HW 3
Physics 5041 Mathematical Methods for Physics
Spring 2019
University of Minnesota, Twin Cities

Nasser M. Abbasi

Contents

1 Problem 1 2
2 Problem 2 4
3 Problem 3 6
4 Problem 4 9
4.1 Part (a) Using Cartesian . 9
4.2 Part (b) Using Polar coordinates . 12

5 Problem 5 13
5.1 Part a . 13
5.2 Part b . 14

1 Problem 1

Consider the function $f(z)=z^{\frac{1}{n}}$ where n is a positive integer. The branch point is at $z=0$ and the branch cut is chosen to be along the positive x axis. How many sheets are there? What is the range of θ corresponding to each sheet?

Solution

Following the example in the class handout, where it showed how to find the number of sheets for $z^{\frac{1}{2}}$, the same method is used here, which is to keep adding a multiple of 2π angles until the same result for the original principal value of the function $g(z)$ evaluated at θ is obtained. This gives the number of sheets.

Let

$$
\begin{align*}
g(z) & =z^{\frac{1}{n}} \\
g(r, \theta) & =\left(r e^{i \theta}\right)^{\frac{1}{n}} \\
g(r, \theta) & =r^{\frac{1}{n}} e^{i \frac{\theta}{n}} \tag{1}
\end{align*}
$$

In the above, θ is called principal argument. And now the idea is to find how many times 2π needs to be added to θ in order to get back the same value of original of $g(r, \theta)$ at the starting θ that one picks. Adding one time 2π to θ, equation (1) becomes

$$
\begin{aligned}
g(r, \theta+2 \pi) & =r^{\frac{1}{n}} e^{i \frac{(\theta+2 \pi)}{n}} \\
& =r^{\frac{1}{n}} e^{i \frac{\theta}{n}+i \frac{2 \pi}{n}} \\
& =r^{\frac{1}{n}} e^{i \frac{\theta}{n}} e^{i \frac{2 \pi}{n}}
\end{aligned}
$$

And we add another 2π, or now a total of 4π

$$
\begin{aligned}
g(r, \theta+4 \pi) & =r^{\frac{1}{n}} e^{i \frac{(\theta+4 \pi)}{n}} \\
& =r^{\frac{1}{n}} e^{i \frac{\theta}{n}+i \frac{4 \pi}{n}} \\
& =r^{\frac{1}{n}} e^{i \frac{\theta}{n}} e^{i \frac{4 \pi}{n}}
\end{aligned}
$$

And so on. We keep adding 2π, or a total of $k(2 \pi)$ such that the last term above, which in term of k is $e^{\frac{k(2 \pi) i}{n}}$ simplifies to 1 which implies getting back original function value at $g(r, \theta)$. Hence for k times we have

$$
\begin{aligned}
g(r, \theta+k(2 \pi)) & =r^{\frac{1}{n}} e^{i \frac{(\theta+k(2 \pi))}{n}} \\
& =r^{\frac{1}{n}} e^{i \frac{\theta}{n}+i \frac{k(2 \pi)}{n}} \\
& =r^{\frac{1}{n}} e^{i \frac{\theta}{n}} e^{i \frac{k(2 \pi)}{n}}
\end{aligned}
$$

We see from the above, is that only when $k=n$, then $r^{\frac{1}{n}} e^{i \frac{\theta}{n}} e^{i \frac{k(2 \pi)}{n}}=r^{\frac{1}{n}} e^{i \frac{\theta}{n}} e^{2 \pi i}$. But $e^{2 \pi i}=1$, therefore it reduces to

$$
\begin{aligned}
g(r, \theta+n(2 \pi)) & =r^{\frac{1}{n}} e^{i \frac{\theta}{n}} \\
& =g(r, \theta)
\end{aligned}
$$

