HW 8
 Physics 5041 Mathematical Methods for Physics Spring 2019
 University of Minnesota, Twin Cities

[^0]November 2, 2019

Contents

1 Problem 1 2
1.1 part $1(A B)^{T}=B^{T} A^{T}$ 2
1.2 Part $2(A B)^{\dagger}=B^{\dagger} A^{\dagger}$ 3
1.3 Part $3 \operatorname{Tr}(A B)=\operatorname{Tr}(B A)$ 4
1.4 Part $4 \operatorname{det}\left(A^{T}\right)=\operatorname{det} A$ 4
1.5 Part $5 \operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$ 5
2 Problem 2 6
3 Problem 3 14
4 Problem 4 16

1 Problem 1

1. (10 pts) Prove the following relations.

$$
\begin{aligned}
(A B)^{T} & =B^{T} A^{T} \\
(A B)^{\dagger} & =B^{\dagger} A^{\dagger} \\
\operatorname{Tr}(A B) & =\operatorname{Tr}(B A) \\
\operatorname{det} A^{T} & =\operatorname{det} A \\
\operatorname{det}(A B) & =\operatorname{det}(A) \cdot \operatorname{det}(B)
\end{aligned}
$$

For the last one you may assume that A and B are diagonal.

Figure 1: Problem statement
1.1 part $1(A B)^{T}=B^{T} A^{T}$

Let A be an n, m matrix and B be an m, p matrix. Hence $A B=C$ is an n, p matrix. By definition of matrix product which is rows of A multiply columns of B then the $i j$ element of C is

$$
c_{i j}=\sum_{k=1}^{m} a_{i k} b_{k j}
$$

Then $(A B)^{T}=C^{T}$. Hence from above, elements of C^{T} are given by

$$
\begin{equation*}
c_{j i}=\sum_{k=1}^{m} a_{j k} b_{k i} \tag{1}
\end{equation*}
$$

Now let $B^{T} A^{T}=Q$. Where now B^{T} is order $p \times m$ and A^{T} is order $m \times n$, hence Q is $p \times n$.

$$
\begin{aligned}
q_{i j} & =\sum_{k=1}^{m}\left(b_{i k}\right)^{T}\left(a_{k j}\right)^{T} \\
& =\sum_{k=1}^{m} b_{k i} a_{j k}
\end{aligned}
$$

But $\sum b_{k i} a_{j k}$ means to multiply column i of B by row j in A, which is the same as multiplying row j of A by column i of B. Hence we can change the order of multiplication above as

$$
\begin{equation*}
q_{i j}=\sum_{k=1}^{m} a_{j k} b_{k i} \tag{2}
\end{equation*}
$$

Comparing (1) and (2) shows they are the same. Hence

$$
C^{T}=Q
$$

Or

$$
(A B)^{T}=B^{T} A^{T}
$$

1.2 Part $2(A B)^{\dagger}=B^{\dagger} A^{\dagger}$

By definition $A^{+}=\left(A^{T}\right)^{*}$. Which means we take the transpose of A and then apply complex conjugate to its entries. Hence the solution follows the above, but we just have to apply complex conjugate at the end of each operation

Let A be an $n \times m$ matrix and B be $m \times p$ matrix. Hence $A B=C$ which is $n \times p$ matrix. By definition of matrix product which is row of A multiplies columns of B then the $i j$ element of C is

$$
c_{i j}=\sum_{k=1}^{m} a_{i k} b_{k j}
$$

Then $(A B)_{i j}^{\dagger}=\left(C_{i j}^{T}\right)^{*}=c_{j i}^{*}$. Hence from above

$$
c_{j i}^{*}=\sum_{k=1}^{m}\left(a_{j k} b_{k i}\right)^{*}
$$

But complex conjugate of product is same as product of complex conjugates, hence the above is same as

$$
\begin{equation*}
c_{j i}^{*}=\sum_{k=1}^{m} a_{j k}^{*} b_{k i}^{*} \tag{1}
\end{equation*}
$$

Now let $B^{\dagger} A^{\dagger}=Q$. Then

$$
\begin{aligned}
q_{i j} & =\sum_{k=1}^{m}\left(b_{i k}^{T}\right)^{*}\left(a_{k j}^{T}\right)^{*} \\
& =\sum_{k=1}^{m} b_{k i}^{*} a_{j k}^{*}
\end{aligned}
$$

But $\sum_{k=1}^{m} b_{k i}^{*} a_{j k}^{*}$ means to multiply complex conjugate of column i of B by complex conjugate of row j in A, which is the same as multiplying complex conjugate complex of row j of A by complex conjugate of column i of B. Hence the above can be written as

$$
\begin{equation*}
q_{i j}=\sum_{k=1}^{m} a_{j k}^{*} k_{k i}^{*} \tag{2}
\end{equation*}
$$

