HW 3 Physics 5041 Mathematical Methods for Physics Spring 2019 University of Minnesota, Twin Cities

Nasser M. Abbasi

November 2, 2019 Compiled

Compiled on November 2, 2019 at 10:25pm [public]

Contents

1	Problem 1	2
2	Problem 2	4
3	Problem 3	6
4	Problem 4 4.1 Part (a) Using Cartesian	9
	4.2 Part (b) Using Polar coordinates	
5	Problem 5 5.1 Part a	13
	5.2 Part b	14

Consider the function $f(z) = z^{\frac{1}{n}}$ where n is a positive integer. The branch point is at z = 0 and the branch cut is chosen to be along the positive x axis. How many sheets are there? What is the range of θ corresponding to each sheet?

Solution

Following the example in the class handout, where it showed how to find the number of sheets for $z^{\frac{1}{2}}$, the same method is used here, which is to keep adding a multiple of 2π angles until the same result for the original principal value of the function g(z) evaluated at θ is obtained. This gives the number of sheets.

Let

$$g(z) = z^{\frac{1}{n}}$$

$$g(r,\theta) = \left(re^{i\theta}\right)^{\frac{1}{n}}$$

$$g(r,\theta) = r^{\frac{1}{n}}e^{i\frac{\theta}{n}}$$
(1)

In the above, θ is called principal argument. And now the idea is to find how many times 2π needs to be added to θ in order to get back the same value of original of $g(r,\theta)$ at the starting θ that one picks. Adding one time 2π to θ , equation (1) becomes

$$g(r, \theta + 2\pi) = r^{\frac{1}{n}} e^{i\frac{(\theta + 2\pi)}{n}}$$
$$= r^{\frac{1}{n}} e^{i\frac{\theta}{n} + i\frac{2\pi}{n}}$$
$$= r^{\frac{1}{n}} e^{i\frac{\theta}{n}} e^{i\frac{2\pi}{n}}$$

And we add another 2π , or now a total of 4π

$$g(r, \theta + 4\pi) = r^{\frac{1}{n}} e^{i\frac{(\theta + 4\pi)}{n}}$$
$$= r^{\frac{1}{n}} e^{i\frac{\theta}{n} + i\frac{4\pi}{n}}$$
$$= r^{\frac{1}{n}} e^{i\frac{\theta}{n}} e^{i\frac{4\pi}{n}}$$

And so on. We keep adding 2π , or a total of $k(2\pi)$ such that the last term above, which in term of k is $e^{\frac{k(2\pi)i}{n}}$ simplifies to 1 which implies getting back original function value at $g(r,\theta)$. Hence for k times we have

$$g(r, \theta + k(2\pi)) = r^{\frac{1}{n}} e^{i\frac{(\theta + k(2\pi))}{n}}$$
$$= r^{\frac{1}{n}} e^{i\frac{\theta}{n} + i\frac{k(2\pi)}{n}}$$
$$= r^{\frac{1}{n}} e^{i\frac{\theta}{n}} e^{i\frac{k(2\pi)}{n}}$$

We see from the above, is that only when k = n, then $r^{\frac{1}{n}}e^{i\frac{\theta}{n}}e^{i\frac{k(2\pi)}{n}} = r^{\frac{1}{n}}e^{i\frac{\theta}{n}}e^{2\pi i}$. But $e^{2\pi i} = 1$, therefore it reduces to

$$g(r, \theta + n(2\pi)) = r^{\frac{1}{n}} e^{i\frac{\theta}{n}}$$
$$= g(r, \theta)$$

Which is the original value of the function. Therefore there are \underline{n} sheets.