Which is the original value of the function. Therefore there are n sheets.
The formula that can also be used to obtain all values for this multivalued function is

$$
g(r, \theta)=r^{\frac{1}{n}} e^{i\left(\frac{\theta}{n}+\frac{2 \pi}{n} k\right)} \quad k=0,1, \cdots n-1
$$

Now to answer the angle θ range question. From the above, we see the range of the angle
for each sheet is as follows

$$
\begin{aligned}
& R_{1}: 0<\theta<2 \pi \\
& R_{2}: 2 \pi<\theta<4 \pi \\
& R_{3}: 4 \pi<\theta<6 \pi \\
& \quad \\
& \quad: \\
& R_{n}:(n-1) 2 \pi<\theta<n(2 \pi)
\end{aligned}
$$

Sheet R_{1} is called the principal sheet associated with $k=0$.

2 Problem 2

Derive the formula

$$
\arctan z=\frac{i}{2} \ln \left(\frac{i+z}{i-z}\right)
$$

Solution

Let $w=\arctan (z)$ hence

$$
\begin{aligned}
& z=\tan (w) \\
& z=\frac{\sin w}{\cos w}
\end{aligned}
$$

But $\sin w=\frac{e^{i w}-e^{-i w}}{2 i}$ and $\cos w=\frac{e^{i w}+e^{-i w}}{2}$, hence the above simplifies to

$$
\begin{aligned}
z & =\frac{\frac{e^{i w}-e^{-i w}}{2 i}}{\frac{e^{i w}+e^{-i w}}{2}} \\
& =\frac{1}{i} \frac{e^{i w}-e^{-i w}}{e^{i w}+e^{-i w}}
\end{aligned}
$$

Or

$$
i z=\frac{e^{i w}-e^{-i w}}{e^{i w}+e^{-i w}}
$$

Multiplying the numerator and denominator of the right side by $e^{i w}$ gives

$$
i z=\frac{e^{2 i w}-1}{e^{2 i w}+1}
$$

Let $e^{i w}=x$ then the above is the same as

$$
\begin{aligned}
i z & =\frac{x^{2}-1}{x^{2}+1} \\
i z\left(x^{2}+1\right) & =x^{2}-1 \\
x^{2} i z+i z & =x^{2}-1 \\
x^{2} i z+i z-x^{2}+1 & =0 \\
x^{2}(i z-1)+(1+i z) & =0 \\
x^{2} & =\frac{-(1+i z)}{(i z-1)} \\
& =\frac{(1+i z)}{(1-i z)}
\end{aligned}
$$

Simplifying gives

$$
\begin{aligned}
x^{2} & =\frac{i(-i+z)}{i(-i-z)} \\
& =\frac{(z-i)}{(-i-z)}
\end{aligned}
$$

Hence

$$
x= \pm\left(\frac{z-i}{-i-z}\right)^{\frac{1}{2}}
$$

But $x=e^{i w}$, and the above becomes

$$
e^{i w}= \pm\left(\frac{z-i}{-i-z}\right)^{\frac{1}{2}}
$$

We need now to decide which sign to take. Since $z=\tan (w)$, then when $w=0, z=0$
because $\tan (0)=0$. Putting $w=0, z=0$ in the above gives

$$
\begin{aligned}
1 & = \pm\left(\frac{i}{i}\right)^{\frac{1}{2}} \\
& = \pm(1)^{\frac{1}{2}} \\
& = \pm 1
\end{aligned}
$$