Comparing (1) and (2) shows they are the same. Hence

$$
\left(C^{T}\right)^{*}=Q
$$

Or

$$
(A B)^{\dagger}=B^{\dagger} A^{\dagger}
$$

1.3 Part $3 \operatorname{Tr}(A B)=\operatorname{Tr}(B A)$

The trace Tr of a matrix is the sum of elements on the diagonal matrix (and this applies only to square matrices). Let A be $n \times m$ And B be an $m \times n$ matrix. Hence $A B$ is $n \times n$ matrix and $B A$ is $m \times m$ matrix.

$$
\begin{aligned}
\operatorname{Tr}(A B) & =\sum_{i=1}^{n}(A B)_{i i} \\
& =\sum_{i=1}^{n}\left(\sum_{j=1}^{m} a_{i j} b_{j i}\right) \\
& =\sum_{j=1}^{m}\left(\sum_{i=1}^{n} b_{j i} a_{i j}\right) \\
& =\sum_{j=1}^{m}(B A)_{j j} \\
& =\operatorname{Tr}(B A)
\end{aligned}
$$

1.4 Part $4 \operatorname{det}\left(A^{T}\right)=\operatorname{det} A$

Proof by induction. Let base be $n=1$. Hence $A_{1 \times 1}$. It is clear that $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$ in this case. We could also have selected base case to be $n=2$. Any base case will work in proof by induction.

We now assume it is true for the $n-1$ case. i.e. $\operatorname{det}\left(A_{(n-1) \times(n-1)}\right)=\operatorname{det}\left(A_{(n-1) \times(n-1)}^{T}\right)$ is assumed to be true. This is called the induction hypothesis step.

We need now to show it is true for the case of n, i.e. we need to show that $\operatorname{det}\left(A_{n \times n}\right)=$ $\operatorname{det}\left(A_{n \times n}^{T}\right)$. Let

$$
A_{n \times n}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \cdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right)
$$

Therefore

$$
A_{n \times n}^{T}=\left(\begin{array}{cccc}
a_{11} & a_{21} & \cdots & a_{n 1} \\
a_{12} & a_{22} & \cdots & a_{n 2} \\
\vdots & \cdots & \ddots & \vdots \\
a_{1 n} & a_{2 n} & \cdots & a_{n n}
\end{array}\right)
$$

Now we take $\operatorname{det}(A)$ and expand using cofactors along the first row which gives

$$
\begin{equation*}
\operatorname{det}(A)=a_{11} \operatorname{det}\left(A_{11}\right)-a_{12} \operatorname{det}\left(A_{12}\right)+\cdots+(-1)^{n+1} a_{1 n} \operatorname{det}\left(A_{1 n}\right) \tag{1}
\end{equation*}
$$

Where $A_{i j}$ in the above means the matrix of dimensions $(n-1, n-1)$ taken from $A_{n \times n}$ by removing the $i^{\text {th }}$ row and the $j^{\text {th }}$ column. Now we do the same for A^{T} above, but instead of
expanding using first row, we expend using first column of A^{T} since we can pick any row or any column to expand around in order find the determinant. This gives

$$
\begin{equation*}
\operatorname{det}\left(A^{T}\right)=a_{11} \operatorname{det}\left(A^{T}\right)_{11}-a_{12} \operatorname{det}\left(A^{T}\right)_{21}+\cdots+(-1)^{n+1} a_{1 n} \operatorname{det}\left(A^{T}\right)_{n 1} \tag{2}
\end{equation*}
$$

For (1) to be the same as (2) we need to show that $\operatorname{det}\left(A_{11}\right)=\operatorname{det}\left(A^{T}\right)_{11}$ and $\operatorname{det}\left(A_{12}\right)=$ $\operatorname{det}\left(A^{T}\right)_{21}$ and all the way to $\operatorname{det}\left(A_{1 n}\right)=\operatorname{det}\left(A^{T}\right)_{n 1}$. But this is true by assumption. Since we assumed that $\operatorname{det}\left(A_{(n-1) \times(n-1)}\right)=\operatorname{det}\left(A_{(n-1) \times(n-1)}^{T}\right)$. In other words, by the induction hypothesis $\operatorname{det}\left(A_{i j}\right)=\operatorname{det}\left(A^{T}\right)_{j i}$ since both are $(n-1) \times(n-1)$ order. Hence (1) is the same as (2). This completes the proof.

1.5 Part $5 \operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$

Since the matrices are diagonal they must be square. And since product $A B$ is defined, then they must both be same dimension, say $n \times n$.

