HW 10

EE 3015
 Signals and Systems

Spring 2020
University of Minnesota, Twin Cities

Nasser M. Abbasi

Contents

1 Problem 11.1

11.1. Consider the interconnection of discrete-time LTI systems shown in Figure P11.1. Express the overall system function for this interconnection in terms of $H_{0}(z)$, $H_{1}(z)$, and $G(z)$.

Figure P1 1.1

Figure 1: Problem description
solution
Adding the following notations on the diagram to make it easy to do the computation

Figure 2: Annotations added

Therefore we see that

$$
\begin{equation*}
Y(z)=X(z) H_{0}(z)+E(z) H_{1}(z) \tag{1}
\end{equation*}
$$

So we just need to determine $E(z)$. But $E(z)=X(z)-E(z) H_{1}(z) G(z)$. Hence $E(z)\left(1+H_{1}(z) G(z)\right)=$ $X(z)$ or

$$
E(z)=\frac{X(z)}{1+H_{1}(z) G(z)}
$$

Substituting this into (1) gives

$$
\begin{aligned}
& Y(z)=X(z) H_{0}(z)+\frac{X(z)}{1+H_{1}(z) G(z)} H_{1}(z) \\
& Y(z)=X(z)\left(H_{0}(z)+\frac{H_{1}(z)}{1+H_{1}(z) G(z)}\right)
\end{aligned}
$$

Hence

$$
\frac{Y(z)}{X(z)}=H_{0}(z)+\frac{H_{1}(z)}{1+H_{1}(z) G(z)}
$$

2 Problem 11.2

11.2. Consider the interconnection of discrete-time LTI systems shown in Figure P11.2. Express the overall system function for this interconnection in terms of $H_{1}(s)$, $H_{2}(s), G_{1}(s)$, and $G_{2}(s)$.

Figure P1 1.2

Figure 3: Problem description
solution
Adding the following notations on the diagram to make it easy to do the computation

Figure 4: Annotations added

Therefore we see that

$$
\begin{align*}
& E=X-F H_{1} G_{2} \tag{1}\\
& F=E H_{2}-F H_{1} G_{1} \tag{2}
\end{align*}
$$

We have 2 equations with 2 unknowns E, F. Substituting first equation into the second gives

$$
\begin{align*}
F & =\left(X-F H_{1} G_{2}\right) H_{2}-F H_{1} G_{1} \\
F & =X H_{2}-F H_{1} G_{2} H_{2}-F H_{1} G_{1} \\
F\left(1+H_{1} G_{2} H_{2}+H_{1} G_{1}\right) & =X H_{2} \\
F & =\frac{X H_{2}}{1+H_{1} G_{2} H_{2}+H_{1} G_{1}} \tag{3}
\end{align*}
$$

But

$$
Y(z)=F(z) H_{1}(z)
$$

Hence using (3) into the above gives

$$
\begin{aligned}
Y(z) & =\frac{X H_{2}}{1+H_{1} G_{2} H_{2}+H_{1} G_{1}} H_{1} \\
\frac{Y(z)}{X(z)} & =\frac{H_{2} H_{1}}{1+H_{1} G_{2} H_{2}+H_{1} G_{1}}
\end{aligned}
$$

3 Problem 11.4

For what real values of b is the feedback system stable?
11.4. A causal LTI system S with input $x(t)$ and output $y(t)$ is represented by the differential equation

$$
\frac{d^{2} y(t)}{d t^{2}}+\frac{d y(t)}{d t}+y(t)=\frac{d x(t)}{d t} .
$$

S is to be implemented using the feedback configuration of Figure 11.3(a) with $H(s)=1 /(s+1)$. Determine $G(s)$.
11.5. Consider the discrete-time feedhack svstem denicted in Figure 11 3(h) with

Figure 5: Problem description
solution
Figure 11.3 a is the following
ure $11.3(\mathrm{a})$ and that of a discrete-time LTI feedback system ir

(a)

Figure 6: figure from book 11.3(a)

Taking the Laplace transform of the ODE gives (assuming zero initial conditions)

$$
\begin{align*}
s^{2} Y(s)+s Y(s)+Y(s) & =s X(x) \\
\frac{Y(s)}{X(s)} & =\frac{s}{s^{2}+s+1} \tag{1}
\end{align*}
$$