Hence we need to choose the + sign so both sides is positive. Hence

$$
e^{i w}=\left(\frac{z-i}{-i-z}\right)^{\frac{1}{2}}
$$

Now, taking the natural log of both sides gives

$$
\begin{aligned}
i z & =\ln \left(\frac{z-i}{-i-z}\right)^{\frac{1}{2}} \\
i w & =\frac{1}{2} \ln \left(\frac{z-i}{-i-z}\right) \\
w & =\frac{1}{2 i} \ln \left(\frac{z-i}{-i-z}\right) \\
& =\frac{-i}{2} \ln \left(\frac{z-i}{-i-z}\right) \\
& =\frac{i}{2} \ln \left(\left(\frac{z-i}{-i-z}\right)^{-1}\right) \\
& =\frac{i}{2} \ln \left(\frac{-i-z}{z-i}\right) \\
& =\frac{i}{2} \ln \left(\frac{-(z+i)}{-(i-z)}\right) \\
& =\frac{i}{2} \ln \left(\frac{z+i}{i-z}\right)
\end{aligned}
$$

But $w=\arctan (z)$, hence the final result is

$$
\arctan (z)=\frac{i}{2} \ln \left(\frac{i+z}{i-z}\right)
$$

3 Problem 3

Using the formula for $\arctan z$ from the previous problem, find the real functions $u(x, y)$ and $v(x, y)$ in the expression $\arctan z=u(x, y)+i v(x, y)$

Solution

Let

$$
\frac{i}{2} \ln \left(\frac{i+z}{i-z}\right)=u+i v
$$

where $u \equiv u(x, y), v \equiv v(x, y)$ are the real and imaginary parts of $\arctan (z)$. Therefore

$$
\begin{align*}
\frac{i}{2} \ln \left(\frac{i+z}{i-z}\right) & =\frac{i}{2}\left(\ln \left|\frac{i+z}{i-z}\right|+i\left(\arg \left(\frac{i+z}{i-z}\right)+2 n \pi\right)\right) \quad n=0, \pm 1, \pm 2, \cdots \\
& =\frac{i}{2} \ln \left|\frac{i+z}{i-z}\right|-\frac{1}{2}\left(\arg \left(\frac{i+z}{i-z}\right)+2 n \pi\right) \tag{1}
\end{align*}
$$

Where $\arg \left(\frac{i+z}{i-z}\right)$ is the principal argument. But since $z=x+i y$ then we see that

$$
\begin{align*}
\left|\frac{i+z}{i-z}\right| & =\left|\frac{i+(x+i y)}{i-(x+i y)}\right| \\
& =\left|\frac{i+x+i y}{i-x-i y}\right| \\
& =\left|\frac{x+i(1+y)}{-x+i(1-y)}\right| \\
& =\frac{\sqrt{x^{2}+(1+y)^{2}}}{\sqrt{x^{2}+(1-y)^{2}}} \\
& =\sqrt{\frac{x^{2}+(1+y)^{2}}{x^{2}+(1-y)^{2}}} \tag{2}
\end{align*}
$$

And the principal argument is

$$
\begin{aligned}
\arg \left(\frac{i+z}{i-z}\right) & =\arg (i+z)-\arg (i-z) \\
& =\arg (i(1-i z))-\arg (i(1+i z)) \\
& =\arg i+\arg (1-i z)-\arg i+\arg (1+i z) \\
& =\arg (1-i z)+\arg (1+i z)
\end{aligned}
$$

Letting $z=x+i y$ in the above results in

$$
\begin{align*}
\arg \left(\frac{i+z}{i-z}\right) & =\arg (1-i(x+i y))-\arg (1+i(x+i y)) \\
& =\arg (1-i x+y)-\arg (1+i x-y) \\
& =\arg ((1+y)-i x)-\arg ((1-y)+i x) \\
& =\arctan \left(\frac{-x}{1+y}\right)-\arctan \left(\frac{x}{1-y}\right) \tag{3}
\end{align*}
$$

