HW 6
 Physics 5041 Mathematical Methods for Physics
 Spring 2019
 University of Minnesota, Twin Cities

Nasser M. Abbasi

Contents

1 Problem 1 2
2 Problem 2 5
3 Problem 3 6
4 Problem 4 9
4.1 Appendix . 12

1 Problem 1

1. (5 pts) The rate of nuclear reactions in a star is given by the formula

$$
R=N \int_{0}^{\infty} d E E \mathrm{e}^{-\beta E} \mathrm{e}^{-\alpha E^{-1 / 2}}
$$

where E is energy, $\beta=1 / k_{B} T, \alpha$ is a constant, and N is a normalization. Evaluate this integral using the saddle point approximation when $\left(\beta \alpha^{2}\right)^{1 / 3} \gg 1$. This is the low temperature limit appropriate for conditions in the star.

Figure 1: Problem statement

Solution

The first step in saddle point method is to write the integral as $\int_{0}^{\infty} e^{f(E)} d E$. Hence

$$
\begin{align*}
R & =N \int_{0}^{\infty} e^{\left(-\beta E-\alpha E^{\frac{-1}{2}}+\ln E\right)} d E \\
& =N \int_{0}^{\infty} e^{f(E)} d E \tag{A}
\end{align*}
$$

Where

$$
\begin{equation*}
f(E)=-\beta E-\alpha E^{\frac{-1}{2}}+\ln E \tag{1}
\end{equation*}
$$

The next step is to determine where $f(E)$ is maximum. Therefore we need to solve $f^{\prime}(E)=0$ in order to determine E_{0}, where $f\left(E_{0}\right)$ is maximum.

$$
\begin{aligned}
f^{\prime}(E) & =-\beta+\frac{1}{2} \alpha E^{\frac{-3}{2}}+\frac{1}{E} \\
& =0
\end{aligned}
$$

We need to make this dimensionless. Multiplying both sides of the above by α^{2} gives

$$
-\alpha^{2} \beta+\frac{1}{2} \alpha^{3} E^{\frac{-3}{2}}+\frac{\alpha^{2}}{E}=0
$$

Let $E=x \alpha^{2}$, then the above becomes

$$
\begin{align*}
-\alpha^{2} \beta+\frac{1}{2} \alpha^{3}\left(x \alpha^{2}\right)^{\frac{-3}{2}}+\frac{\alpha^{2}}{\left(x \alpha^{2}\right)} & =0 \\
-\alpha^{2} \beta+\frac{1}{2} \frac{1}{x^{\frac{3}{2}}}+\frac{1}{x} & =0 \tag{2}
\end{align*}
$$

Case 1 Ignoring the term $\frac{1}{x^{\frac{3}{2}}}$ in (2) results in

$$
\begin{aligned}
-\alpha^{2} \beta+\frac{1}{x} & =0 \\
\frac{1}{x} & =\alpha^{2} \beta \\
x & =\frac{1}{\alpha^{2} \beta}
\end{aligned}
$$

Using this value for x we check if this is larger than or smaller than the term we ignored which is $\frac{1}{x^{\frac{3}{2}}}$.

$$
\left[\frac{1}{x^{\frac{3}{2}}}\right]_{x=\frac{1}{\alpha^{2} \beta}}=\frac{1}{\left(\frac{1}{\alpha^{2} \beta}\right)^{\frac{3}{2}}}=\frac{1}{\left(\frac{1}{\alpha \beta^{2}}\right)^{3}}=\left(\beta^{2} \alpha\right)^{3}
$$

Since $\left(\alpha^{2} \beta\right)^{\frac{1}{3}} \gg 1$, then $\alpha^{2} \beta \gg 1$ and hence $x=\frac{1}{\alpha^{2} \beta}$ is much smaller than $\left(\beta^{2} \alpha\right)^{3}$. So our choice of ignoring $\frac{1}{x^{\frac{3}{2}}}$ was wrong. Hence we need to ignore the term $\frac{1}{x}$ from (2)
Case 2 Ignoring the term $\frac{1}{x}$ results in

$$
\begin{aligned}
-\alpha^{2} \beta+\frac{1}{2} \frac{1}{x^{\frac{3}{2}}} & =0 \\
\frac{-2 x^{\frac{3}{2}} \alpha^{2} \beta+1}{2 x^{\frac{3}{2}}} & =0 \\
-2 x^{\frac{3}{2}} \alpha^{2} \beta+1 & =0 \\
x^{\frac{3}{2}} & =\frac{-1}{-2 \alpha^{2} \beta}
\end{aligned}
$$

