HW 1 Solutions

1.5. (a)
$$\Re e\{x_1(t)\} = -2 = 2e^{6t}\cos(0t + \pi)$$

(b) $\Re e\{x_2(t)\} = \sqrt{2}\cos(\frac{\pi}{4})\cos(3t + 2\pi) = \cos(3t) = e^{0t}\cos(3t + 0)$
(c) $\Re e\{x_3(t)\} = e^{-t}\sin(3t + \pi) = e^{-t}\cos(3t + \frac{\pi}{2})$
(d) $\Re e\{x_4(t)\} = -e^{-2t}\sin(100t) = e^{-2t}\sin(100t + \pi) = e^{-2t}\cos(100t + \frac{\pi}{2})$

1.13.

$$y(t) = \int_{-\infty}^{t} x(\tau)dt = \int_{-\infty}^{t} (\delta(\tau+2) - \delta(\tau-2))dt = \begin{cases} 0, & t < -2\\ 1, & -2 \le t \le 2\\ 0, & t > 2 \end{cases}$$

Therefore.

$$E_{\infty} = \int_{-2}^{2} dt = 4$$

- 17. (a) The system is not causal because the output y(t) at some time may depend on future values of x(t). For instance, $y(-\pi) = x(0)$.
 - (b) Consider two arbitrary inputs x1(t) and x2(t).

$$x_1(t) \longrightarrow y_1(t) = x_1 (\sin(t))$$

$$x_2(t) \longrightarrow y_2(t) = x_2(\sin(t))$$

Let $x_3(t)$ be a linear combination of $x_1(t)$ and $x_2(t)$. That is,

$$x_3(t) = ax_1(t) + bx_2(t)$$

where a and b are arbitrary scalars. If $x_3(t)$ is the input to the given system, then the corresponding output $y_3(t)$ is

$$y_3(t) = x_3 (\sin(t))$$

= $ax_1 (\sin(t)) + bx_2 (\sin(t))$
= $ay_1(t) + by_2(t)$

Therefore, the system is linear.

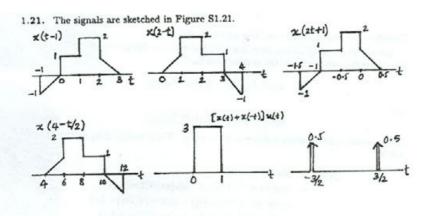
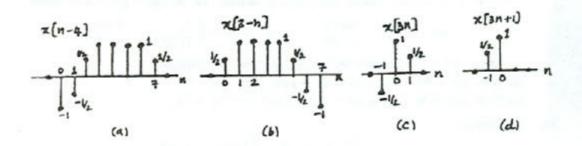
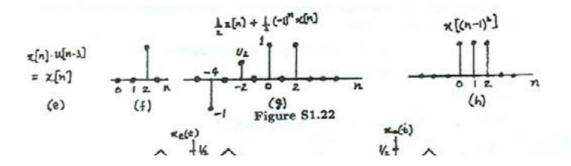


Figure S1.21

0





- 1.26. (a) Periodic, period = 7.
 - (b) Not periodic.
 - (c) Periodic, period = 8.
 - (d) $x[n] = (1/2)[\cos(3\pi n/4) + \cos(\pi n/4)]$. Periodic, period = 8.
 - (e) Periodic, period = 16.