The formula that can also be used to obtain all values for this multivalued function is

$$g(r,\theta) = r^{\frac{1}{n}} e^{i\left(\frac{\theta}{n} + \frac{2\pi}{n}k\right)} \qquad k = 0, 1, \dots n - 1$$

Now to answer the angle θ range question. From the above, we see the range of the angle

for each sheet is as follows

$$\begin{split} R_1 : 0 &< \theta < 2\pi \\ R_2 : 2\pi &< \theta < 4\pi \\ R_3 : 4\pi &< \theta < 6\pi \\ &\vdots \\ R_n : (n-1) \, 2\pi < \theta < n \, (2\pi) \end{split}$$

Sheet R_1 is called the principal sheet associated with k=0.

Derive the formula

$$\arctan z = \frac{i}{2} \ln \left(\frac{i+z}{i-z} \right)$$

Solution

Let $w = \arctan(z)$ hence

$$z = \tan(w)$$
$$z = \frac{\sin w}{\cos w}$$

But $\sin w = \frac{e^{iw} - e^{-iw}}{2i}$ and $\cos w = \frac{e^{iw} + e^{-iw}}{2}$, hence the above simplifies to

$$z = \frac{\frac{e^{iw} - e^{-iw}}{2i}}{\frac{e^{iw} + e^{-iw}}{2}}$$
$$= \frac{1}{i} \frac{e^{iw} - e^{-iw}}{e^{iw} + e^{-iw}}$$

Or

$$iz = \frac{e^{iw} - e^{-iw}}{e^{iw} + e^{-iw}}$$

Multiplying the numerator and denominator of the right side by e^{iw} gives

$$iz = \frac{e^{2iw} - 1}{e^{2iw} + 1}$$

Let $e^{iw} = x$ then the above is the same as

$$iz = \frac{x^2 - 1}{x^2 + 1}$$

$$iz (x^2 + 1) = x^2 - 1$$

$$x^2 iz + iz = x^2 - 1$$

$$x^2 iz + iz - x^2 + 1 = 0$$

$$x^2 (iz - 1) + (1 + iz) = 0$$

$$x^2 = \frac{-(1 + iz)}{(iz - 1)}$$

$$= \frac{(1 + iz)}{(1 - iz)}$$

Simplifying gives

$$x^{2} = \frac{i(-i+z)}{i(-i-z)}$$
$$= \frac{(z-i)}{(-i-z)}$$

Hence

$$x = \pm \left(\frac{z - i}{-i - z}\right)^{\frac{1}{2}}$$

But $x = e^{iw}$, and the above becomes

$$e^{iw} = \pm \left(\frac{z-i}{-i-z}\right)^{\frac{1}{2}}$$

We need now to decide which sign to take. Since $z = \tan(w)$, then when w = 0, z = 0

because tan(0) = 0. Putting w = 0, z = 0 in the above gives

$$1 = \pm \left(\frac{i}{i}\right)^{\frac{1}{2}}$$
$$= \pm (1)^{\frac{1}{2}}$$
$$= \pm 1$$

Hence we need to choose the + sign so both sides is positive. Hence

$$e^{iw} = \left(\frac{z - i}{-i - z}\right)^{\frac{1}{2}}$$

Now, taking the natural log of both sides gives

$$iw = \ln\left(\frac{z-i}{-i-z}\right)^{\frac{1}{2}}$$

$$iw = \frac{1}{2}\ln\left(\frac{z-i}{-i-z}\right)$$

$$w = \frac{1}{2i}\ln\left(\frac{z-i}{-i-z}\right)$$

$$= \frac{-i}{2}\ln\left(\frac{z-i}{-i-z}\right)$$

$$= \frac{i}{2}\ln\left(\left(\frac{z-i}{-i-z}\right)^{-1}\right)$$

$$= \frac{i}{2}\ln\left(\frac{-i-z}{z-i}\right)$$

$$= \frac{i}{2}\ln\left(\frac{-(z+i)}{-(i-z)}\right)$$

$$= \frac{i}{2}\ln\left(\frac{z+i}{-z}\right)$$

But $w = \arctan(z)$, hence the final result is

$$\arctan(z) = \frac{i}{2} \ln \left(\frac{i+z}{i-z} \right)$$

Using the formula for $\arctan z$ from the previous problem, find the real functions u(x,y) and v(x,y) in the expression $\arctan z = u(x,y) + iv(x,y)$