Substituting (2,3) into (1) gives

$$
\begin{aligned}
\frac{i}{2} \ln \left(\frac{i+z}{i-z}\right) & =\frac{i}{2}\left(\ln \sqrt{\frac{x^{2}+(1+y)^{2}}{x^{2}+(1-y)^{2}}}+i\left(\arctan \left(\frac{-x}{1+y}\right)-\arctan \left(\frac{x}{1-y}\right)+2 n \pi\right)\right) \quad n=0, \pm 1, \pm 2, \cdots \\
& =\frac{i}{4} \ln \left(\frac{x^{2}+(1+y)^{2}}{x^{2}+(1-y)^{2}}\right)-\frac{1}{2}\left(\arctan \left(\frac{-x}{1+y}\right)-\arctan \left(\frac{x}{1-y}\right)+2 n \pi\right)
\end{aligned}
$$

Setting the above equal to $u+i v$ shows that the real part and the imaginary parts are

$$
\begin{aligned}
& u=-\frac{1}{2}\left(\arctan \left(\frac{-x}{1+y}\right)-\arctan \left(\frac{x}{1-y}\right)+2 n \pi\right) \quad n=0, \pm 1, \pm 2, \cdots \\
& v=\frac{1}{4} \ln \left(\frac{x^{2}+(y+1)^{2}}{x^{2}+(1-y)^{2}}\right)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\arctan (z) & =\frac{i}{2} \ln \left(\frac{i+z}{i-z}\right) \\
& =u+i v
\end{aligned}
$$

Where u, v are given above. We see that $\arctan (z)$ is multivalued as it depends on the value of n.
For illustration of $u(x, y)$ and $v(x, y)$, the following is a plot of the above found solution showing the real part $u(x, y)$ for $n=0$ (principal sheet)

Figure 1: Real part $u(x, y)$ using principal sheet

And the following shows $u(x, y)$ with both $n=0$ and $n=1$ on the same plot showing two sheets

Figure 2: Real part $u(x, y)$ showing $n=0, n=1$ on same plot

And the following plot shows the imaginary part $v(x, y)$

Figure 3: Imaginary part $v(x, y)$

4 Problem 4

In the domain $r>0,0<\theta<2 \pi$. show that the function $u=\ln r$ is harmonic and find its conjugate. Do this in both Cartesian and polar coordinates.

4.1 Part (a) Using Cartesian

A function $u(x, y)$ is harmonic if it satisfies the Laplace PDE $u_{x x}+u_{y y}=0$. Since

$$
r=\sqrt{x^{2}+y^{2}}
$$

Then

$$
\begin{aligned}
u & =\ln r \\
& =\ln \sqrt{x^{2}+y^{2}} \\
& =\frac{1}{2} \ln \left(x^{2}+y^{2}\right)
\end{aligned}
$$

We now need to calculate $u_{x x}$ and $u_{y y}$.

$$
\begin{aligned}
u_{x} & =\frac{1}{2} \frac{\partial}{\partial x} \ln \left(x^{2}+y^{2}\right) \\
& =\frac{1}{2} \frac{2 x}{x^{2}+y^{2}} \\
& =\frac{x}{x^{2}+y^{2}}
\end{aligned}
$$

And

$$
u_{x x}=\frac{\partial}{\partial x} \frac{x}{x^{2}+y^{2}}
$$

Applying the integration rule $\frac{\partial}{\partial x} \frac{f(x)}{g(x)}=\frac{f^{\prime} g-f g}{g^{2}}$ to the above, where $f=x$ and $g=x^{2}+y^{2}$ results in

$$
\begin{align*}
u_{x x} & =\frac{x^{2}+y^{2}-x(2 x)}{\left(x^{2}+y^{2}\right)^{2}} \\
& =\frac{x^{2}+y^{2}-2 x^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& =\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}} \tag{1}
\end{align*}
$$

Similarly

$$
\begin{aligned}
u_{y} & =\frac{1}{2} \frac{\partial}{\partial y} \ln \left(x^{2}+y^{2}\right) \\
& =\frac{1}{2} \frac{2 y}{x^{2}+y^{2}} \\
& =\frac{y}{x^{2}+y^{2}}
\end{aligned}
$$