Since A, B are diagonal, then

$$
\begin{aligned}
& \operatorname{det}(A)=a_{11} a_{22} \cdots a_{n n}=\prod_{i}^{n} a_{i i} \\
& \operatorname{det}(B)=b_{11} b_{22} \cdots b_{n n}=\prod_{i}^{n} b_{i j}
\end{aligned}
$$

Now since A, B are diagonals, then the product is diagonal. Using definition of a row from A multiplies a column in B, we get

$$
\left(\begin{array}{cccc}
a_{11} & 0 & 0 & 0 \\
0 & a_{22} & 0 & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & 0 & a_{n n}
\end{array}\right)\left(\begin{array}{cccc}
b_{11} & 0 & 0 & 0 \\
0 & b_{22} & 0 & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & 0 & b_{n n}
\end{array}\right)=\left(\begin{array}{cccc}
a_{11} b_{11} & 0 & 0 & 0 \\
0 & a_{22} b_{22} & 0 & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & 0 & a_{n n} b_{n n}
\end{array}\right)
$$

Then we see that

$$
\begin{aligned}
\operatorname{det}(A B) & =\left(a_{11} b_{11}\right)\left(a_{22} b_{22}\right) \cdots\left(a_{n n} b_{n n}\right) \\
& =\left(a_{11} a_{22} \cdots a_{n n}\right)\left(b_{11} b_{22} \cdots b_{n n}\right) \\
& =\prod_{i}^{n} a_{i i} \prod_{i}^{n} b_{j j} \\
& =\operatorname{det}(A) \operatorname{det}(B)
\end{aligned}
$$

2 Problem 2

2. (7 pts) Find the eigenvalues and eigenvectors of the matrix

$$
\left(\begin{array}{ccc}
\frac{5}{2} & \sqrt{\frac{3}{2}} & \sqrt{\frac{3}{4}} \\
\sqrt{\frac{3}{2}} & \frac{7}{3} & \sqrt{\frac{1}{18}} \\
\sqrt{\frac{3}{4}} & \sqrt{\frac{1}{18}} & \frac{13}{6}
\end{array}\right)
$$

Figure 2: Problem statement

We first need to find the eigenvalues λ by solving

$$
\operatorname{det}(A-\lambda I)=0
$$

The above gives a polynomial of order 3 .

$$
\begin{aligned}
& \left|\left(\begin{array}{lll}
\frac{5}{2} & \sqrt{\frac{3}{2}} & \sqrt{\frac{3}{4}} \\
\sqrt{\frac{3}{2}} & \frac{7}{3} & \sqrt{\frac{1}{18}} \\
\sqrt{\frac{3}{4}} & \sqrt{\frac{1}{18}} & \frac{13}{6}
\end{array}\right)-\left(\begin{array}{lll}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right)\right|=0 \\
& \left|\begin{array}{ccc}
\frac{5}{2}-\lambda & \sqrt{\frac{3}{2}} & \sqrt{\frac{3}{4}} \\
\sqrt{\frac{3}{2}} & \frac{7}{3}-\lambda & \sqrt{\frac{1}{18}} \\
\sqrt{\frac{3}{4}} & \sqrt{\frac{1}{18}} & \frac{13}{6}-\lambda
\end{array}\right|=0 \\
& \left(\frac{5}{2}-\lambda\right)\left|\begin{array}{cc}
\frac{7}{3}-\lambda & \sqrt{\frac{1}{18}} \\
\sqrt{\frac{1}{18}} & \frac{13}{6}-\lambda
\end{array}\right|-\sqrt{\frac{3}{2}}\left|\begin{array}{cc}
\sqrt{\frac{3}{2}} & \sqrt{\frac{1}{18}} \\
\sqrt{\frac{3}{4}} & \frac{13}{6}-\lambda
\end{array}\right|+\sqrt{\frac{3}{4}}\left|\begin{array}{cc}
\sqrt{\frac{3}{2}} & \frac{7}{3}-\lambda \\
\sqrt{\frac{3}{4}} & \sqrt{\frac{1}{18}}
\end{array}\right|=0
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left(\frac{5}{2}-\lambda\right)\left(\left(\frac{7}{3}-\lambda\right)\left(\frac{13}{6}-\lambda\right)\right. & \left.-\sqrt{\frac{1}{18}} \sqrt{\frac{1}{18}}\right) \\
& -\sqrt{\frac{3}{2}}\left(\sqrt{\frac{3}{2}}\left(\frac{13}{6}-\lambda\right)-\sqrt{\frac{1}{18}} \sqrt{\frac{3}{4}}\right) \\
& +\sqrt{\frac{3}{4}}\left(\sqrt{\frac{3}{2}} \sqrt{\frac{1}{18}}-\left(\frac{7}{3}-\lambda\right) \sqrt{\frac{3}{4}}\right)=0
\end{aligned}
$$