Solution

Let

$$\frac{i}{2}\ln\left(\frac{i+z}{i-z}\right) = u + iv$$

where $u \equiv u(x,y)$, $v \equiv v(x,y)$ are the real and imaginary parts of $\arctan(z)$. Therefore

$$\frac{i}{2}\ln\left(\frac{i+z}{i-z}\right) = \frac{i}{2}\left(\ln\left|\frac{i+z}{i-z}\right| + i\left(\arg\left(\frac{i+z}{i-z}\right) + 2n\pi\right)\right) \qquad n = 0, \pm 1, \pm 2, \dots$$

$$= \frac{i}{2}\ln\left|\frac{i+z}{i-z}\right| - \frac{1}{2}\left(\arg\left(\frac{i+z}{i-z}\right) + 2n\pi\right) \tag{1}$$

Where $\arg\left(\frac{i+z}{i-z}\right)$ is the principal argument. But since z=x+iy then we see that

$$\left| \frac{i+z}{i-z} \right| = \left| \frac{i+(x+iy)}{i-(x+iy)} \right|$$

$$= \left| \frac{i+x+iy}{i-x-iy} \right|$$

$$= \left| \frac{x+i(1+y)}{-x+i(1-y)} \right|$$

$$= \frac{\sqrt{x^2+(1+y)^2}}{\sqrt{x^2+(1-y)^2}}$$

$$= \sqrt{\frac{x^2+(1+y)^2}{x^2+(1-y)^2}}$$
(2)

And the principal argument is

$$\arg\left(\frac{i+z}{i-z}\right) = \arg\left(i+z\right) - \arg\left(i-z\right)$$

$$= \arg\left(i\left(1-iz\right)\right) - \arg\left(i\left(1+iz\right)\right)$$

$$= \arg\left(i+\arg\left(1-iz\right)\right) - \arg\left(i\left(1+iz\right)\right)$$

$$= \arg\left(1-iz\right) + \arg\left(1+iz\right)$$

Letting z = x + iy in the above results in

$$\arg\left(\frac{i+z}{i-z}\right) = \arg\left(1 - i\left(x + iy\right)\right) - \arg\left(1 + i\left(x + iy\right)\right)$$

$$= \arg\left(1 - ix + y\right) - \arg\left(1 + ix - y\right)$$

$$= \arg\left(\left(1 + y\right) - ix\right) - \arg\left(\left(1 - y\right) + ix\right)$$

$$= \arctan\left(\frac{-x}{1+y}\right) - \arctan\left(\frac{x}{1-y}\right)$$
(3)

Substituting (2,3) into (1) gives

$$\frac{i}{2}\ln\left(\frac{i+z}{i-z}\right) = \frac{i}{2}\left(\ln\sqrt{\frac{x^2+\left(1+y\right)^2}{x^2+\left(1-y\right)^2}} + i\left(\arctan\left(\frac{-x}{1+y}\right) - \arctan\left(\frac{x}{1-y}\right) + 2n\pi\right)\right) \qquad n = 0, \pm 1, \pm 2, \dots$$

$$= \frac{i}{4}\ln\left(\frac{x^2+\left(1+y\right)^2}{x^2+\left(1-y\right)^2}\right) - \frac{1}{2}\left(\arctan\left(\frac{-x}{1+y}\right) - \arctan\left(\frac{x}{1-y}\right) + 2n\pi\right)$$

Setting the above equal to u + iv shows that the real part and the imaginary parts are

$$u = -\frac{1}{2} \left(\arctan\left(\frac{-x}{1+y}\right) - \arctan\left(\frac{x}{1-y}\right) + 2n\pi \right) \qquad n = 0, \pm 1, \pm 2, \cdots$$

$$v = \frac{1}{4} \ln\left(\frac{x^2 + \left(y+1\right)^2}{x^2 + \left(1-y\right)^2}\right)$$

Therefore

$$\arctan(z) = \frac{i}{2} \ln \left(\frac{i+z}{i-z} \right)$$

$$= u + iv$$

Where u, v are given above. We see that $\arctan(z)$ is multivalued as it depends on the value of n.