Applying the integration rule $\frac{\partial}{\partial y} \frac{f(y)}{g(y)}=\frac{f^{\prime} g-f g}{g^{2}}$ to the above, where $f=y$ and $g=x^{2}+y^{2}$ results in

$$
\begin{align*}
u_{y y} & =\frac{x^{2}+y^{2}-y(2 y)}{\left(x^{2}+y^{2}\right)^{2}} \\
& =\frac{x^{2}+y^{2}-2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& =\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} \tag{2}
\end{align*}
$$

Now that we found $u_{x x}$ and $u_{y y}$, we need to verify that $u_{x x}+u_{y y}=0$. Adding (1,2) gives

$$
\begin{aligned}
u_{x x}+u_{y y} & =\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}+\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& =\frac{y^{2}-x^{2}+x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& =0
\end{aligned}
$$

Hence $u=\ln r$ is harmonic.
To find its conjugate. Let the conjugate be $v(x, y)$. Let u be the real part of analytic function

$$
f=u+i v
$$

Applying Cauchy Riemann equations to f results in

$$
\begin{align*}
& \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \tag{3}\\
& \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} \tag{4}
\end{align*}
$$

From (3) and using the earlier result found for u_{x} gives

$$
\frac{\partial v}{\partial y}=\frac{x}{x^{2}+y^{2}}
$$

Integrating the above w.r.t. y gives

$$
\begin{aligned}
v & =\int \frac{x}{x^{2}+y^{2}} d y+\Phi(x) \\
& =x \int \frac{1}{x^{2}+y^{2}} d y+\Phi(x) \\
& =\frac{1}{x} \int \frac{1}{1+\left(\frac{y}{x}\right)^{2}} d y+\Phi(x)
\end{aligned}
$$

The above is integrated using substitution. Let $u=\frac{y}{x}$, then $\frac{d u}{d y}=\frac{1}{x}$ and the integral becomes

$$
\begin{aligned}
v & =\frac{1}{x}\left(\int \frac{1}{1+u^{2}}(x d u)\right)+\Phi(x) \\
& =\int \frac{1}{1+u^{2}} d u+\Phi(x)
\end{aligned}
$$

But $\int \frac{1}{1+u^{2}} d u=\arctan (u)=\arctan \left(\frac{y}{x}\right)$, therefore the above becomes

$$
\begin{equation*}
v=\arctan \left(\frac{y}{x}\right)+\Phi(x) \tag{5}
\end{equation*}
$$

Taking derivative of (5) w.r.t. x gives an ODE to solve for $\Phi(x)$

$$
\begin{equation*}
\frac{\partial v}{\partial x}=\frac{d}{d x}\left(\arctan \left(\frac{y}{x}\right)\right)+\Phi^{\prime}(x) \tag{5A}
\end{equation*}
$$

To find $\frac{d}{d x} \arctan \left(\frac{y}{x}\right)$, let

$$
w=\arctan \left(\frac{y}{x}\right)
$$

Now the goal is to find $\frac{d w}{d x}$. The above is the same as

$$
\begin{equation*}
\tan (w)=\frac{y}{x} \tag{6}
\end{equation*}
$$

Taking derivative of both sides of the above w.r.t. x gives

$$
\frac{d}{d x} \tan (w)=-\frac{y}{x^{2}}
$$

But $\frac{d}{d x} \tan (w)=\sec ^{2}(w) \frac{d w}{d x}$, and the above can be written as

$$
\begin{align*}
\sec ^{2}(w) \frac{d w}{d x} & =-\frac{y}{x^{2}} \\
\frac{d w}{d x} & =-\frac{y}{x^{2}} \frac{1}{\sec ^{2}(w)} \tag{7}
\end{align*}
$$