Or

$$
\begin{aligned}
\left(\frac{5}{2}-\lambda\right)\left(\lambda^{2}-\frac{9}{2} \lambda+\frac{90}{18}\right)-\sqrt{\frac{3}{2}}\left(\sqrt{6}-\frac{1}{2} \sqrt{2} \sqrt{3} \lambda\right)+\sqrt{\frac{3}{4}}\left(\sqrt{3}\left(\frac{1}{2} \lambda-1\right)\right) & =0 \\
\left(\frac{5}{2}-\lambda\right)\left(\lambda^{2}-\frac{9}{2} \lambda+\frac{90}{18}\right)+\left(\frac{3}{2} \lambda-3\right)+\left(\frac{3}{4} \lambda-\frac{3}{2}\right) & =0 \\
\left(\frac{5}{2}-\lambda\right)\left(\lambda^{2}-\frac{9}{2} \lambda+\frac{90}{18}\right)+\frac{9}{4} \lambda-\frac{9}{2} & =0 \\
-\lambda^{3}+7 \lambda^{2}-14 \lambda+8 & =0 \\
\lambda^{3}-7 \lambda^{2}+14 \lambda-8 & =0
\end{aligned}
$$

By inspection we see that $\lambda=2$ is a root. Then by long division $\frac{\lambda^{3}-7 \lambda^{2}+14 \lambda-8}{\lambda-2}=\lambda^{2}-5 \lambda+4$. Therefore the above polynomial can be written as

$$
\begin{aligned}
\left(\lambda^{2}-5 \lambda+4\right)(\lambda-2) & =0 \\
(\lambda-1)(\lambda-4)(\lambda-2) & =0
\end{aligned}
$$

Hence the eigenvalues are

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=2 \\
& \lambda_{3}=4
\end{aligned}
$$

For each eigenvalue there is one corresponding eigenvector (unless it is degenerate). The eigenvectors are found by solving the following

$$
\begin{aligned}
A v_{i} & =\lambda_{i} v_{i} \\
\left(A-\lambda_{i} I\right) v_{i} & =0 \\
\left(\begin{array}{ccc}
\frac{5}{2}-\lambda_{i} & \sqrt{\frac{3}{2}} & \sqrt{\frac{3}{4}} \\
\sqrt{\frac{3}{2}} & \frac{7}{3}-\lambda_{i} & \sqrt{\frac{1}{18}} \\
\sqrt{\frac{3}{4}} & \sqrt{\frac{1}{18}} & \frac{13}{6}-\lambda_{i}
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)_{i} & =\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

$\underline{\text { For } \lambda_{1}=1}$

$$
\begin{aligned}
& \left(\begin{array}{ccc}
\frac{5}{2}-1 & \sqrt{\frac{3}{2}} & \sqrt{\frac{3}{4}} \\
\sqrt{\frac{3}{2}} & \frac{7}{3}-1 & \sqrt{\frac{1}{18}} \\
\sqrt{\frac{3}{4}} & \sqrt{\frac{1}{18}} & \frac{13}{6}-1
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
& \left(\begin{array}{ccc}
\frac{3}{2} & \sqrt{\frac{3}{2}} & \sqrt{\frac{3}{4}} \\
\sqrt{\frac{3}{2}} & \frac{4}{3} & \sqrt{\frac{1}{18}} \\
\sqrt{\frac{3}{4}} & \sqrt{\frac{1}{18}} & \frac{7}{6}
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

Let $v_{1}=1$ and the above becomes

$$
\left(\begin{array}{ccc}
\frac{3}{2} & \sqrt{\frac{3}{2}} & \sqrt{\frac{3}{4}} \\
\sqrt{\frac{3}{2}} & \frac{4}{3} & \sqrt{\frac{1}{18}} \\
\sqrt{\frac{3}{4}} & \sqrt{\frac{1}{18}} & \frac{7}{6}
\end{array}\right)\left(\begin{array}{l}
1 \\
v_{2} \\
v_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

We only need the first 2 equations. This results in

$$
\begin{aligned}
& \frac{3}{2}+\sqrt{\frac{3}{2}} v_{2}+\sqrt{\frac{3}{4}} v_{3}=0 \\
& \sqrt{\frac{3}{2}}+\frac{4}{3} v_{2}+\sqrt{\frac{1}{18}} v_{3}=0
\end{aligned}
$$