For illustration of u(x,y) and v(x,y), the following is a plot of the above found solution showing the real part u(x,y) for n=0 (principal sheet)

Figure 1: Real part u(x, y) using principal sheet

And the following shows u(x,y) with both n=0 and n=1 on the same plot showing two sheets

Figure 2: Real part u(x, y) showing n = 0, n = 1 on same plot

And the following plot shows the imaginary part v(x,y)

Figure 3: Imaginary part v(x, y)

In the domain r > 0, $0 < \theta < 2\pi$. show that the function $u = \ln r$ is harmonic and find its conjugate. Do this in both Cartesian and polar coordinates.

4.1 Part (a) Using Cartesian

A function u(x,y) is harmonic if it satisfies the Laplace PDE $u_{xx} + u_{yy} = 0$. Since

$$r = \sqrt{x^2 + y^2}$$

Then

$$u = \ln r$$

$$= \ln \sqrt{x^2 + y^2}$$

$$= \frac{1}{2} \ln (x^2 + y^2)$$

We now need to calculate u_{xx} and u_{yy} .

$$u_x = \frac{1}{2} \frac{\partial}{\partial x} \ln \left(x^2 + y^2 \right)$$
$$= \frac{1}{2} \frac{2x}{x^2 + y^2}$$
$$= \frac{x}{x^2 + y^2}$$

And

$$u_{xx} = \frac{\partial}{\partial x} \frac{x}{x^2 + y^2}$$

Applying the integration rule $\frac{\partial}{\partial x} \frac{f(x)}{g(x)} = \frac{f'g - fg}{g^2}$ to the above, where f = x and $g = x^2 + y^2$ results in

$$u_{xx} = \frac{x^2 + y^2 - x(2x)}{\left(x^2 + y^2\right)^2}$$

$$= \frac{x^2 + y^2 - 2x^2}{\left(x^2 + y^2\right)^2}$$

$$= \frac{y^2 - x^2}{\left(x^2 + y^2\right)^2}$$
(1)

Similarly

$$u_y = \frac{1}{2} \frac{\partial}{\partial y} \ln (x^2 + y^2)$$
$$= \frac{1}{2} \frac{2y}{x^2 + y^2}$$
$$= \frac{y}{x^2 + y^2}$$

Applying the integration rule $\frac{\partial}{\partial y} \frac{f(y)}{g(y)} = \frac{f'g - fg}{g^2}$ to the above, where f = y and $g = x^2 + y^2$ results in

$$u_{yy} = \frac{x^2 + y^2 - y(2y)}{(x^2 + y^2)^2}$$

$$= \frac{x^2 + y^2 - 2y^2}{(x^2 + y^2)^2}$$

$$= \frac{x^2 - y^2}{(x^2 + y^2)^2}$$
(2)

Now that we found u_{xx} and u_{yy} , we need to verify that $u_{xx} + u_{yy} = 0$. Adding (1,2) gives

$$u_{xx} + u_{yy} = \frac{y^2 - x^2}{\left(x^2 + y^2\right)^2} + \frac{x^2 - y^2}{\left(x^2 + y^2\right)^2}$$
$$= \frac{y^2 - x^2 + x^2 - y^2}{\left(x^2 + y^2\right)^2}$$
$$= 0$$

Hence $u = \ln r$ is harmonic.