But $\sec ^{2}(w)=\frac{1}{\cos ^{2} w}$ and $\cos ^{2} w+\sin ^{2} w=1$. Therefore dividing by $\cos ^{2} w$ gives $1+$ $\frac{\sin ^{2} w}{\cos ^{2} w}=\sec ^{2}(w)$ or $1+\tan ^{2} w=\sec ^{2}(w)$. But from (6) we know that $\tan (w)=\frac{y}{x}$, therefore $1+\left(\frac{y}{x}\right)^{2}=\sec ^{2}(w)$. Replacing this expression for $\sec ^{2}(w)$ in (7) gives

$$
\begin{aligned}
\frac{d w}{d x} & =-\frac{y}{x^{2}} \frac{1}{1+\left(\frac{y}{x}\right)^{2}} \\
& =-\frac{y}{x^{2}} \frac{x^{2}}{x^{2}+y^{2}} \\
& =\frac{-y}{x^{2}+y^{2}}
\end{aligned}
$$

Now that we found $\frac{d w}{d x}$ which is $\frac{d}{d x} \arctan \left(\frac{y}{x}\right)$, then 5 A becomes

$$
\frac{\partial v}{\partial x}=\frac{-y}{x^{2}+y^{2}}+\Phi^{\prime}(x)
$$

But from Cauchy Riemann equation (4) above, we know that $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$, therefore the above is the same as

$$
\frac{\partial u}{\partial y}=-\left(\frac{-y}{x^{2}+y^{2}}+\Phi^{\prime}(x)\right)
$$

We know what $\frac{\partial u}{\partial y}$ is. We found this earlier which is $\frac{\partial u}{\partial y}=\frac{y}{x^{2}+y^{2}}$. Hence the above equation becomes

$$
\begin{aligned}
\frac{y}{x^{2}+y^{2}} & =\frac{y}{x^{2}+y^{2}}-\Phi^{\prime}(x) \\
\Phi^{\prime}(x) & =0
\end{aligned}
$$

Therefore Φ is constant, say C_{1}. Equation (5) becomes

$$
\begin{equation*}
v(x, y)=\arctan \left(\frac{y}{x}\right)+C_{1} \tag{8}
\end{equation*}
$$

Which is the conjugate of $u=\frac{1}{2} \ln \left(x^{2}+y^{2}\right)$. To verify the result in (8), we now check that $v(x, y)$ is indeed harmonic by checking that it satisfies the Laplace PDE.

$$
\begin{aligned}
v_{x} & =\frac{-y}{x^{2}+y^{2}} \\
v_{x x} & =\frac{y(2 x)}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
v_{y} & =\frac{x}{x^{2}+y^{2}} \\
v_{y y} & =\frac{-x(2 y)}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

Using the above we see that

$$
\begin{aligned}
v_{x x}+v_{y y} & =\frac{y(2 x)}{\left(x^{2}+y^{2}\right)^{2}}-\frac{x(2 y)}{\left(x^{2}+y^{2}\right)^{2}} \\
& =0
\end{aligned}
$$

This shows that $v(x, y)$ obtained above is harmonic. It is the conjugate of $u(x, y)$.
$v(x, y)$ is not a unique conjugate of $u(x, y)$, since the constant C_{1} is arbitrary.

4.2 Part (b) Using Polar coordinates

Here $z=r e^{i \theta}$ and we are told that $u(r, \theta)=\ln r$. To show this is harmonic in polar coordinates, we need to show it satisfies Laplacian in polar coordinates, which is

$$
u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0
$$

But $u_{r}=\frac{d}{d r} \ln r=\frac{1}{r}$ and $u_{r r}=-\frac{1}{r^{2}}$ and $u_{\theta \theta}=0$. Substituting these into the above gives

$$
\begin{aligned}
-\frac{1}{r^{2}}+\frac{11}{r} \frac{1}{r} & =0 \\
0 & =0
\end{aligned}
$$

Therefore $u=\ln r$ is harmonic since it satisfies the Laplacian in polar coordinates. To find its conjugate, we use C-R in polar coordinates, and these are given by

$$
\begin{align*}
& \frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta} \tag{1}\\
& \frac{\partial u}{\partial \theta}=-r \frac{\partial v}{\partial r} \tag{2}
\end{align*}
$$

