n] + 2 DiscreteDelta[n - 1] + DiscreteDelta[n - 2];

p = DiscretePlot[h[n], {n, -1, 5}, LabelingFunction → Above,

Axes → {True, False}, AxesLabel → {"n", None}];

Figure 21: Code for the above

Now we need to find ℎ1 [𝑛] given that ℎ1 [𝑛] ⊛ 𝐻 [𝑛] is what is shown in the problem. We
do not know ℎ1 [𝑛]. so let us assume it is the sequence {ℎ1 [0] , ℎ2 [0] ,⋯}. Then by doing
convolution by folding ℎ1 [𝑛] and then sliding it to the right one step at a time, we obtain
the following relations for each 𝑛.

𝑛 = 0 ℎ1 [0]𝐻1 [0] = 1 and since 𝐻1 [0] = 1 then ℎ1 [0] = 1

𝑛 = 1 ℎ1 [1]𝐻1 [0] + ℎ1 [0]𝐻1 [1] = 5 and since 𝐻1 [0] = 1,𝐻1 [1] = 2 then ℎ1 [1] + 2ℎ1 [0] = 5.
But ℎ1 [0] = 1 found above. Hence ℎ1 [1] + 2 = 5 or ℎ1 [1] = 3

𝑛 = 2 ℎ1 [2]𝐻1 [0] + ℎ1 [1]𝐻1 [1] + ℎ1 [0]𝐻1 [2] = 10 and since 𝐻1 [0] = 1,𝐻1 [1] = 2,𝐻1 [2] = 1
then ℎ1 [2]+2ℎ1 [1]+ℎ1 [0] = 10. But ℎ1 [0] = 1, ℎ1 [1] = 3 found above. Hence ℎ1 [2]+(2) (3)+1 =
10 or ℎ1 [2] = 3

𝑛 = 3 ℎ1 [3]𝐻1 [0] + ℎ1 [2]𝐻1 [1] + ℎ1 [1]𝐻1 [2] = 11 and since 𝐻1 [0] = 1,𝐻1 [1] = 2,𝐻1 [2] = 1
then ℎ1 [3]+2ℎ1 [2]+ℎ1 [1] = 11. But ℎ1 [2] = 3, ℎ1 [1] = 3 found above. Hence ℎ1 [3]+(2) (3)+3 =
11 or ℎ1 [3] = 2
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𝑛 = 4 ℎ1 [4]𝐻1 [0] + ℎ1 [3]𝐻1 [1] + ℎ1 [2]𝐻1 [2] = 8 and since 𝐻1 [0] = 1,𝐻1 [1] = 2,𝐻1 [2] = 1
then ℎ1 [4]+2ℎ1 [3]+ℎ1 [2] = 8. But ℎ1 [3] = 2, ℎ1 [2] = 3 found above. Hence ℎ1 [4]+2 (2)+3 = 8
or ℎ1 [4] = 1

𝑛 = 5 ℎ1 [5]𝐻1 [0] + ℎ1 [4]𝐻1 [1] + ℎ1 [3]𝐻1 [2] = 4 and since 𝐻1 [0] = 1,𝐻1 [1] = 2,𝐻1 [2] = 1
then ℎ1 [5]+2ℎ1 [4]+ℎ1 [3] = 4. But ℎ1 [4] = 1, ℎ1 [3] = 2 found above. Hence ℎ1 [5]+2 (1)+2 = 4
or ℎ1 [5] = 0

And since the output is zero for 𝑛 > 5 then ℎ1 [𝑛] = 0 for all 𝑛 > 5. Therefore

ℎ1 [𝑛] = 𝛿 [𝑛] + 3𝛿 [𝑛 − 1] + 3𝛿 [𝑛 − 2] + 2𝛿 [𝑛 − 3] + 𝛿 [𝑛 − 4]

0

1

3 3

2

1

0 0 0

0 2 4 6
n

Figure 22: Plot of ℎ1[𝑛]

h[n_] := DiscreteDelta[n] + 3 DiscreteDelta[n - 1] +

3 DiscreteDelta[n - 2] + 2 DiscreteDelta[n - 3] + DiscreteDelta[n - 4];

p = DiscretePlot[h[n], {n, -1, 7}, LabelingFunction → Above,

Axes → {True, False}, AxesLabel → {"n", None}];