To find its conjugate. Let the conjugate be v(x,y). Let u be the real part of analytic function f = u + iv

Applying Cauchy Riemann equations to f results in

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \tag{3}$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \tag{4}$$

From (3) and using the earlier result found for u_x gives

$$\frac{\partial v}{\partial y} = \frac{x}{x^2 + y^2}$$

Integrating the above w.r.t. y gives

$$v = \int \frac{x}{x^2 + y^2} dy + \Phi(x)$$
$$= x \int \frac{1}{x^2 + y^2} dy + \Phi(x)$$
$$= \frac{1}{x} \int \frac{1}{1 + \left(\frac{y}{x}\right)^2} dy + \Phi(x)$$

The above is integrated using substitution. Let $u = \frac{y}{x}$, then $\frac{du}{dy} = \frac{1}{x}$ and the integral becomes

$$v = \frac{1}{x} \left(\int \frac{1}{1+u^2} (xdu) \right) + \Phi(x)$$
$$= \int \frac{1}{1+u^2} du + \Phi(x)$$

But $\int \frac{1}{1+u^2} du = \arctan(u) = \arctan(\frac{y}{x})$, therefore the above becomes

$$v = \arctan\left(\frac{y}{x}\right) + \Phi\left(x\right) \tag{5}$$

Taking derivative of (5) w.r.t. x gives an ODE to solve for $\Phi(x)$

$$\frac{\partial v}{\partial x} = \frac{d}{dx} \left(\arctan\left(\frac{y}{x}\right) \right) + \Phi'(x) \tag{5A}$$

To find $\frac{d}{dx} \arctan\left(\frac{y}{x}\right)$, let

$$w = \arctan\left(\frac{y}{x}\right)$$

Now the goal is to find $\frac{dw}{dx}$. The above is the same as

$$\tan\left(w\right) = \frac{y}{x} \tag{6}$$

Taking derivative of both sides of the above w.r.t. x gives

$$\frac{d}{dx}\tan\left(w\right) = -\frac{y}{x^2}$$

But $\frac{d}{dx}\tan(w) = \sec^2(w)\frac{dw}{dx}$, and the above can be written as

$$\sec^{2}(w)\frac{dw}{dx} = -\frac{y}{x^{2}}$$

$$\frac{dw}{dx} = -\frac{y}{x^{2}}\frac{1}{\sec^{2}(w)}$$
(7)

But $\sec^2(w) = \frac{1}{\cos^2 w}$ and $\cos^2 w + \sin^2 w = 1$. Therefore dividing by $\cos^2 w$ gives $1 + \frac{\sin^2 w}{\cos^2 w} = \sec^2(w)$ or $1 + \tan^2 w = \sec^2(w)$. But from (6) we know that $\tan(w) = \frac{y}{x}$, therefore $1 + \left(\frac{y}{x}\right)^2 = \sec^2(w)$. Replacing this expression for $\sec^2(w)$ in (7) gives

$$\frac{dw}{dx} = -\frac{y}{x^2} \frac{1}{1 + \left(\frac{y}{x}\right)^2}$$
$$= -\frac{y}{x^2} \frac{x^2}{x^2 + y^2}$$
$$= \frac{-y}{x^2 + y^2}$$

Now that we found $\frac{dw}{dx}$ which is $\frac{d}{dx} \arctan\left(\frac{y}{x}\right)$, then 5A becomes

$$\frac{\partial v}{\partial x} = \frac{-y}{x^2 + y^2} + \Phi'(x)$$

But from Cauchy Riemann equation (4) above, we know that $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$, therefore the above is the same as

$$\frac{\partial u}{\partial y} = -\left(\frac{-y}{x^2 + y^2} + \Phi'(x)\right)$$

We know what $\frac{\partial u}{\partial y}$ is. We found this earlier which is $\frac{\partial u}{\partial y} = \frac{y}{x^2 + y^2}$. Hence the above equation becomes

$$\frac{y}{x^2 + y^2} = \frac{y}{x^2 + y^2} - \Phi'(x)$$
$$\Phi'(x) = 0$$

Therefore Φ is constant, say C_1 . Equation (5) becomes

$$v\left(x,y\right) = \arctan\left(\frac{y}{x}\right) + C_1 \tag{8}$$

Which is the conjugate of $u = \frac{1}{2} \ln (x^2 + y^2)$. To verify the result in (8), we now check that v(x,y) is indeed harmonic by checking that it satisfies the Laplace PDE.

