HW 1

EE 3015 Signals and Systems

Spring 2020
 University of Minnesota, Twin Cities

Nasser M. Abbasi

May 27, 2020

Contents

1 Problem 1.8, Chapter 1 2
1.1 part a 2
1.2 part b 2
1.3 part c 2
1.4 part d 3
2 Problem 1.13, Chapter 1 4
3 Problem 1.17, Chapter 1 5
3.1 Part a 5
3.2 Part b 5
4 Problem 1.21, Chapter 1 6
4.1 Part a 7
4.2 Part b 8
4.3 Part c 8
4.4 Part d 9
5 Problem 1.22, Chapter 1 10
5.1 Part a 10
5.2 Part b 11
5.3 Part c 12
5.4 Part d 12
6 Problem 1.26, Chapter 1 14
6.1 Part a 14
6.2 Part b 14
6.3 Part c 15
6.4 Part d 15

1 Problem 1.8, Chapter 1

Express the real part of each of the following signals in the form $A e^{-a t} \cos (\omega t+\phi)$, where A, a, ω, ϕ are real numbers with $A>0$ and $-\pi<\phi \leq \pi$: (a) $x_{1}(t)=-2$, (b) $x_{2}(t)=$ $\sqrt{2} e^{\frac{\pi}{4}} \cos (3 t+2 \pi)$, (c) $x_{3}(t)=e^{-t} \sin (3 t+\pi)$, (d) $x_{4}(t)=j e^{(-2+100 j) t}$

Solution

1.1 part a

$$
x_{1}(t)=-2
$$

Comparing the above to $A e^{-a t} \cos (\omega t+\phi)$ shows that

$$
A=2, a=0, \phi=0, \omega=0, \phi=-\pi
$$

1.2 part b

$$
x_{2}(t)=\sqrt{2} e^{j \frac{\pi}{4}} \cos (3 t+2 \pi)
$$

Since $\cos (3 t+2 \pi)=\cos (3 t)$, the above becomes

$$
\begin{aligned}
x_{2}(t) & =\sqrt{2} e^{j \frac{\pi}{4}} \cos (3 t) \\
& =\sqrt{2}\left(\cos \frac{\pi}{4}+j \sin \frac{\pi}{4}\right) \cos (3 t) \\
& =\sqrt{2}\left(\frac{1}{2} \sqrt{2}+j \frac{1}{2} \sqrt{2}\right) \cos (3 t) \\
& =(1+j) \cos (3 t)
\end{aligned}
$$

Hence the real part of $x_{2}(t)$ is

$$
\operatorname{Re}\left(x_{2}(t)\right)=\cos (3 t)
$$

Comparing the above to $A e^{-a t} \cos (\omega t+\phi)$ shows that

$$
A=1, a=0, \omega=3, \phi=0
$$

1.3 part c

$$
x_{3}(t)=e^{-t} \sin (3 t+\pi)
$$

Since $\sin (3 t+\pi)=\cos \left(3 t+\pi-\frac{\pi}{2}\right)=\cos \left(3 t+\frac{\pi}{2}\right)$, then the above becomes

$$
x_{3}(t)=e^{-t} \cos \left(3 t+\frac{\pi}{2}\right)
$$

Comparing the above to $A e^{-a t} \cos (\omega t+\phi)$ shows that

$$
A=1, a=1, \omega=3, \phi=\frac{\pi}{2}
$$

1.4 part d

$$
\begin{aligned}
x_{4}(t) & =j e^{(-2+100 j) t} \\
& =j e^{-2 t} e^{j 100 t}
\end{aligned}
$$

But $j=e^{j \frac{\pi}{2}}$, hence the above becomes

$$
\begin{aligned}
x_{4}(t) & =e^{j \frac{\pi}{2}} e^{-2 t} e^{j 100 t} \\
& =e^{-2 t} e^{\left(100 t+\frac{\pi}{2}\right)} \\
& =e^{-2 t}\left(\cos \left(100 t+\frac{\pi}{2}\right)+j \sin \left(100 t+\frac{\pi}{2}\right)\right)
\end{aligned}
$$