Solving gives

$$
x=\left(\frac{1}{2 \alpha^{2} \beta}\right)^{\frac{2}{3}}
$$

But $E=x \alpha^{2}$, and from the above we the energy E_{0} which makes $f(E)$ maximum as

$$
\begin{aligned}
E_{0} & =\alpha^{2}\left(\frac{1}{2 \alpha^{2} \beta}\right)^{\frac{2}{3}} \\
& =\frac{\alpha^{2-\frac{4}{3}}}{2^{\frac{2}{3}} \beta^{\frac{2}{3}}} \\
& =\frac{\alpha^{\frac{2}{3}}}{2^{\frac{2}{3}} \beta^{\frac{2}{3}}}
\end{aligned}
$$

Hence

$$
E_{0}=\left(\frac{\alpha}{2 \beta}\right)^{\frac{2}{3}}
$$

Now that we found which value of E makes $f(E)$ maximum, we can expand $f(E)$ in Taylor series around E_{0}

$$
f(E)=f\left(E_{0}\right)+f^{\prime}\left(E_{0}\right)\left(E-E_{0}\right)+\frac{f^{\prime \prime}\left(E_{0}\right)}{2!}\left(E-E_{0}\right)^{2}+\text { H.O.T }
$$

But $f^{\prime}\left(E_{0}\right)=0$ then the above becomes, after ignoring H.O.T.

$$
\begin{equation*}
f(E)=f\left(E_{0}\right)+\frac{f^{\prime \prime}\left(E_{0}\right)}{2!}\left(E-E_{0}\right)^{2} \tag{3}
\end{equation*}
$$

Since $f^{\prime}(E)=-\beta+\frac{1}{2} \alpha E^{\frac{-3}{2}}+\frac{1}{E}$ then

$$
f^{\prime \prime}\left(E_{0}\right)=-\frac{3}{4} \alpha E_{0}^{\frac{-5}{2}}-E_{0}^{-2}
$$

Since $E_{0}^{\frac{-5}{2}} \gg E_{0}^{-2}$ the above becomes

$$
\begin{align*}
f^{\prime \prime}\left(E_{0}\right) & =-\frac{3}{4} \alpha E_{0}^{\frac{-5}{2}} \\
& \simeq-\frac{3}{2} \frac{\beta^{2}}{E_{0}} \tag{4}
\end{align*}
$$

Equation (A) now becomes

$$
\begin{aligned}
R & =N \int_{0}^{\infty} e^{f(E)} d E \\
& =N \int_{0}^{\infty} e^{f\left(E_{0}\right)+\frac{f^{\prime \prime}\left(E_{0}\right)}{2!}\left(E-E_{0}\right)^{2}} d E \\
& =N e^{f\left(E_{0}\right)} \int_{0}^{\infty} e^{\frac{f^{\prime \prime}\left(E_{0}\right)}{2!}\left(E-E_{0}\right)^{2}} d E
\end{aligned}
$$

We would like to write the above as $\int_{0}^{\infty} e^{-a x^{2}} d x=\sqrt{\frac{\pi}{a}}$. Therefore, assuming $u=E-E_{0}$, hence $\frac{d u}{d E}=1$. When $E=0$ then $u=-E_{0}$ and when $E=\infty$ then $u=\infty$. Hence the above becomes

$$
\begin{aligned}
& R=N e^{f\left(E_{0}\right)} \int_{-E_{0}}^{\infty} e^{\frac{f^{\prime \prime}\left(E_{0}\right)}{2!} u^{2}} d u \\
&=N e^{f\left(E_{0}\right)} \int_{-E_{0}}^{\infty} e^{-\frac{3}{4} \beta^{2}} u^{2} \\
& E_{0}
\end{aligned} u
$$