Figure 23: Code for the above

4.2 Part b

When the input is 𝑥 [𝑛] = 𝛿 [𝑛]−𝛿 [𝑛 − 1] then response is given by 𝑦 [𝑛] = ∑∞
𝑘=−∞ 𝑥 [𝑘] ℎ [𝑛 − 𝑘]

where ℎ [𝑛] is the impulse response given in the problem P2.24 diagram. Hence we need
to convolve the following two signals

0

1

-1

0 0

-1 0 1 2 3
n

x[n]

0
1

5

10
11

8

4

1
0

0 2 4 6
n

h[n]

Figure 24: Plot of 𝑥[𝑛], ℎ[𝑛]

By folding 𝑥 [𝑛] and then shift it one step at a time, we see that we obtain the following
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-1

1

0 0 0

-1 0 1 2 3
n

x[n]

0
1

5

10
11

8

4

1
0

0 2 4 6
n

h[n]

Figure 25: Plot of 𝑥[𝑛], ℎ[𝑛]

𝑛 = 0 (1) (1) = 1

𝑛 = 1 (−1) (1) + (1) (5) = 4

𝑛 = 2 (−1) (5) + (1) (10) = 5

𝑛 = 3 (−1) (10) + (1) (11) = 1

𝑛 = 4 (−1) (11) + (1) (8) = −3

𝑛 = 5 (−1) (8) + (1) (4) = −4

𝑛 = 6 (−1) (4) + (1) (1) = −3

𝑛 = 7 (−1) (1) + (1) (0) = −1

𝑛 = 8 (−1) (0) + (1) (0) = 0

And zero for all 𝑛 > 7. This is plot of 𝑦 [𝑛]

0

1

4

5

1

-3

-4

-3

-1

0 0

-1 0 1 2 3 4 5 6 7 8 9

Figure 26: Plot of 𝑦[𝑛]
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5 Problem 2.32, Chapter 2

Solution

Chap.2 Problems 

(e) h(t) = e-61tl 
(0 h(t) = te-t u(t) 
(g) h(t) = (2e-t - e(t-IOO)!IOO)u(t) 

2.30. Consider the first -order difference equation 

y[n] + 2y[n - 1] = x[n]. 

145 

Assuming the condition of initial rest (i.e., if x[n] = 0 for n < n0 , then y[n] = 0 for 
n < n0 ), find the impulse response of a system whose input and output are related by 
this difference equation. You may solve the problem by rearranging the difference 
equation so as to express y[n] in terms of y[n -1] and x[n] and generating the values 
of y[O], y[ + 1 ], y[ + 2], ... in that order. 

2.31. Consider the LTI system initially at rest and described by the difference equation 

y[n] + 2y[n - 1] = x[n] + 2x[n - 2]. 

Find the response of this system to the input depicted in Figure P2.31 by solving the 
difference equation recursively. 

x[n] 

••••• 
1T

2(J J rr\ •••• 
-2-1 o 12 34 n FigureP2.31 

2.32. Consider the difference equation 

1 
y[n] -

2
y[n- 1] = x[n], (P2.32-1) 

and suppose that 

x[n] = (~ )" u[n]. (P2.32-2) 

Assume that the solution y[n] consists of the sum of a particular solution Yp[n] to 
eq. (P2.32-l) and a homogeneous solution Yh[n] satisfying the equation 

1 
Yh[n]- 2Yh[n- 1] = 0. 

(a) Verify that the homogeneous solution is given by 

Yh[n] = AG)" 
(b) Let us consider obtaining a particular solution Yp[n] such that 

1 (1 )n Yp[n]-
2

Yp[n- 1] = 3 u[n]. 

146 Linear Time-Invariant Systems Chap.2 

By assuming that Yp[n] is of the form B( * )'1 for n 2: 0, and substituting this in 
the above difference equation, determine. the value of B. 

(c) Suppose that the LTI system described by eq. (P2.32-1) and initially at rest has 
as its input the signal specified by eq. (P2.32-2). Since x[n] = 0 for n < 0, we 
have that y[n] = 0 for n < 0. Also, from parts (a) and (b) we have that y[n] 
has the form 

(1)11 (1)11 

y[n] =A "2 + B "3 

for n :::::: 0. In order to solve for the unknown constant A, we must specify a value 
for y[n] for some n 2: 0. Use the condition of initial rest and eqs. (P2.32-1) 
and (P2.32-2) to determine y[O]. From this value determine the constant A. The 
result of this calculation yields the solution to the difference equation (P2.32-1) 
under the condition of initial rest, when the input is given by eq. (P2.32-2). 