From (1), and since we know that $\frac{\partial u}{\partial r}=\frac{1}{r}$, then this gives

$$
\begin{aligned}
\frac{1}{r} & =\frac{1}{r} \frac{\partial v}{\partial \theta} \\
\frac{\partial v}{\partial \theta} & =1
\end{aligned}
$$

Or by integration w.r.t. θ

$$
v=\theta+\Phi(r)
$$

Where $\Phi(r)$ is the constant of integration (a function). Taking derivative of the above w.r.t. r gives

$$
\frac{\partial v}{\partial r}=\Phi^{\prime}(r)
$$

But from (2) $\frac{\partial v}{\partial r}=-\frac{1}{r} \frac{\partial u}{\partial \theta}=0$. (Because u does not depend on θ). Hence the above results in $\Phi^{\prime}(r)=0$ or $\Phi=C_{1}$ a constant. Therefore the conjugate harmonic function is

$$
v(r, \theta)=\theta+C_{1}
$$

Now we verify this satisfies Laplacian in Polar. From

$$
v_{r r}+\frac{1}{r} v_{r}+\frac{1}{r^{2}} v_{\theta \theta}=0
$$

We see since $v_{r}=0$ and $v_{r r}=0$ and $v_{\theta}=1$ and $v_{\theta \theta}=0$, therefore we obtain $0=0$ also. Hence $v=\theta+C_{1}$ satisfies the Laplacian.

5 Problem 5

Find the value of $\int_{C} f(z) d z$ where $f(z)=e^{z}$ for two different contours. C_{1} is straight line from the origin to the point $(2,1) . C_{2}$ is a straight line from the origin to the point $(2,0)$ followed by another straight line from $(2,0)$ to $(2,1)$

Solution

Figure 4: Showing contours for part(a) and pat (b)

5.1 Part a

Using contour C_{1}. The line starts from $\left(x_{0}, y_{0}\right)=(0,0)$ and ends at $\left(x_{1}, y_{1}\right)=(2,1)$. Hence the parametrization for this line is given by

$$
\begin{aligned}
x(t) & =(1-t) x_{0}+t x_{1} \\
& =2 t
\end{aligned}
$$

And

$$
\begin{aligned}
y(t) & =(1-t) y_{0}+t y_{1} \\
& =t
\end{aligned}
$$

Now $f(z)=e^{z}=e^{x+i y}$, Therefore in terms of t this becomes

$$
\begin{aligned}
f(t) & =e^{2 t+i t} \\
& =e^{t(2+i)}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\int_{C_{1}} f(z) d z & =\int_{t=0}^{t=1} f(t) z^{\prime}(t) d t \\
& =\int_{0}^{1} e^{t(2+i)} z^{\prime}(t) d t
\end{aligned}
$$

But $z(t)=x(t)+i y(t)=2 t+i t$, hence $z^{\prime}(t)=2+i$ and the above becomes

$$
\begin{aligned}
\int_{C_{1}} f(z) d z & =\int_{0}^{1} e^{t(2+i)}(2+i) d t \\
& =(2+i) \int_{0}^{1} e^{t(2+i)} d t \\
& =(2+i)\left(\frac{\left(e^{t(2+i)}\right.}{(2+i)}\right)_{0}^{1} \\
& =\left(e^{t(2+i)}\right)_{0}^{1}
\end{aligned}
$$