Therefore

$$
\operatorname{Re}\left(x_{4}(t)\right)=e^{-2 t} \cos \left(100 t+\frac{\pi}{2}\right)
$$

Comparing the above to $A e^{-a t} \cos (\omega t+\phi)$ shows that

$$
A=1, a=2, \omega=100, \phi=\frac{\pi}{2}
$$

2 Problem 1.13, Chapter 1

Consider the continuous-time signal $x(t)=\delta(t+2)-\delta(t-2)$. Calculate the value of E_{∞} for the signal $y(t)=\int_{-\infty}^{t} x(\tau) d \tau$
Solution
$y(t)$ is first found

$$
\begin{aligned}
y(t) & =\int_{-\infty}^{t} \delta(t+2)-\delta(t-2) d \tau \\
& =\int_{-\infty}^{t} \delta(t+2) d \tau-\int_{-\infty}^{t} \delta(t-2) d \tau
\end{aligned}
$$

$\delta(t+2)$ is an impulse at $t=-2$ and $\delta(t-2)$ is an impulse at $t=2$. Hence is $t<-2$ then the above is zero. If $-2<t<2$ then only the first integral contributes giving 1 and if $t>2$ then both integral contribute 1 each, and hence cancel each others giving $y=0$. Therefore

$$
y(t)=\left\{\begin{array}{cc}
0 & t<-2 \\
1 & -2<t<2 \\
0 & t>2
\end{array}\right.
$$

Now that $y(t)$ is found, its E_{∞} can be calculated using the definition

$$
\begin{aligned}
E_{\infty} & =\int_{-\infty}^{\infty}|y(t)|^{2} d t \\
& =\int_{-2}^{2} 1 d t \\
& =[t]_{-2}^{2} \\
& =2+2
\end{aligned}
$$

Hence

$$
E_{\infty}=4
$$

3 Problem 1.17, Chapter 1

Consider a continuous-time system with input $x(t)$ and output $y(t)$ related by $y(t)=x(\sin (t))$. (a) Is this system causal? (b) Is this system linear?

Solution

3.1 Part a

A system is causal if its output at time t depends only on current t and on past t and not on future t. Picking $t=-\pi$, then $y(-\pi)=x(\sin (-\pi))=x(0)$. This shows that $y(-\pi)=$ $x(0)$. Hence the output depends on input at future time (since $0>-\pi$). Therefore this system is not causal.

3.2 Part b

Let input be $x(t)=a_{1} x_{1}(t)+a_{2} x_{2}(t)$. If the output when the input is $x(t)$ is given by $y(t)=$ $a_{1} y_{1}(t)+a_{2} y_{2}(t)$ where $y_{1}(t)=x_{1}(t)$ and $y_{2}(t)=x_{2}(t)$ then the system is linear. From the definition

$$
\begin{aligned}
y(t) & =x(\sin (t)) \\
& =a_{1} x_{1}(\sin (t))+a_{2} x_{2}(\sin (t))
\end{aligned}
$$

Now, $y_{1}(t)=x_{1}(\sin t)$ and $y_{2}(t)=x_{2}(\sin t)$. Hence the above becomes

$$
\begin{aligned}
y(t) & =x(\sin (t)) \\
& =a_{1} y_{1}(t)+a_{2} y_{2}(t)
\end{aligned}
$$

Therefore the system is linear.

4 Problem 1.21, Chapter 1

A continuous-time signal $x(t)$ is shown in Figure P1.21. Sketch and label carefully each of the following signals: (a) $x(t-1)$. (b) $x(2-t)$ (c) $x(2 t+1)$ (d) $x\left(4-\frac{t}{2}\right)$