Since E_{0} is positive, then contribution from lower limit $u=-E_{0}$ to the value of the integral is Negligible. We can then let lower limit go to $-\infty$ without affecting the overall result of the integral. The above becomes

$$
R=N e^{f\left(E_{0}\right)} \int_{-\infty}^{\infty} e^{-\frac{3}{4} \frac{\beta^{2}}{E_{0}} u^{2}} d u
$$

This is now in the form of Gaussian $\int_{-\infty}^{\infty} e^{-a x^{2}} d x=\sqrt{\frac{\pi}{a}}$. Hence we can write the above, using $a=\frac{3}{4} \frac{\beta^{2}}{E_{0}}$

$$
\begin{aligned}
R & =N e^{f\left(E_{0}\right)} \sqrt{\frac{\pi}{\frac{3}{4} \frac{\beta^{2}}{E_{0}}}} \\
& =N e^{f\left(E_{0}\right)} \sqrt{\frac{4 \pi E_{0}}{3 \beta^{2}}}
\end{aligned}
$$

But $f\left(E_{0}\right)$ from (1) is $f\left(E_{0}\right)=-\beta E_{0}-\alpha E_{0}^{\frac{-1}{2}}+\ln E_{0}$, hence the above becomes

$$
\begin{aligned}
R & =N E_{0} e^{-\beta E_{0}-\alpha E_{0}^{\frac{-1}{2}}} \sqrt{\frac{4 \pi E_{0}}{3 \beta^{2}}} \\
& =N E_{0} e^{-\beta E_{0}-\alpha E_{0}^{\frac{-1}{2}}} \sqrt{\frac{4 \pi}{3 \alpha E_{0}^{\frac{-5}{2}}}}
\end{aligned}
$$

But $E_{0}=\left(\frac{\alpha}{2 \beta}\right)^{2 / 3}$, therefore the above becomes, after some more simplifications

$$
R=N\left(\frac{\alpha}{2 \beta}\right)^{2 / 3} \exp \left(-\beta\left(\frac{\alpha}{2 \beta}\right)^{2 / 3}-\alpha\left(\frac{\alpha}{2 \beta}\right)^{-2 / 6}\right) \sqrt{\frac{4 \pi}{3 \alpha\left(\frac{\alpha}{2 \beta}\right)^{-10 / 6}}}
$$

Simplifies to

$$
R=\sqrt{\frac{\pi}{3}} N\left(k_{\beta} T\right)^{\frac{3}{2}} \alpha e^{-\left(\frac{\alpha^{2}}{4} k_{\beta} T\right)^{\frac{1}{3}}}
$$

This was a hard problem. See key solution.

2 Problem 2

2. (5 pts) Assume that $g\left(x_{0}\right)=0$ for $a<x_{0}<b$ and that $g^{-1}(x)$ exists in that range of x. Show that

$$
\int_{a}^{b} f(x) \delta(g(x)) d x=\frac{f\left(x_{0}\right)}{\left|g^{\prime}\left(x_{0}\right)\right|}
$$

Figure 2: Problem statement

Solution

Let $u=g(x)$, hence

$$
\begin{equation*}
\frac{d u}{d x}=g^{\prime}(x) \tag{1}
\end{equation*}
$$

But

$$
\begin{aligned}
x & =g^{-1}(g(x)) \\
& =g^{-1}(u)
\end{aligned}
$$

Replacing x in (1) by the above results (so everything is in terms of u) gives

$$
\frac{d u}{d x}=g^{\prime}\left(g^{-1}(u)\right)
$$

Now we take care of the limits of integration. When $x=a$ then $u=g(a)$ and when $x=b$ then $u=g(b)$. Now the integral I becomes in terms of u the following

$$
\begin{align*}
I & =\int_{g(a)}^{g(b)} f\left(g^{-1}(u)\right) \delta(u) \frac{d u}{g^{\prime}\left(g^{-1}(u)\right)} \\
& =\int_{g(a)}^{g(b)} \delta(u)\left[\frac{f\left(g^{-1}(u)\right)}{g^{\prime}\left(g^{-1}(u)\right)}\right] d u \tag{2}
\end{align*}
$$