2.33. Consider a system whose input x(t) and output y(t) satisfy the first-order differential 
equation 

dy(t) 
-----;[( + 2y(t) = x(t). (P2.33-1) 

The system also satisfies the condition of initial rest. 
(a) (i) Determine the system output y 1 (t) when the input is x 1 (t) = e3

t u(t). 
(ii) Determine the system output y2(t) when the input is x2(t) = e2t u(t). 
(iii) Determine the system output y3(t) when the input is x3(t) = ae3t u(t) + 

{3e2tu(t), where a and {3 are real numbers. Show that y3(t) = ay1 (t) + 
{3 Y2(t). 

(iv) Now let x 1 (t) and x2(t) be arbitrary signals such that 

(b) (i) 
(ii) 

(iii) 

x 1(t) = 0, fort< t1, 

x2(t) = 0, fort < t2. 

Letting Y1 (t) be the system output for input x 1 (t), y2(t) be the system output 
for input x2(t), and y3(t) be the system output for x3(t) = ax1 (t) + {3x2(t), 
show that 

y3(t) = ay1 (t) + {3 Y2(t). 

We may therefore conclude that the system under consideration is linear. 
Determine the system output y 1 (t) when the input is x 1 (t) = K e2t u(t). 
Determine the system output y2(t) when the input is x2(t) = K e2(t-T) 
u(t - T). Show that Y2(t) = Y1 (t - T). 
Now let x1 (t) be an arbitrary signal such that x 1 (t) = 0 fort < t0 . Letting 
Y! (t) be the system output for input x1 (t) and y2(t) be the system output 
for x2(t) = x 1 (t - T), show that 

Y2(t) = Y! (t - T). 

Figure 27: Problem description

5.1 Part a

Substituting 𝑦ℎ [𝑛] = 𝐴 �
1
2
�
𝑛
into the di�erence equation 𝑦ℎ [𝑛] −

1
2𝑦ℎ [𝑛 − 1] = 0 gives

𝐴�
1
2�

𝑛

−
1
2
𝐴 �

1
2�

𝑛−1

= 0

Since 𝐴 ≠ 0, the above simplifies to

1
2𝑛
−
1
2 �

1
2𝑛−1 �

= 0

1
2𝑛
−
1
2𝑛
= 0

0 = 0
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Verified OK.

5.2 Part b

Substituting 𝑦𝑝 [𝑛] = 𝐵 �
1
3𝑛
� into 𝑦𝑝 [𝑛] −

1
2𝑦𝑝 [𝑛 − 1] =

1
3𝑛𝑢 [𝑛] gives

𝐵 �
1
3𝑛 �

−
1
2
𝐵 �

1
3𝑛−1 �

=
1
3𝑛
𝑢 [𝑛]

𝐵 �
1
3𝑛
−
1
2

1
3𝑛−1 �

=
1
3𝑛
𝑢 [𝑛]

𝐵 �
1
3𝑛 �

1 −
1
2
1
3−1 ��

=
1
3𝑛
𝑢 [𝑛]

𝐵 �
1
3𝑛 �

1 −
3
2��

=
1
3𝑛
𝑢 [𝑛]

𝐵 �
1
3𝑛 �

−1
2 ��

=
1
3𝑛
𝑢 [𝑛]

−1
2
𝐵 = 𝑢 [𝑛]

𝐵 = −2𝑢 [𝑛]

Hence for 𝑛 ≥ 0
𝐵 = −2

Therefore

𝑦𝑝 [𝑛] = −2 �
1
3𝑛 �

5.3 Part c

The solution is given by the sum of the homogenous and particular solutions. Hence

𝑦 [𝑛] = 𝑦ℎ [𝑛] + 𝑦𝑝 [𝑛]

= 𝐴 �
1
2�

𝑛

− 2 �
1
3𝑛 �

(1)

Since system initially at rest, then 𝑦 [−1] = 0. The recurrence equation is given as

𝑦 [𝑛] −
1
2
𝑦 [𝑛 − 1] = 𝑥 [𝑛]

Substituting (1) into the above and using 𝑥 [𝑛] = 1
3𝑛𝑢 [𝑛] gives

𝑦 [𝑛] −
1
2
𝑦 [𝑛 − 1] =

1
3𝑛
𝑢 [𝑛]