Figure 1: The function $x(t)$

Solution

Looking at the plot, it can be constructed from unit step $u(t)$ and ramp function $r(t)$ as follows

$$
x(t)=-u(t+2)+r(t+2)-r(t+1)+u(t+1)+u(t)-u(t-1)-r(t-1)+r(t-2)
$$

Here is an implementation

Figure 2: Construction the signal $x(t)$ from unit step and ramp functions

```
x[t_] := -UnitStep[t + 2] + Ramp[t + 2] - Ramp[t + 1] +
    UnitStep[t + 1] + UnitStep [t] - UnitStep[t - 1] - Ramp [t - 1] + Ramp [t - 2] ;
p = Plot[x[t], {t, - 3, 3}, Exclusions }->\mathrm{ None,
    PlotStyle }->\mathrm{ Red,
    GridLines }->\mathrm{ Automatic, GridLinesStyle }->\mathrm{ LightGray];
```

Figure 3: Code for the above

4.1 Part a

$x(t-1)$ is $x(t)$ shifted to right by one unit time. Hence it becomes

$$
x(t-1)=-u(t+1)+r(t+1)-r(t)+u(t)+u(t-1)-u(t-2)-r(t-2)+r(t-3)
$$

Figure 4: Part (a) plot

```
x[t_] := -UnitStep[t + 2] + Ramp[t + 2] - Ramp[t + 1] +
    UnitStep[t + 1] + UnitStep[t] - UnitStep[t - 1] - Ramp[t - 1] + Ramp[t - 2];
    p = Plot[x[t-1], {t, - 3, 3}, Exclusions }->\mathrm{ None,
        PlotStyle }->\mathrm{ Red, GridLines }->\mathrm{ Automatic,
        GridLinesStyle }->\mathrm{ LightGray];
```

Figure 5: Code for the above

4.2 Part b

$$
x(2-t)=x(-(t-2))
$$

Hence the signal $x(t)$ is first flipped right to left (also called reflection about the $t=0$ axis) and the resulting function is then shifted to the right by 2 units. It becomes

$$
\begin{aligned}
x(2-t) & =-u((2-t)+2)+r((2-t)+2)-r((2-t)+1)+u((2-t)+1)+u(2-t)-u((2-t)-1)-r((2-t)-1)+r((2-t)-2) \\
& =-u(4-t)+r(4-t)-r(3-t)+u(3-t)+u(2-t)-u(1-t)-r(1-t)+r(-t)
\end{aligned}
$$

The flipped signal is

Figure 6: Part (b) signal after reflection

Now the above is shifted to the right by 2 units giving

Figure 7: Part (b) final plot

It also possible to first do the shifting, followed by the reflection. Same output will result.

4.3 Part c

$x(2 t+1)=x\left(2\left(t+\frac{1}{2}\right)\right)$. The signal is first shifted to the left by $\frac{1}{2}$ due to the $+\frac{1}{2}$ term, and then the resulting signal is squashed (contraction) by factor of 2 . Since the original signal is from
-1 to 3 , then after first shifting it to the left by 0.5 it becomes from -1.5 to 2.5 . Hence the original ramp that went from -2 to -1 now goes from -1.5 to -1 and the line that originally went from -1 to 0 now goes from -1 to $-\frac{1}{2}$ (half the length) and so on. This is the result

Figure 8: Part (c) plot

```
ClearAll[x, t];
x[t_] := -UnitStep[t + 2] + Ramp[t + 2] - Ramp[t + 1] +
    UnitStep[t + 1] + UnitStep[t] - UnitStep[t - 1] - Ramp[t - 1] + Ramp[t - 2];
p = Plot[x[2t+1],{t, - 2, 2}, PlotRange }->\mathrm{ All, Exclusions }->\mathrm{ None,
    PlotStyle }->\mathrm{ Red, GridLines }->\mathrm{ Automatic, GridLinesStyle }->\mathrm{ LightGray];
```

Figure 9: Code for the above

4.4 Part d

$x\left(4-\frac{t}{2}\right)=x\left(-\left(\frac{t}{2}-4\right)\right)=x\left(-\frac{1}{2}(t-8)\right)$. Hence, the signal is first shifted to the right by 8 due to the -8 term, and then the resulting signal is flipped across the $t=0$ axis, and then the resulting signal is stretched (expanded) by factor of 2 due to the multiplication by $\frac{1}{2}$ term. This is the result showing each step