Since we do not know the sign of $g^{\prime}\left(x_{0}\right)$, as it can be positive or negative, so we take its absolute value in the above, so that the limits of integration do not switch. Hence (2) becomes

$$
\begin{equation*}
I=\int_{g(a)}^{g(b)} \delta(u)\left[\frac{f\left(g^{-1}(u)\right)}{\left|g^{\prime}\left(g^{-1}(u)\right)\right|}\right] d u \tag{3}
\end{equation*}
$$

We are given that there is one point x_{0} between $g(a)$, and $g(b)$ where $g\left(x_{0}\right)=0$ which is the same as saying $u=0$ at that point. Hence by applying the standard property of Dirac delta function, which says that $\int_{a}^{b} \delta(0) \phi(z) d z=\phi(0)$ to equation (3) gives

$$
I=\frac{f\left(g^{-1}(0)\right)}{\left|g^{\prime}\left(g^{-1}(0)\right)\right|}
$$

But $g^{-1}(0)=x_{0}$, therefore the above becomes

$$
\int_{a}^{b} f(x) \delta(g(x)) d x=\frac{f\left(x_{0}\right)}{\left|g^{\prime}\left(x_{0}\right)\right|}
$$

Which is the result required to show.

3 Problem 3

3. (5 pts) Find the Fourier series that represents the periodic function

$$
\begin{aligned}
& f(x)=1+\frac{2 x}{L} \text { when }-\frac{L}{2} \leq x \leq 0 \\
& f(x)=1-\frac{2 x}{L} \quad \text { when } 0 \leq x \leq \frac{L}{2}
\end{aligned}
$$

Figure 3: Problem statement

Solution

A plot of the function to approximate is (using $L=1$) for illustration

Figure 4: The function $f(x)$ to find its Fourier series

The function period is $T=L$. Hence the Fourier series is given by

$$
f(x) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{2 \pi}{L} n x\right)+b_{n} \cos \left(\frac{2 \pi}{L} n x\right)
$$

Since $f(x)$ is an even function, then $b_{n}=0$ and the above simplifies to

$$
f(x) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{2 \pi}{L} n x\right)
$$

Where

$$
a_{0}=\frac{2}{L} \int_{-\frac{L}{2}}^{\frac{L}{2}} f(x) d x
$$

We can calculate this integral, but it is easier to find a_{0} knowing that $\frac{a_{0}}{2}$ represent the average of the area under the function $f(x)$.
We see right away that the area is $2\left(\frac{1}{2} \frac{L}{2}\right)=\frac{L}{2}$. Hence, solving $\frac{a_{0}}{2} L=\frac{L}{2}$ for a_{0} gives $a_{0}=1$. Now we find a_{n}

$$
a_{n}=\frac{2}{L} \int_{-\frac{L}{2}}^{\frac{L}{2}} f(x) \cos \left(\frac{2 \pi}{L} n x\right) d x
$$

Since $f(x)$ is even and $\cos \left(\frac{2 \pi}{L} n x\right)$ is even, then the above simplifies to

$$
\begin{align*}
a_{n} & =\frac{4}{L} \int_{0}^{\frac{L}{2}} f(x) \cos \left(\frac{2 \pi}{L} n x\right) d x \\
& =\frac{4}{L} \int_{0}^{\frac{L}{2}}\left(1-\frac{2 x}{L}\right) \cos \left(\frac{2 \pi}{L} n x\right) d x \\
& =\frac{4}{L}\left(\int_{0}^{\frac{L}{2}} \cos \left(\frac{2 \pi}{L} n x\right) d x-\frac{2}{L} \int_{0}^{\frac{L}{2}} x \cos \left(\frac{2 \pi}{L} n x\right) d x\right) \tag{1}
\end{align*}
$$