From the first equation above

$$
\begin{equation*}
v_{2}=\frac{-\frac{3}{2}-\sqrt{\frac{3}{4}} v_{3}}{\sqrt{\frac{3}{2}}} \tag{4}
\end{equation*}
$$

Substituting in the second equation gives

$$
\begin{aligned}
\sqrt{\frac{3}{2}}+\frac{4}{3}\left(\frac{-\frac{3}{2}-\sqrt{\frac{3}{4}} v_{3}}{\sqrt{\frac{3}{2}}}\right)+\sqrt{\frac{1}{18}} v_{3} & =0 \\
-\frac{1}{2} \sqrt{2} v_{3}-\frac{1}{6} \sqrt{2} \sqrt{3} & =0 \\
v_{3} & =-\frac{\frac{1}{6} \sqrt{2} \sqrt{3}}{\frac{1}{2} \sqrt{2}} \\
& =-\frac{2 \sqrt{3}}{6} \\
& =-\frac{\sqrt{3}}{3} \\
& =-\frac{1}{\sqrt{3}}
\end{aligned}
$$

Hence from (4)

$$
\begin{aligned}
v_{2} & =\frac{-\frac{3}{2}-\sqrt{\frac{3}{4}}\left(-\frac{1}{\sqrt{3}}\right)}{\sqrt{\frac{3}{2}}} \\
& =-\frac{\sqrt{2}}{\sqrt{3}}
\end{aligned}
$$

Therefore the eigenvector associated with $\lambda_{1}=1$ is $\left(\begin{array}{c}1 \\ -\frac{\sqrt{2}}{\sqrt{3}} \\ -\frac{1}{\sqrt{3}}\end{array}\right)$ or by scaling it all by $-\sqrt{3}$ it becomes

$$
\vec{v}_{1}=\left(\begin{array}{c}
-\sqrt{3} \\
\sqrt{2} \\
1
\end{array}\right)
$$

We now do the same for the second eigenvalue.
For $\lambda_{2}=2$

$$
\begin{aligned}
& \left(\begin{array}{ccc}
\frac{5}{2}-2 & \sqrt{\frac{3}{2}} & \sqrt{\frac{3}{4}} \\
\sqrt{\frac{3}{2}} & \frac{7}{3}-2 & \sqrt{\frac{1}{18}} \\
\sqrt{\frac{3}{4}} & \sqrt{\frac{1}{18}} & \frac{13}{6}-2
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
& \left(\begin{array}{ccc}
\frac{1}{2} & \sqrt{\frac{3}{2}} & \sqrt{\frac{3}{4}} \\
\sqrt{\frac{3}{2}} & \frac{1}{3} & \sqrt{\frac{1}{18}} \\
\sqrt{\frac{3}{4}} & \sqrt{\frac{1}{18}} & \frac{1}{6}
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)
\end{aligned}
$$

Let $v_{1}=1$ and the above becomes

$$
\left(\begin{array}{ccc}
\frac{1}{2} & \sqrt{\frac{3}{2}} & \sqrt{\frac{3}{4}} \\
\sqrt{\frac{3}{2}} & \frac{1}{3} & \sqrt{\frac{1}{18}} \\
\sqrt{\frac{3}{4}} & \sqrt{\frac{1}{18}} & \frac{1}{6}
\end{array}\right)\left(\begin{array}{c}
1 \\
v_{2} \\
v_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

We only need the first 2 equations. This results in

$$
\begin{aligned}
& \frac{1}{2}+\sqrt{\frac{3}{2}} v_{2}+\sqrt{\frac{3}{4}} v_{3}=0 \\
& \sqrt{\frac{3}{2}}+\frac{1}{3} v_{2}+\sqrt{\frac{1}{18}} v_{3}=0
\end{aligned}
$$

From the first equation above

$$
\begin{equation*}
v_{2}=\frac{-\frac{1}{2}-\sqrt{\frac{3}{4}} v_{3}}{\sqrt{\frac{3}{2}}} \tag{4~A}
\end{equation*}
$$

Substituting in the second equation gives

$$
\begin{aligned}
\sqrt{\frac{3}{2}}+\frac{1}{3}\left(\frac{-\frac{1}{2}-\sqrt{\frac{3}{4}} v_{3}}{\sqrt{\frac{3}{2}}}\right)+\sqrt{\frac{1}{18}} v_{3} & =0 \\
\sqrt{\frac{3}{2}}-\sqrt{\frac{1}{18}} v_{3}-\frac{1}{18} \sqrt{2} \sqrt{3}+\sqrt{\frac{1}{18}} v_{3} & =0 \\
0 & =\sqrt{\frac{3}{2}}+\frac{1}{18} \sqrt{2} \sqrt{3}
\end{aligned}
$$