Figure 10: Part (d) plot

5 Problem 1.22, Chapter 1

A discrete-time signal is shown in Figure P1.22. Sketch and label carefully each of the following signals (a) $x[n-4]$ (b) $x[3-n]$ (c) $x[3 n]$ (d) $x[3 n+1]$

Figure 11: The function $x[n]$

Solution

5.1 Part a

$x[n-4]$ is $x[n]$ shifted to the right by 4 positions. Hence it becomes

Figure 12: Part (a) plot

```
x[n_] := Piecewise[{{-1, n==-4},{-1/2,n== - 3},{1/2, n== - 2},
    {1, n== -1}, {1, n== 0}, {1, n== 1}, {1, n== 2}, {1/2, n== 3}}]
p = DiscretePlot [x[n-4],{n, - 5, 8}, PlotStyle }->{\mathrm{ Thick, Red}, AxesLabel }->{"n", "x[n]"}
    Axes }->\mathrm{ {True, False}, Ticks }->\mathrm{ {Range[-5, 8], Automatic}];
```

Figure 13: Code used for the above

5.2 Part b

$x[3-n]=x[-(n-3)]$. Hence $x[n]$ is first reflected to obtain $x[-n]$ and then the result is shifted to right by 3 . This is the result showing each step

Figure 14: Part (b) plot

5.3 Part c

x [3n]. Sample at $n=0$ remains the same. Sample at $n=-1$ gets the value of the sample that was at -3 which is $-\frac{1}{2}$. Sample at $n=-2$ gets the value of the sample that was at $n=-6$ which is zero. Hence for all n less than -1 new values are all zero. Same for the right side. The sample at $n=1$ gets the value of the sample that was at 3 which is $\frac{1}{2}$ and sample at $n=2$ gets the value of the sample that was at 6 which is 0 and all $n>1$ are therefore zero. Notice that this operation causes samples to be lost from the original signal. This is the final result

Figure 15: Part (c) plot

5.4 Part d

$x[3 n+1]$. Sample at $n=0$ gets the value that was at $n=1$ which is 1 . Sample at $n=-1$ gets the value of the sample that was at $-3+1=-2$ which is $\frac{1}{2}$. Sample at $n=-2$ gets the value of the sample that was at $n=-6+1=-5$ which is zero. Hence for all $n<-1$ all values are zero. Same for the right side. Sample at $n=1$ gets the value of the sample that was at $3+1=4$ which is 0 and therefore for all $n>1$ samples are zero. Notice that this operation causes samples to be lost from the original signal. The result is

Figure 16: Part (d) plot

6 Problem 1.26, Chapter 1

Determine whether or not each of the following discrete-time signals is periodic. If the signal is periodic, determine its fundamental period (a) $\sin \left(\frac{6}{7} \pi n+1\right)$ (b) $x[n]=\cos \left(\frac{n}{8}-\pi\right)$ (c) $x[n]=\cos \left(\frac{\pi}{8} n^{2}\right)$ (d) $x[n]=\cos \left(\frac{\pi}{2} n\right) \cos \left(\frac{\pi}{4} n\right)$

Solution
The signal $x[n]$ is periodic, if integer N can be found that $x[n]=x[n+N]$ for all n. Fundamental period is the smallest such integer N.

6.1 Part a

In this part, $x[n]=\sin \left(\frac{6}{7} \pi n+1\right)$. Hence the signal is periodic if

$$
\begin{aligned}
x[n] & =x[n+N] \\
\sin \left(\frac{6}{7} \pi n+1\right) & =\sin \left(\frac{6}{7} \pi(n+N)+1\right) \\
& =\sin \left(\left(\frac{6}{7} \pi n+1\right)+\frac{6}{7} \pi N\right)
\end{aligned}
$$

The above will be true if

$$
\frac{6}{7} \pi N=2 \pi m
$$

For some integer m and N. This is because sin has 2π period. This implies that

$$
\frac{3}{7}=\frac{m}{N}
$$

Therefore $N=7, m=3$. Since it was possible to find n, N integers, then it is periodic. Since m, N are relatively prime then $N=7$ is the fundamental period.