But

$$
\begin{aligned}
\int_{0}^{\frac{L}{2}} \cos \left(\frac{2 \pi}{L} n x\right) d x & =\frac{1}{\frac{2 n \pi}{L}}\left[\sin \left(\frac{2 \pi}{L} n x\right)\right]_{0}^{\frac{L}{2}} \\
& =\frac{L}{2 n \pi}\left(\sin \left(\frac{2 \pi}{L} n \frac{L}{2}\right)\right) \\
& =\frac{L}{2 n \pi} \sin (\pi n) \\
& =0
\end{aligned}
$$

And $\int_{0}^{\frac{L}{2}} x \cos \left(\frac{2 \pi}{L} n x\right) d x$ is integrated by parts. Let $u=x, d v=\cos \left(\frac{2 \pi}{L} n x\right)$, hence $d u=1$ and $v=\frac{1}{\frac{2 n \pi}{L}} \sin \left(\frac{2 \pi}{L} n x\right)$. Therefore

$$
\begin{aligned}
\int_{0}^{\frac{L}{2}} x \cos \left(\frac{2 \pi}{L} n x\right) d x & =u v-\int v d u \\
& =\frac{1}{\frac{2 n \pi}{L}}\left[x \sin \left(\frac{2 \pi}{L} n x\right)\right]_{0}^{\frac{L}{2}}-\frac{1}{\frac{2 n \pi}{L}} \int \sin \left(\frac{2 \pi}{L} n x\right) d x \\
& =-\frac{L}{2 n \pi} \int \sin \left(\frac{2 \pi}{L} n x\right) d x \\
& =\frac{L}{2 n \pi}\left[\frac{\cos \left(\frac{2 \pi}{L} n x\right)}{\frac{2 \pi}{L} n}\right]_{0}^{\frac{L}{2}} \\
& =\left(\frac{L}{2 n \pi}\right)^{2}\left(\cos \left(\frac{2 \pi}{L} n \frac{L}{2}\right)-1\right) \\
& =\left(\frac{L}{2 n \pi}\right)^{2}(\cos (n \pi)-1) \\
& =\left(\frac{L}{2 n \pi}\right)^{2}\left((-1)^{n}-1\right)
\end{aligned}
$$

Substituting these results in (1) gives

$$
\begin{aligned}
a_{n} & =-\frac{4}{L}\left(\frac{2}{L}\left(\frac{L}{2 n \pi}\right)^{2}\left((-1)^{n}-1\right)\right) \\
& =-\frac{2}{n^{2} \pi^{2}}\left((-1)^{n}-1\right)
\end{aligned}
$$

When n is even we see that $a_{n}=0$ and when n is odd, then $a_{n}=\frac{4}{n^{2} \pi^{2}}$. Therefore

$$
\begin{aligned}
f(x) & =\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{2 \pi}{L} n x\right) \\
& =\frac{1}{2}+\sum_{n=1,3,5, \cdots}^{\infty}\left(\frac{4}{n^{2} \pi^{2}}\right) \cos \left(\frac{2 \pi}{L} n x\right) \\
& =\frac{1}{2}+\frac{4}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}} \cos \left(\frac{2 \pi}{L}(2 n-1) x\right)
\end{aligned}
$$

4 Problem 4

4. (10 pts) Consider the Fourier series for the function $f(\theta)=1$ when $0<\theta<\pi$ and $f(\theta)=-1$ when $\pi<\theta<2 \pi$. Just to the right of $\theta=0$ the first n terms in the series exhibit a local maximum of $1+\delta_{n}$. For large $n, \delta_{n} \approx 0.2$. Using computer software, make plots of the series for 4 representative values of n of your choosing for $0<\theta<\pi / 2$ for illustration. What is the limit of the overshoot δ_{n} as $n \rightarrow \infty$ to 4 significant figures? Include printouts of the programs you wrote to make the plots and to find the limit. This is called the Gibbs phenomenon.