This is not possible. So out choice of setting $v_{1}=1$ does not work. Let us try to set $v_{2}=1$ and repeat the process

$$
\left(\begin{array}{ccc}
\frac{1}{2} & \sqrt{\frac{3}{2}} & \sqrt{\frac{3}{4}} \\
\sqrt{\frac{3}{2}} & \frac{1}{3} & \sqrt{\frac{1}{18}} \\
\sqrt{\frac{3}{4}} & \sqrt{\frac{1}{18}} & \frac{1}{6}
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
1 \\
v_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Again, we only need the first two equations. This results in

$$
\begin{aligned}
& \frac{1}{2} v_{1}+\sqrt{\frac{3}{2}}+\sqrt{\frac{3}{4}} v_{3}=0 \\
& \sqrt{\frac{3}{2}} v_{1}+\frac{1}{3}+\sqrt{\frac{1}{18}} v_{3}=0
\end{aligned}
$$

From the first equation above

$$
\begin{equation*}
v_{1}=\frac{-\sqrt{\frac{3}{2}}-\sqrt{\frac{3}{4}} v_{3}}{\frac{1}{2}} \tag{4~A}
\end{equation*}
$$

Substituting in the second equation gives

$$
\begin{aligned}
\sqrt{\frac{3}{4}\left(\frac{-\sqrt{\frac{3}{2}}-\sqrt{\frac{3}{4}} v_{3}}{\frac{1}{2}}\right)+\frac{1}{3}+\sqrt{\frac{1}{18}} v_{3}}=\left\{\begin{aligned}
-\frac{3}{2} v_{3}-\frac{3}{2} \sqrt{2}+\frac{1}{3}+\sqrt{\frac{1}{18}} v_{3} & =0 \\
\frac{1}{6} \sqrt{2} v_{3}-\frac{3}{2} v_{3}-\frac{3}{2} \sqrt{2}+\frac{1}{3} & =0 \\
v_{3}\left(\frac{1}{6} \sqrt{2}-\frac{3}{2}\right) & =\frac{3}{2} \sqrt{2}-\frac{1}{3} \\
v_{3} & =\frac{\frac{3}{2} \sqrt{2}-\frac{1}{3}}{\frac{1}{2} \sqrt{2}-\frac{3}{2}} \\
& =-\sqrt{2}
\end{aligned}\right.
\end{aligned}
$$

Hence from (4A) $v_{1}=\frac{-\sqrt{\frac{3}{2}}-\sqrt{\frac{3}{4}}(-\sqrt{2})}{\frac{1}{2}}=\frac{-\sqrt{\frac{3}{2}}+\sqrt{\frac{3}{2}}}{\frac{1}{2}}=0$. Therefore the eigenvector associated with $\lambda_{2}=2$ is $\left(\begin{array}{c}0 \\ 1 \\ -\sqrt{2}\end{array}\right)$ or by scaling it all by $-\frac{1}{\sqrt{2}}$ it becomes

$$
\vec{v}_{2}=\left(\begin{array}{c}
0 \\
-\frac{1}{\sqrt{2}} \\
1
\end{array}\right)
$$

We now do the same for the final eigenvalue
For $\lambda_{3}=4$

$$
\begin{aligned}
& \left(\begin{array}{ccc}
\frac{5}{2}-4 & \sqrt{\frac{3}{2}} & \sqrt{\frac{3}{4}} \\
\sqrt{\frac{3}{2}} & \frac{7}{3}-4 & \sqrt{\frac{1}{18}} \\
\sqrt{\frac{3}{4}} & \sqrt{\frac{1}{18}} & \frac{13}{6}-4
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
& \left(\begin{array}{ccc}
-\frac{3}{2} & \sqrt{\frac{3}{2}} & \sqrt{\frac{3}{4}} \\
\sqrt{\frac{3}{2}} & -\frac{5}{3} & \sqrt{\frac{1}{18}} \\
\sqrt{\frac{3}{4}} & \sqrt{\frac{1}{18}} & -\frac{11}{6}
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)
\end{aligned}
$$

Let $v_{1}=1$ and the above becomes

$$
\left(\begin{array}{ccc}
-\frac{3}{2} & \sqrt{\frac{3}{2}} & \sqrt{\frac{3}{4}} \\
\sqrt{\frac{3}{2}} & -\frac{5}{3} & \sqrt{\frac{1}{18}} \\
\sqrt{\frac{3}{4}} & \sqrt{\frac{1}{18}} & -\frac{11}{6}
\end{array}\right)\left(\begin{array}{c}
1 \\
v_{2} \\
v_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