At 𝑛 = 0 the above becomes
𝑦 [0] −

1
2
𝑦 [−1] = 1

But 𝑦 [−1] = 0 and 𝑦 [0] = �𝐴 �
1
2
�
𝑛
− 2 � 1

3𝑛
��

𝑛=0
= 𝐴 − 2. Hence 𝐴 − 2 = 1 or

𝐴 = 3

Therefore the solution (1) becomes

𝑦 [𝑛] = 3 �
1
2�

𝑛

− 2 �
1
3𝑛 �
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0

1
5

6

19

36

65

216 211

1296
665

7776

-1 0 1 2 3 4 5

Figure 28: Plot of 𝑦[𝑛]

y[n_] := 3 1  2^n - 2 1  3^n

p = DiscretePlot[y[n], {n, -1, 5}, LabelingFunction → Above,

Axes → {True, False}, Ticks → {Range[-1, 9], None}];

Figure 29: Code used for the above
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6 Problem 2.42, Chapter 2

Suppose the signal 𝑥 (𝑡) = 𝑢 �𝑡 + 1
2
� − 𝑢 �𝑡 − 1

2
� is convolved with the signal ℎ (𝑡) = 𝑒𝑗𝜔0𝑡. (a)

Determine the value of 𝜔0 which insures that 𝑦 (0) = 0. Where 𝑦 (𝑡) = 𝑥 (𝑡) ⊛ ℎ (𝑡). (b) Is your
answer to previous part unique?

Solution

6.1 Part a

𝑥 (𝑡) ⊛ ℎ (𝑡) = �
∞

−∞
𝑥 (𝜏) ℎ (𝑡 − 𝜏) 𝑑𝜏

Since 𝑥 (𝑡) is box function from 𝑡 = −1
2 to 𝑡 = 1

2

-2 -1 1 2
t

0.2

0.4

0.6

0.8

1.0

x(t)

Figure 30: Plot of 𝑥(𝑛)

x[t_] := UnitStept + 1  2 - UnitStept - 1  2

p = Plot[x[t], {t, -2, 2}, Exclusions → None, AxesLabel → {"t", "x(t)"}];

Figure 31: Code used for the above

Then by folding ℎ (𝑡) and shifting it over 𝑥 (𝑡) it is clear that only the region between 𝜏 = −1
2

to 𝜏 = 1
2 will contribute to the integral above since 𝑥 (𝜏) is zero everywhere else. Hence the

integral simplifies to

𝑦 (𝑡) = 𝑥 (𝑡) ⊛ ℎ (𝑡)

= �
1
2

−1
2

ℎ (𝑡 − 𝜏) 𝑑𝜏

= �
1
2

−1
2

𝑒𝑗𝜔0(𝑡−𝜏)𝑑𝜏

= 𝑒𝑗𝜔0𝑡�
1
2

−1
2

𝑒−𝑗𝜔0𝜏𝑑𝜏

= 𝑒𝑗𝜔0𝑡 �
𝑒−𝑗𝜔0𝜏

−𝑗𝜔0
�

1
2

− 1
2

= 𝑒𝑗𝜔0𝑡

⎛
⎜⎜⎜⎜⎜⎝
𝑒−

1
2 𝑗𝜔0 − 𝑒

1
2 𝑗𝜔0

−𝑗𝜔0

⎞
⎟⎟⎟⎟⎟⎠

= 𝑒𝑗𝜔0𝑡

⎛
⎜⎜⎜⎜⎜⎝
𝑒
1
2 𝑗𝜔0 − 𝑒−

1
2 𝑗𝜔0

𝑗𝜔0

⎞
⎟⎟⎟⎟⎟⎠

= 2
𝑒𝑗𝜔0𝑡

𝜔0

⎛
⎜⎜⎜⎜⎜⎝
𝑒
1
2 𝑗𝜔0 − 𝑒−

1
2 𝑗𝜔0

2𝑗

⎞
⎟⎟⎟⎟⎟⎠
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But 𝑒
1
2 𝑗𝜔0−𝑒−

1
2 𝑗𝜔0

2𝑗 = sin �𝜔0
2
� using Euler relation. Hence the above becomes

𝑦 (𝑡) = 2
𝑒𝑗𝜔0𝑡

𝜔0
sin �𝜔0

2
�

When 𝑡 = 0 we are told 𝑦 (0) = 0. The above becomes

0 =
2
𝜔0

sin �𝜔0
2
�

A value of 𝜔0 which will satisfy the above is 𝜔0 = 2𝜋

6.2 Part b

The value 𝜔0 found in part (a) is not unique, since any nonzero integer multiple of 2𝜋 will
also satisfy 𝑦 (0) = 0
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