Figure 5: Problem statement

Solution

A plot of the above function is

Figure 6: The function $f(x)$ over one period

We first need to find the Fourier series of the function $f(x)$. Since the function is odd, then we only need to determine b_{n}

$$
f(x) \sim \sum_{n=1}^{\infty} b_{n} \sin (n x)
$$

Where

$$
b_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \sin (n x) d x
$$

Since $f(x)$ is odd, and sin is odd, then the product is even, and the above simplifies to

$$
\begin{aligned}
b_{n} & =\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin (n x) d x \\
& =\frac{2}{\pi} \int_{0}^{\pi} \sin (n x) d x \\
& =\frac{2}{\pi}\left(-\frac{\cos n x}{n}\right)_{0}^{\pi} \\
& =\frac{-2}{n \pi}(\cos n x)_{0}^{\pi} \\
& =\frac{-2}{n \pi}(\cos n \pi-1) \\
& =\frac{-2}{n \pi}\left((-1)^{n}-1\right) \\
& =\frac{2}{n \pi}\left(1-(-1)^{n}\right)
\end{aligned}
$$

When n is even, then $b_{n}=0$ and when n is odd then $b_{n}=\frac{4}{n \pi}$, therefore

$$
f(x) \sim \frac{4}{\pi} \sum_{n=1,3,5, \cdots}^{\infty} \frac{1}{n} \sin (n x)
$$

Which can be written as

$$
\begin{equation*}
f(x) \sim \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)} \sin ((2 n-1) x) \tag{1}
\end{equation*}
$$

Next, 4 plots were made to see the approximation for $n=1,5,10,20$.

Figure 7: Fourier series approximation for different n values

The source code used is

```
In[-]:= ClearAll[f, x, n];
    f[x_/; 0 \leq x < 2Pi] := Piecewise[{{1, 0\leqx< Pi}, {-1, Pi < x < 2Pi}}];
    fApprox[x_, nTerms_] := \frac{4}{Pi}}\operatorname{Sum}[\frac{1}{2n-1}\operatorname{Sin}[(2n-1)x],{n,1,nTerms}]
    Grid[Partition[Table[Plot[{f[x], fApprox[x, n]}, {x, 0, 2Pi },
        PlotStyle }->\mathrm{ {Blue, Red}, PlotLabel }->\mathrm{ Row[{"Using ", n, " terms"}],
        ImageSize }->\mathrm{ 320, Ticks }->\mathrm{ {Range [0, 2 Pi, Pi / 2], Automatic}
        ],
        {n, {1, 5, 10, 20} }], 2], Frame }->\mathrm{ All, Alignment }->\mathrm{ Center, Spacings }->{1, 1}
```

Figure 8: Source code used to generate the above plot

The partial sum of (1) is

$$
\begin{equation*}
f_{N}(x)=\frac{4}{\pi} \sum_{n=1}^{N} \frac{1}{(2 n-1)} \sin ((2 n-1) x) \tag{2}
\end{equation*}
$$

To determine the overshoot, we need to first find x_{0} where the local maximum near $x=0$ is. This is an illustration, showing the Fourier series approximation to the right of $x=0$. This plot uses $n=100$.

Figure 9: Finding x_{0} where maximum overshoot is located

Hence we need to determine $f^{\prime}(x)$ and then solve for $f^{\prime}(x)=0$ in order to find x_{0}

$$
\begin{aligned}
f_{N}^{\prime}(x) & =\frac{4}{\pi} \sum_{n=1}^{N} \cos ((2 n-1) x) \\
& =\frac{2}{\pi} \frac{\sin (2 N x)}{\sin x}
\end{aligned}
$$

Derivation that shows the above is included in the appendix of this problem. Therefore solving $\frac{\sin (2 N x)}{\sin x}=0$ implies $\sin (2 N x)=0$ or $2 N x=\pi$ (since we want to be on the right side of $x=0$, we do not pick 0 , but the next zero, this means π is first value). This implies that local maximum to the right of $x=0$ is located at

$$
x_{0}=\frac{\pi}{2 N}
$$

Therefore we need to determine $f_{N}\left(x_{0}\right)$ to calculate the overshoot due to the Gibbs effect to the right of $x=0$. From (2) and using x_{0} now instead of x gives