From the diagram, we see that

$$
\begin{equation*}
Y(s)=E(s) H(s) \tag{2}
\end{equation*}
$$

But $E(s)=X(s)-R(s)$ and $R(s)=E(s) H(s) G(s)$. Hence

$$
\begin{aligned}
E(s) & =X(s)-(E(s) H(s) G(s)) \\
E(s)(1+H(s) G(s)) & =X(s) \\
E(s) & =\frac{X(s)}{1+H(s) G(s)}
\end{aligned}
$$

Substituting the above in (2) gives

$$
\begin{align*}
Y(s) & =\frac{X(s)}{1+H(s) G(s)} H(s) \\
\frac{Y(s)}{X(s)} & =\frac{H(s)}{1+H(s) G(s)} \tag{3}
\end{align*}
$$

Comparing (3) and (1) shows that

$$
\frac{H(s)}{1+H(s) G(s)}=\frac{s}{s^{2}+s+1}
$$

But we are given that $H(s)=\frac{1}{s+1}$. Hence the above becomes

$$
\frac{\frac{1}{s+1}}{1+\frac{1}{s+1} G(s)}=\frac{s}{s^{2}+s+1}
$$

Now we solve for $G(s)$

$$
\begin{aligned}
\frac{\frac{1}{s+1}}{\frac{s+1+G(s)}{s+1}} & =\frac{s}{s^{2}+s+1} \\
\frac{1}{s+1+G(s)} & =\frac{s}{s^{2}+s+1} \\
s^{2}+s+s G(s) & =s^{2}+s+1 \\
s G(s) & =s^{2}+s+1-s^{2}-s \\
G(s) & =\frac{1}{s}
\end{aligned}
$$

4 Problem 11.5

$H(s)=1 /(s+1)$. Determine $G(s)$.
11.5. Consider the discrete-time feedback system depicted in Figure 11.3(b) with

$$
H(z)=\frac{1}{1-\frac{1}{2} z^{-1}} \quad \text { and } \quad G(z)=1-b z^{-1}
$$

For what real values of b is the feedback system stable?
11.6. Consider the discrete-time feedback svstem depicted in Figure 11.3(b) with

Figure 7: Problem description
solution
Figure 11.3 b is the following
(a)

1
(b)
a

Figure 8: figure from book 11.3(b)

From the diagram $Y(z)=E(z) H(z)$ but $E(z)=X(z)-R(z)$ and $R(z)=E(z) H(z) G(z)$, hence

$$
\begin{aligned}
E(z) & =X(z)-E(z) H(z) G(z) \\
E(z)(1+H(z) G(z)) & =X(z) \\
E(z) & =\frac{X(z)}{(1+H(z) G(z))}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
Y(z) & =E(z) H(z) \\
& =\frac{X(z)}{(1+H(z) G(z))} H(z) \\
\frac{Y(z)}{X(z)} & =\frac{H(z)}{1+H(z) G(z)}
\end{aligned}
$$

But $H(z)=\frac{1}{1-\frac{1}{2} z^{-1}}$ and $G(z)=1-b z^{-1}$. Hence the above becomes

$$
\begin{aligned}
\frac{Y(z)}{X(z)} & =\frac{\frac{1}{1-\frac{1}{2} z^{-1}}}{1+\frac{1}{1-\frac{1}{2} z^{-1}}\left(1-b z^{-1}\right)} \\
& =\frac{1}{1-\frac{1}{2} z^{-1}+1-b z^{-1}} \\
& =\frac{1}{2-\frac{1}{2} z^{-1}-b z^{-1}} \\
& =\frac{1}{2-\left(\frac{1}{2}+b\right) z^{-1}} \\
& =\frac{1}{2} \frac{1}{1-\left(\frac{1}{4}+\frac{b}{2}\right) z^{-1}}
\end{aligned}
$$

The pole is $\left(\frac{1}{4}+\frac{b}{2}\right) z^{-1}=1$ or $z=\frac{1}{4}+\frac{b}{2}$. For causal system the pole should be inside the unit circle for stable system (so that it has a DFT). Therefore

$$
\begin{aligned}
\left|\frac{1}{4}+\frac{b}{2}\right| & <1 \\
-1 & <\frac{1}{4}+\frac{b}{2}<1 \\
-1-\frac{1}{4} & <\frac{b}{2}<1-\frac{1}{4} \\
-\frac{5}{4} & <\frac{b}{2}<\frac{3}{4} \\
-\frac{10}{4} & <b<\frac{6}{4} \\
-\frac{5}{2} & <b<\frac{3}{2}
\end{aligned}
$$