Hence the final result is

$$
\int_{C_{1}} f(z) d z=e^{2+i}-1
$$

5.2 Part b

Using C_{2}. The first line starts from $\left(x_{0}, y_{0}\right)=(0,0)$ and ends at $\left(x_{1}, y_{1}\right)=(2,0)$. Hence the parametrization for this line is given by

$$
\begin{aligned}
x(t) & =(1-t) x_{0}+t x_{1} \\
& =2 t
\end{aligned}
$$

And

$$
\begin{aligned}
y(t) & =(1-t) y_{0}+t y_{1} \\
& =0
\end{aligned}
$$

Now $f(z)=e^{z}=e^{x+i y}$, Therefore in terms of t the function $f(z)$ becomes

$$
f(t)=e^{2 t}
$$

Hence, for the line from $(0,0)$ to $(2,0)$ we have

$$
\begin{aligned}
\int_{C_{2_{1}}} f(z) d z & =\int_{t=0}^{t=1} f(t) z^{\prime}(t) d t \\
& =\int_{0}^{1} e^{2 t} z^{\prime}(t) d t
\end{aligned}
$$

But $z=x+i y=2 t$ since $y(t)=0$. hence $z^{\prime}(t)=2$ and the above becomes

$$
\begin{align*}
\int_{C_{2_{1}}} f(z) d z & =2 \int_{0}^{1} e^{2 t} d t \\
& =2\left(\frac{e^{2 t}}{2}\right)_{0}^{1} \\
& =e^{2}-1 \tag{1}
\end{align*}
$$

The second line starts from $\left(x_{0}, y_{0}\right)=(2,0)$ and ends at $\left(x_{1}, y_{1}\right)=(2,1)$. Hence the parametrization for this line is given by

$$
\begin{aligned}
x(t) & =(1-t) x_{0}+t x_{1} \\
& =(1-t) 2+2 t \\
& =2
\end{aligned}
$$

And

$$
\begin{aligned}
y(t) & =(1-t) y_{0}+t y_{1} \\
& =t
\end{aligned}
$$

Now $f(z)=e^{z}=e^{x+i y}$, Therefore in terms of t this becomes

$$
f(t)=e^{2+i t}
$$

Hence, for the line from $(2,0)$ to $(2,1)$ we have

$$
\begin{aligned}
\int_{C_{2_{2}}} f(z) d z & =\int_{t=0}^{t=1} f(t) z^{\prime}(t) d t \\
& =\int_{0}^{1} e^{2+i t} z^{\prime}(t) d t
\end{aligned}
$$

But $z=x+i y=2+i t$. hence $z^{\prime}(t)=i$ and the above becomes

$$
\begin{align*}
\int_{C_{2_{2}}} f(z) d z & =\int_{0}^{1} i e^{2+i t} d t \\
& =i\left(\frac{e^{2+i t}}{i}\right)_{0}^{1} \\
& =\left(e^{2+i t}\right)_{0}^{1} \\
& =e^{2+i}-e^{2} \tag{2}
\end{align*}
$$

Therefore the total is the sum of (1) and (2)

$$
\int_{C_{2}} f(z) d z=e^{2}-1+e^{2+i}-e^{2}
$$

Hence the final result is

$$
\begin{equation*}
\int_{C_{2}} f(z) d z=e^{2+i}-1 \tag{3}
\end{equation*}
$$

To verify this, since e^{z} is analytic then $\int_{C_{2}} f(z) d z-\int_{C_{1}} f(z) d z$ should come out to be zero (By Cauchy theorem). This is because $\oint f(z) d z=0$ around the closed contour, going clockwise. Let us see if this is true:

$$
\begin{aligned}
\int_{C_{2}} f(z) d z-\int_{C_{1}} f(z) d z & =\left[e^{2+i}-1\right]-\left[e^{2+i}-1\right] \\
& =0 \\
& =\oint f(z) d z
\end{aligned}
$$

Verified. A small note: $\oint_{C} f(z) d z=0$ does not necessarily mean that $f(z)$ is analytic on and inside C as some non analytic function can give zero, depending on C. But if $f(z)$ happened to be analytic, then $\oint_{C} f(z) d z$ is always zero. But here we now that $e^{a z}$ is analytic.