6.2 Part b

In this part, $x[n]=\cos \left(\frac{n}{8}-\pi\right)$. Hence the signal is periodic if

$$
\begin{aligned}
x[n] & =x[n+N] \\
\cos \left(\frac{n}{8}-\pi\right) & =\cos \left(\frac{n+N}{8}-\pi\right) \\
& =\cos \left(\left(\frac{n}{8}-\pi\right)+\frac{N}{8}\right)
\end{aligned}
$$

The above will be true if

$$
\begin{aligned}
\frac{N}{8} & =2 \pi m \\
\frac{1}{16 \pi} & =\frac{m}{N}
\end{aligned}
$$

For some integer N, m. It is not possible to find integers m, N to satisfy the above since π is an irrational number. Hence not periodic.

6.3 Part c

$x[n]=\cos \left(\frac{\pi}{8} n^{2}\right)$. Hence the signal is periodic if

$$
\begin{aligned}
x[n] & =x[n+N] \\
\cos \left(\frac{\pi}{8} n^{2}\right) & =\cos \left(\frac{\pi}{8}(n+N)^{2}\right) \\
& =\cos \left(\frac{\pi}{8}\left(n^{2}+N^{2}+2 n N\right)\right) \\
& =\cos \left(\frac{\pi}{8} n^{2}+\frac{\pi}{8}\left(N^{2}+2 n N\right)\right)
\end{aligned}
$$

The above will be true if

$$
\frac{\pi}{8}\left(N^{2}+2 n N\right)=2 \pi m
$$

Need to find smallest integer N to satisfy this for all n. Choosing $N=8$ the above becomes

$$
\begin{aligned}
\frac{\pi}{8}(64+16 n) & =m(2 \pi) \\
8 \pi+2 n \pi & =m(2 \pi)
\end{aligned}
$$

Hence for all $n, N=8$ satisfies the equation (since m is arbitrary integer). Therefore it is periodic and fundamental period $N=8$.

6.4 Part d

Using $\cos A \cos B=\frac{1}{2}(\cos (A+B)+\cos (A-B))$ then

$$
\begin{aligned}
\cos \left(\frac{\pi}{2} n\right) \cos \left(\frac{\pi}{4} n\right) & =\frac{1}{2}\left(\cos \left(\frac{\pi}{2} n+\frac{\pi}{4} n\right)+\cos \left(\frac{\pi}{2} n-\frac{\pi}{4} n\right)\right) \\
& =\frac{1}{2}\left(\cos \left(\frac{3 \pi}{4} n\right)+\cos \left(\frac{\pi}{4} n\right)\right)
\end{aligned}
$$

Considering each signal separately. $x[n]=\cos \left(\frac{3 \pi}{4} n\right)$. This is periodic if

$$
\begin{aligned}
x[n] & =x[n+N] \\
\cos \left(\frac{3 \pi}{4} n\right) & =\cos \left(\frac{3 \pi}{4}(n+N)\right) \\
& =\cos \left(\left(\frac{3 \pi}{4} n\right)+\frac{3 \pi}{4} N\right)
\end{aligned}
$$

The above will be true if

$$
\begin{aligned}
\frac{3 \pi}{4} N & =2 \pi m \\
\frac{3}{8} & =\frac{m}{N}
\end{aligned}
$$

It was possible to find integers N, m to satisfy this, where period $N=8$. Considering the second signal $x[n]=\cos \left(\frac{\pi}{4} n\right)$. This is periodic if

$$
\begin{aligned}
x[n] & =x[n+N] \\
\cos \left(\frac{\pi}{4} n\right) & =\cos \left(\frac{\pi}{4}(n+N)\right) \\
& =\cos \left(\left(\frac{\pi}{4} n\right)+\frac{\pi}{4} N\right)
\end{aligned}
$$

The above will be true if

$$
\begin{aligned}
\frac{\pi}{4} N & =2 \pi m \\
\frac{1}{8} & =\frac{m}{N}
\end{aligned}
$$

It was possible to find integers N, m to satisfy this, where period $N=8$. Therefore both signals periodic with same period, the sum is therefore periodic and the fundamental period is $N=8$.