$$
\begin{aligned}
f_{N}\left(\frac{\pi}{2 N}\right) & =\frac{4}{\pi} \sum_{n=1}^{N} \frac{1}{(2 n-1)} \sin \left((2 n-1) \frac{\pi}{2 N}\right) \\
& =\frac{4}{\pi}\left(\frac{\sin \left(\frac{\pi}{2 N}\right)}{1}+\frac{\sin \left(3 \frac{\pi}{2 N}\right)}{3}+\frac{\sin \left(5 \frac{\pi}{2 N}\right)}{5}+\cdots+\frac{\sin \left((2 N-1) \frac{\pi}{2 N}\right)}{2 N-1}\right)
\end{aligned}
$$

But $\frac{\sin (\pi z)}{\pi z}=\operatorname{sinc}(z)$, therefore we rewrite the above as

$$
\begin{aligned}
f_{N}\left(\frac{\pi}{2 N}\right) & =4\left(\frac{\sin \left(\frac{\pi}{2 N}\right)}{\pi}+\frac{\sin \left(3 \frac{\pi}{2 N}\right)}{3 \pi}+\frac{\sin \left(5 \frac{\pi}{2 N}\right)}{5 \pi}+\cdots+\frac{\sin \left((2 N-1) \frac{\pi}{2 N}\right)}{(2 N-1) \pi}\right) \\
& =4\left(\frac{1}{2 N} \frac{\sin \left(\pi \frac{1}{2 N}\right)}{\pi \frac{1}{2 N}}+\frac{1}{2 N} \frac{\sin \left(\pi \frac{3}{2 N}\right)}{3 \pi \frac{1}{2 N}}+\frac{1}{2 N} \frac{\sin \left(\pi \frac{5}{2 N}\right)}{5 \pi \frac{1}{2 N}}+\cdots+\frac{1}{2 N} \frac{\sin \left(\pi \frac{(2 N-1)}{2 N}\right)}{(2 N-1) \pi \frac{1}{2 N}}\right) \\
& =4\left(\frac{1}{2 N} \operatorname{sinc}\left(\frac{1}{2 N}\right)+\frac{1}{2 N} \operatorname{sinc}\left(\frac{3}{2 N}\right)+\frac{1}{2 N} \operatorname{sinc}\left(\frac{5}{2 N}\right)+\cdots+\frac{1}{2 N} \operatorname{sinc}\left(\frac{2 N-1}{2 N}\right)\right)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
f_{N}\left(\frac{\pi}{2 N}\right) & =2\left(\frac{1}{N} \operatorname{sinc}\left(\frac{1}{2 N}\right)+\frac{1}{N} \operatorname{sinc}\left(\frac{3}{2 N}\right)+\frac{1}{N} \operatorname{sinc}\left(\frac{5}{2 N}\right)+\cdots+\frac{1}{N} \operatorname{sinc}\left(\frac{2 N-1}{2 N}\right)\right) \\
& =2\left\{\left[\operatorname{sinc}\left(\frac{1}{2 N}\right)+\operatorname{sinc}\left(\frac{3}{2 N}\right)+\operatorname{sinc}\left(\frac{5}{2 N}\right)+\cdots+\operatorname{sinc}\left(\frac{2 N-1}{2 N}\right)\right] \frac{1}{N}\right\}
\end{aligned}
$$

Therefore, if we consider a length of 1 and $\frac{1}{N}$ is partition length, then the sum inside $\}$ above is a Riemann sum and the above becomes In the limit, as $N \rightarrow \infty$

$$
\lim _{N \rightarrow \infty} f_{N}\left(\frac{\pi}{2 N}\right)=2 \int_{0}^{1} \operatorname{sinc}(x) d x
$$

Figure 10: Converting Riemman sum to an integral

Therefore

$$
\lim _{N \rightarrow \infty} f_{N}\left(\frac{\pi}{2 N}\right)=2 \int_{0}^{1} \frac{\sin (\pi x)}{\pi x} d x
$$