We only need the first 2 equations. This results in

$$
\begin{aligned}
& -\frac{3}{2}+\sqrt{\frac{3}{2}} v_{2}+\sqrt{\frac{3}{4}} v_{3}=0 \\
& \sqrt{\frac{3}{2}}-\frac{5}{3} v_{2}+\sqrt{\frac{1}{18}} v_{3}=0
\end{aligned}
$$

From the first equation above

$$
\begin{equation*}
v_{2}=\frac{\frac{3}{2}-\sqrt{\frac{3}{4}} v_{3}}{\sqrt{\frac{3}{2}}} \tag{4B}
\end{equation*}
$$

Substituting in the second equation gives

$$
\begin{aligned}
\sqrt{\frac{3}{2}}-\frac{5}{3}\left(\frac{\frac{3}{2}-\sqrt{\frac{3}{4}} v_{3}}{\sqrt{\frac{3}{2}}}\right)+\sqrt{\frac{1}{18}} v_{3} & =0 \\
\frac{5}{6} \sqrt{2} v_{3}-\frac{1}{3} \sqrt{2} \sqrt{3}+\sqrt{\frac{1}{18}} v_{3} & =0 \\
\sqrt{2} v_{3}-\frac{1}{3} \sqrt{2} \sqrt{3} & =0 \\
v_{3} & =\frac{\frac{1}{3} \sqrt{2} \sqrt{3}}{\sqrt{2}} \\
& =\frac{1}{3} \sqrt{3} \\
& =\frac{1}{\sqrt{3}}
\end{aligned}
$$

Hence from (4B) $v_{2}=\frac{\frac{3}{2}-\sqrt{\frac{3}{4}}\left(\frac{1}{\sqrt{3}}\right)}{\sqrt{\frac{3}{2}}}=\frac{1}{3} \sqrt{2} \sqrt{3}=\frac{\sqrt{2}}{\sqrt{3}}$. Therefore the eigenvector associated with
$\lambda_{3}=4$ is $\left(\begin{array}{c}1 \\ \frac{\sqrt{2}}{\sqrt{3}} \\ \frac{1}{\sqrt{3}}\end{array}\right)$ or by scaling it all by $\sqrt{3}$ it becomes

$$
\vec{v}_{3}=\left(\begin{array}{c}
\sqrt{3} \\
\sqrt{2} \\
1
\end{array}\right)
$$

Therefore the final solution is

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=2 \\
& \lambda_{3}=4
\end{aligned}
$$

And

$$
\vec{v}_{1}=\left(\begin{array}{c}
-\sqrt{3} \\
\sqrt{2} \\
1
\end{array}\right), \vec{v}_{2}=\left(\begin{array}{c}
0 \\
-\frac{1}{\sqrt{2}} \\
1
\end{array}\right), \vec{v}_{3}=\left(\begin{array}{c}
\sqrt{3} \\
\sqrt{2} \\
1
\end{array}\right)
$$

3 Problem 3

3. (5 pts) Let U be a unitary matrix and let x_{1} and x_{2} be two eigenvectors of U with eigenvalues λ_{1} and λ_{2}, respectively. Show that $\left|\lambda_{1}\right|=\left|\lambda_{2}\right|=1$. Also show that if $\lambda_{1} \neq \lambda_{2}$ then $x_{1}^{\dagger} x_{2}=0$.

Figure 3: Problem statement

A unitary matrix U means $U^{-1}=U^{\dagger}$. Let λ, x be the eigenvalue and the associated eigenvector. We also assume that the eigenvalue is not zero. Hence

$$
\begin{equation*}
U x=\lambda x \tag{1}
\end{equation*}
$$

Applying † operation (i.e. Transpose followed by complex conjugate) on the above gives

$$
\begin{align*}
(U x)^{\dagger} & =(\lambda x)^{\dagger} \\
x^{\dagger} U^{\dagger} & =x^{\dagger} \lambda^{*} \tag{2}
\end{align*}
$$

Multiplying (2) by (1) gives

$$
x^{\dagger} U^{\dagger} U x=x^{\dagger} \lambda^{*} \lambda x
$$

But U is unitary, hence $U^{+}=U^{-1}$ and the above becomes after replacing $\lambda^{*} \lambda$ by $|\lambda|^{2}$

$$
\begin{aligned}
x^{\dagger} U^{-1} U x & =|\lambda|^{2}\left(x^{\dagger} x\right) \\
x^{\dagger} x & =|\lambda|^{2}\left(x^{\dagger} x\right)
\end{aligned}
$$

Hence $|\lambda|^{2}=1$ or $|\lambda|=1$ since this is a length, and so can not be negative. But since λ is an arbitrary eigenvalue, then any complex eigenvalue has absolute value of 1 . Therefore

$$
\left|\lambda_{1}\right|=\left|\lambda_{2}\right|=1
$$

Now we consider the specific case when $\lambda_{1} \neq \lambda_{2}$ but we still require that $\left|\lambda_{1}\right|=1$ and $\left|\lambda_{2}\right|=1$ which was shown in first part above. We also assume for generality that the eigenvalues are not zero.