$$v_{x} = \frac{-y}{x^{2} + y^{2}}$$
$$v_{xx} = \frac{y(2x)}{(x^{2} + y^{2})^{2}}$$

And

$$v_y = \frac{x}{x^2 + y^2}$$
$$v_{yy} = \frac{-x(2y)}{(x^2 + y^2)^2}$$

Using the above we see that

$$v_{xx} + v_{yy} = \frac{y(2x)}{(x^2 + y^2)^2} - \frac{x(2y)}{(x^2 + y^2)^2}$$
$$= 0$$

This shows that v(x,y) obtained above is harmonic. It is the conjugate of u(x,y). v(x,y) is not a unique conjugate of u(x,y), since the constant C_1 is arbitrary.

4.2 Part (b) Using Polar coordinates

Here $z = re^{i\theta}$ and we are told that $u(r, \theta) = \ln r$. To show this is harmonic in polar coordinates, we need to show it satisfies Laplacian in polar coordinates, which is

$$u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} = 0$$

But $u_r = \frac{d}{dr} \ln r = \frac{1}{r}$ and $u_{rr} = -\frac{1}{r^2}$ and $u_{\theta\theta} = 0$. Substituting these into the above gives

$$-\frac{1}{r^2} + \frac{1}{r} \frac{1}{r} = 0$$
$$0 = 0$$

Therefore $u = \ln r$ is harmonic since it satisfies the Laplacian in polar coordinates. To find its conjugate, we use C-R in polar coordinates, and these are given by

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta} \tag{1}$$

$$\frac{\partial u}{\partial \theta} = -r \frac{\partial v}{\partial r} \tag{2}$$

From (1), and since we know that $\frac{\partial u}{\partial r} = \frac{1}{r}$, then this gives

$$\frac{1}{r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$$
$$\frac{\partial v}{\partial \theta} = 1$$

Or by integration w.r.t. θ

$$v = \theta + \Phi(r)$$

Where $\Phi(r)$ is the constant of integration (a function). Taking derivative of the above w.r.t. r gives

$$\frac{\partial v}{\partial r} = \Phi'(r)$$

But from (2) $\frac{\partial v}{\partial r} = -\frac{1}{r}\frac{\partial u}{\partial \theta} = 0$. (Because u does not depend on θ). Hence the above results in $\Phi'(r) = 0$ or $\Phi = C_1$ a constant. Therefore the conjugate harmonic function is

$$v\left(r,\theta\right)=\theta+C_{1}$$

Now we verify this satisfies Laplacian in Polar. From

$$v_{rr} + \frac{1}{r}v_r + \frac{1}{r^2}v_{\theta\theta} = 0$$

We see since $v_r = 0$ and $v_{rr} = 0$ and $v_{\theta} = 1$ and $v_{\theta\theta} = 0$, therefore we obtain 0 = 0 also. Hence $v = \theta + C_1$ satisfies the Laplacian.

Find the value of $\int_C f(z) dz$ where $f(z) = e^z$ for two different contours. C_1 is straight line from the origin to the point (2,1). C_2 is a straight line from the origin to the point (2,0) followed by another straight line from (2,0) to (2,1)

Solution

Figure 4: Showing contours for part(a) and pat (b)

5.1 Part a

Using contour C_1 . The line starts from $(x_0, y_0) = (0, 0)$ and ends at $(x_1, y_1) = (2, 1)$. Hence the parametrization for this line is given by

$$x(t) = (1 - t)x_0 + tx_1$$
$$= 2t$$

And

$$y(t) = (1 - t)y_0 + ty_1$$
$$= t$$

Now $f(z) = e^z = e^{x+iy}$, Therefore in terms of t this becomes

$$f(t) = e^{2t+it}$$
$$= e^{t(2+i)}$$

Hence

$$\int_{C_1} f(z) dz = \int_{t=0}^{t=1} f(t) z'(t) dt$$
$$= \int_{0}^{1} e^{t(2+i)} z'(t) dt$$