The $\int_{0}^{1} \frac{\sin (\pi x)}{\pi x} d x$ is known as Si. I could not solve it analytically. It has numerical value of 0.5894898772 . Therefore

$$
\begin{aligned}
\lim _{N \rightarrow \infty} f_{N}\left(\frac{\pi}{2 N}\right) & =2(0.5894898772) \\
& =1.17897974
\end{aligned}
$$

Since $f(x)=1$ between 0 and π, then we see that the overshoot is the difference, which is

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \delta_{N} & =1.17897974-1 \\
& =0.1789
\end{aligned}
$$

For 4 decimal places. The above result gives good agreement with the plot showing that the overshoot is a little less than 0.2 when viewed on the computer screen. The only use for computation used by the computer for this part of the problem was the evaluation of $\int_{0}^{1} \frac{\sin (\pi x)}{\pi x} d x$. The code is

```
In[\sigma]:= Integrate[Sin[Pi x] / (Pix), {x, 0, 1}]
    SinIntegral[\pi]
In[\rho]:= N[%, 16]
Out[0]=0.5894898722360836
```

Figure 11: Finding the limit

4.1 Appendix

Here we show the following result used in the above solution.

$$
\frac{4}{\pi} \sum_{n=1}^{N} \cos ((2 n-1) x)=\frac{2}{\pi} \frac{\sin (2 N x)}{\sin x}
$$

Since $\cos z=\operatorname{Re}\left(e^{i z}\right)$, then $\cos ((2 n-1) x)=\operatorname{Re}\left(e^{i(2 n-1) x}\right)$. Hence the above is the same as

$$
\begin{equation*}
\frac{4}{\pi} \sum_{n=1}^{N} \cos ((2 n-1) x)=\frac{4}{\pi} \operatorname{Re} \sum_{n=1}^{N} e^{i(2 n-1) x} \tag{1}
\end{equation*}
$$

But

$$
\begin{aligned}
\sum_{n=1}^{N} e^{i(2 n-1) x} & =\sum_{n=1}^{N} e^{2 i x n-i x} \\
& =e^{-i x} \sum_{n=1}^{N} e^{2 i x n} \\
& =e^{-i x} \sum_{n=1}^{N}\left(e^{2 i x}\right)^{n}
\end{aligned}
$$

Using partial sum property $\sum_{n=1}^{N} r^{n}=r \frac{1-r^{N}}{1-r}$, then we can write the above using $r=e^{2 i x}$ as

$$
\begin{aligned}
\sum_{n=1}^{N} e^{i(2 n-1) x} & =e^{-i x}\left(e^{2 i x} \frac{1-e^{2 i N x}}{1-e^{2 i x}}\right) \\
& =e^{i x} \frac{1-e^{2 i N x}}{1-e^{2 i x}} \\
& =\frac{1-e^{2 i N x}}{e^{-i x}-e^{i x}} \\
& =\frac{e^{2 i N x}-1}{e^{i x}-e^{-i x}} \\
& =\frac{e^{2 i N x}-1}{2 i \sin (x)} \\
& =\frac{\cos (2 N x)+i \sin (2 N x)-1}{2 i \sin (x)}
\end{aligned}
$$

Multiplying numerator and denominator by i gives

$$
\begin{aligned}
\sum_{n=1}^{N} e^{i(2 n-1) x} & =\frac{i \cos (2 N x)-\sin (2 N x)-i}{-2 \sin (x)} \\
& =i \frac{(\cos (2 N x)-1)}{-2 \sin x}+\frac{\sin (2 N x)}{2 \sin (x)}
\end{aligned}
$$

The real part of the above is $\frac{\sin (2 N x)}{2 \sin (x)}$, hence (1) becomes

$$
\begin{aligned}
\frac{4}{\pi} \sum_{n=1}^{N} \cos ((2 n-1) x) & =\frac{4}{\pi} \operatorname{Re} \sum_{n=1}^{N} e^{i(2 n-1) x} \\
& =\frac{4}{\pi}\left(\frac{\sin (2 N x)}{2 \sin (x)}\right) \\
& =\frac{2}{\pi} \frac{\sin (2 N x)}{\sin (x)}
\end{aligned}
$$

Which is the result was needed to show.