Given that

$$
\begin{align*}
& U x_{1}=\lambda_{1} x_{1} \tag{1}\\
& U x_{2}=\lambda_{2} x_{2} \tag{2}
\end{align*}
$$

From (1) we obtain

$$
\begin{align*}
\left(U x_{1}\right)^{\dagger} & =\left(\lambda_{1} x_{1}\right)^{\dagger} \\
x_{1}^{\dagger} U^{\dagger} & =x_{1}^{\dagger} \lambda_{1}^{*} \tag{3}
\end{align*}
$$

Multiplying (3) by (2) gives

$$
\begin{aligned}
x_{1}^{\dagger} U^{\dagger} U x_{2} & =x_{1}^{\dagger} \lambda_{1}^{*} \lambda_{2} x_{2} \\
x_{1}^{\dagger} U^{-1} U x_{2} & =\left(\lambda_{1}^{*} \lambda_{2}\right)\left(x_{1}^{\dagger} x_{2}\right) \\
x_{1}^{\dagger} x_{2} & =\left(\lambda_{1}^{*} \lambda_{2}\right)\left(x_{1}^{\dagger} x_{2}\right)
\end{aligned}
$$

Since $\left|\lambda_{1}\right|=\left|\lambda_{2}\right|=1$ but $\lambda_{1} \neq \lambda_{2}$, therefore $\left(\lambda_{1}^{*} \lambda_{2}\right) \neq 1$. From the above this implies that $x_{1}^{\dagger} x_{2}=0$.

4 Problem 4

4. (3 pts) Calculate the determinant of the sparse matrix (sparse means that most of the entries are zero)

$$
\left(\begin{array}{rrrrr}
0 & -i & 0 & 0 & 0 \\
i & 0 & 0 & 0 & 0 \\
0 & 0 & 3 & 0 & 0 \\
0 & 0 & 0 & 1 & i \\
0 & 0 & 0 & i & 1
\end{array}\right)
$$

Figure 4: Problem statement

$$
A=\left(\begin{array}{ccccc}
0 & -i & 0 & 0 & 0 \\
i & 0 & 0 & 0 & 0 \\
0 & 0 & 3 & 0 & 0 \\
0 & 0 & 0 & 1 & i \\
0 & 0 & 0 & i & 1
\end{array}\right)
$$

We want to expand using a row or column which has most zeros in it since this leads to lots of cancellations and more efficient. Expanding using first row, then

$$
\begin{aligned}
\operatorname{det}(A) & =0+i \operatorname{det}\left(\begin{array}{llll}
i & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 1 & i \\
0 & 0 & i & 1
\end{array}\right)+0+0+0 \\
& =i\left(i \operatorname{det}\left(\begin{array}{lll}
3 & 0 & 0 \\
0 & 1 & i \\
0 & i & 1
\end{array}\right)\right) \\
& =i\left(i\left(3 \operatorname{det}\left(\begin{array}{ll}
1 & i \\
i & 1
\end{array}\right)\right)\right) \\
& =i\left(i\left(3\left(1-i^{2}\right)\right)\right) \\
& =3 i^{2}\left(1-i^{2}\right) \\
& =-3(1+1) \\
& =-6
\end{aligned}
$$

To verify this, we will now do expansion along the second row. To get the sign of a_{21} we
use $(-1)^{2+1}=-1^{3}=-1$. Hence

$$
\begin{aligned}
\operatorname{det}(A) & =-i \operatorname{det}\left(\begin{array}{cccc}
-i & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 1 & i \\
0 & 0 & i & 1
\end{array}\right) \\
& =-i\left(-i \operatorname{det}\left(\begin{array}{lll}
3 & 0 & 0 \\
0 & 1 & i \\
0 & i & 1
\end{array}\right)\right) \\
& =-i\left(-i\left(3 \operatorname{det}\left(\begin{array}{ll}
1 & i \\
i & 1
\end{array}\right)\right)\right) \\
& =-i\left(-i\left(3\left(1-i^{2}\right)\right)\right) \\
& =3 i^{2}\left(1-i^{2}\right) \\
& =-3(1+1) \\
& =-6
\end{aligned}
$$

Which is the same as the expansion using the first row. Verified OK.

[^0]: Nasser M. Abbasi