But z(t) = x(t) + iy(t) = 2t + it, hence z'(t) = 2 + i and the above becomes

$$\int_{C_1} f(z) dz = \int_0^1 e^{t(2+i)} (2+i) dt$$

$$= (2+i) \int_0^1 e^{t(2+i)} dt$$

$$= (2+i) \left(\frac{e^{t(2+i)}}{(2+i)} \right)_0^1$$

$$= \left(e^{t(2+i)} \right)_0^1$$

Hence the final result is

$$\int_{C_1} f(z) \, dz = e^{2+i} - 1$$

5.2 Part b

Using C_2 . The <u>first line</u> starts from $(x_0, y_0) = (0, 0)$ and ends at $(x_1, y_1) = (2, 0)$. Hence the parametrization for this line is given by

$$x(t) = (1 - t)x_0 + tx_1$$
$$= 2t$$

And

$$y(t) = (1 - t)y_0 + ty_1$$
$$= 0$$

Now $f(z) = e^z = e^{x+iy}$, Therefore in terms of t the function f(z) becomes

$$f(t) = e^{2t}$$

Hence, for the line from (0,0) to (2,0) we have

$$\int_{C_{2_1}} f(z) dz = \int_{t=0}^{t=1} f(t) z'(t) dt$$
$$= \int_{0}^{1} e^{2t} z'(t) dt$$

But z = x + iy = 2t since y(t) = 0. hence z'(t) = 2 and the above becomes

$$\int_{C_{2_1}} f(z) dz = 2 \int_0^1 e^{2t} dt$$

$$= 2 \left(\frac{e^{2t}}{2}\right)_0^1$$

$$= e^2 - 1$$
(1)

The <u>second line</u> starts from $(x_0, y_0) = (2, 0)$ and ends at $(x_1, y_1) = (2, 1)$. Hence the parametrization for this line is given by

$$x(t) = (1 - t) x_0 + tx_1$$

= $(1 - t) 2 + 2t$
= 2

And

$$y(t) = (1 - t)y_0 + ty_1$$
$$= t$$

Now $f(z) = e^z = e^{x+iy}$, Therefore in terms of t this becomes

$$f(t) = e^{2+it}$$

Hence, for the line from (2,0) to (2,1) we have

$$\int_{C_{2_2}} f(z) dz = \int_{t=0}^{t=1} f(t) z'(t) dt$$
$$= \int_{0}^{1} e^{2+it} z'(t) dt$$

But z = x + iy = 2 + it. hence z'(t) = i and the above becomes

$$\int_{C_{2_2}} f(z) dz = \int_0^1 ie^{2+it} dt$$

$$= i \left(\frac{e^{2+it}}{i}\right)_0^1$$

$$= \left(e^{2+it}\right)_0^1$$

$$= e^{2+i} - e^2$$
(2)

Therefore the total is the sum of (1) and (2)

$$\int_{C_2} f(z) dz = e^2 - 1 + e^{2+i} - e^2$$

Hence the final result is

$$\int_{C_2} f(z) \, dz = e^{2+i} - 1 \tag{3}$$

To verify this, since e^z is analytic then $\int_{C_2} f(z) dz - \int_{C_1} f(z) dz$ should come out to be zero (By Cauchy theorem). This is because $\oint f(z) dz = 0$ around the closed contour, going clockwise. Let us see if this is true:

$$\int_{C_2} f(z) dz - \int_{C_1} f(z) dz = [e^{2+i} - 1] - [e^{2+i} - 1]$$

$$= 0$$

$$= \oint f(z) dz$$

Verified. A small note: $\oint_C f(z) dz = 0$ does not necessarily mean that f(z) is analytic on and inside C as some non analytic function can give zero, depending on C. But if f(z) happened to be analytic, then $\oint_C f(z) dz$ is always zero. But here we now that e^{az} is analytic.