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1 Problem 1

Find the sum of 1 + 1
4 −

1
16 −

1
64 +

1
256 +

1
1024 −⋯

Solution

We would like to combine each two consecutive negative terms and combine each two
consecutive positive terms in the series in order to obtain an alternating series which is
easier to work with. But to do that, we first need to check that the series is absolutely

convergent. The |𝑎𝑛| term is
1
4𝑛 , therefore

𝐿 = lim
𝑛→∞

�
𝑎𝑛+1
𝑎𝑛

�

= lim
𝑛→∞

�
�

1
4𝑛+1
1
4𝑛

�
�

= lim
𝑛→∞

�
4𝑛

4𝑛+1
�

= �
1
4
�

Since |𝐿| < 1 then the series is absolutely convergent so we are allowed now to group (or
rearrange) terms as follows

𝑆 = �1 +
1
4�
− �

1
16
+
1
64�

+ �
1
256

+
1

1024�
− �

1
4096

+
1

16384�
+⋯

=
5
4
−
5
64
+

5
1024

−
5

16 384
+⋯

=
5
4 �
1 −

1
16
+

1
256

−
1

4096
+⋯�

=
5
4

∞
�
𝑛=0

(−1)𝑛

42𝑛

=
5
4

∞
�
𝑛=0

(−1)𝑛 �
1
16�

𝑛

(1)

But ∑∞
𝑛=0 (−1)

𝑛 � 1
16
�
𝑛
has the form ∑∞

𝑛=0 (−1)
𝑛 𝑟𝑛 where 𝑟 = 1

16 and since |𝑟| < 1 then by the

binomial series
∞
�
𝑛=0

(−1)𝑛 𝑟𝑛 = 1 − 𝑟 + 𝑟2 − 𝑟3 +⋯

=
1

1 + 𝑟
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Therefore the sum in (1) becomes, when using 𝑟 = 1
16 the following

𝑆 =
5
4

⎛
⎜⎜⎜⎜⎜⎝

1
1 + 1

16

⎞
⎟⎟⎟⎟⎟⎠

=
5
4 �
16
17�

Hence

𝑆 = 20
17

Or

𝑆 ≈ 1.176
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2 Problem 2

Find the sum of
1
0! +

2
1! +

3
2! +⋯

Solution

𝑆 = �
𝑛=0

𝑛 + 1
𝑛!

= �
𝑛=0

𝑛
𝑛!
+�

𝑛=0

1
𝑛!

= �
𝑛=0

𝑛
(𝑛) (𝑛 − 1)!

+ 𝑒

= �
𝑛=0

1
(𝑛 − 1)!

+ 𝑒

= �
𝑛=−1

1
𝑛!
+ 𝑒

=
1

(−1)!
+�

𝑛=0

1
𝑛!
+ 𝑒

=
1

(−1)!
+ 𝑒 + 𝑒

=
1

(−1)!
+ 2𝑒

Now to handle
1

(−1)! , we use Gamma function definition for factorials Γ (𝑛) = (𝑛 − 1)! for

positive integers, and the generalized Γ (𝑧) = ∫∞

0
𝑥𝑧−1𝑒−𝑥𝑑𝑥 for non positive integers. By

definition Γ (−𝑘) where 𝑘 is negative integer is ∞. (Gamma function is defined only for
negative values other than the negative integers).

Hence
1

(−1)! =
1
∞ = 0. So the above result now simplifies to

𝑆 = 2𝑒
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3 Problem 3

Sum the following series assuming that 0 < 𝜃 < 𝜋 for definiteness.

𝑓 (𝜃) = sin (𝜃) +
1
3

sin (2𝜃) +
1
5

sin (3𝜃) +
1
7

sin (4𝜃) +⋯

Solution

Since 𝑒𝑖𝑛𝜃 = cos (𝑛𝜃) + 𝑖 sin (𝑛𝜃) then the above is the same as writing

𝑓 (𝜃) = Im(𝑒𝑖𝜃 +
1
3
𝑒2𝑖𝜃 +

1
5
𝑒3𝑖𝜃 +

1
7
𝑒4𝑖𝜃 +⋯) (1)

Let 𝑒𝑖
𝜃
2 = 𝑥, then the above becomes

𝑓 (𝜃) = Im(𝑥2 +
1
3
𝑥4 +

1
5
𝑥6 +

1
7
𝑥8 +⋯)

= Im �𝑥 �𝑥 +
1
3
𝑥3 +

1
5
𝑥5 +

1
7
𝑥7 +⋯��

Let 𝑔 (𝑥) = 𝑥 + 1
3𝑥

3 + 1
5𝑥

5 + 1
7𝑥

7 +⋯, hence the above becomes

𝑓 (𝜃) = Im �𝑥𝑔 (𝑥)�

= Im �𝑥�𝑔′ (𝑥) 𝑑𝑥� (2)

But 𝑔′ (𝑥) = 1 + 3𝑥2

3 + 5
5𝑥

4 +⋯ = 1 + 𝑥2 + 𝑥4 + 𝑥6 +⋯. Now for |𝑥| < 1 and using Binomial
series this has the sum

𝑔′ (𝑥) =
1

1 − 𝑥2
Substituting the above into (2) gives

𝑓 (𝜃) = Im �𝑥�
1

1 − 𝑥2
𝑑𝑥� (3)

But

�
1

1 − 𝑥2
𝑑𝑥 = �

1
(1 − 𝑥) (1 + 𝑥)

𝑑𝑥

Let
1

(1−𝑥)(1+𝑥) =
𝐴
1−𝑥 +

𝐵
1+𝑥 . Hence 𝐴 (1 + 𝑥) + 𝐵 (1 − 𝑥) = 1 or 𝐴 + 𝐴𝑥 + 𝐵 − 𝐵𝑥 = 1 or

𝑥 (𝐴 − 𝐵) + (𝐴 + 𝐵) = 1. Therefore 𝐴 = 1 − 𝐵 and 𝐴 = 𝐵. Hence 2𝐵 = 1 or 𝐵 = 1
2 and also
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𝐴 = 1
2 . It follows that the above integral becomes

�
1

1 − 𝑥2
𝑑𝑥 = �

𝐴
1 − 𝑥

+
𝐵

1 + 𝑥
𝑑𝑥

=
1
2 �

1
1 − 𝑥

+
1

1 + 𝑥
𝑑𝑥

=
1
2
(ln (1 + 𝑥) − ln (1 − 𝑥))

=
1
2

ln �
1 + 𝑥
1 − 𝑥�

Substituting the above into (3) gives

𝑓 (𝜃) = Im �
𝑥
2

ln �
1 + 𝑥
1 − 𝑥��

Now, replacing 𝑥 back by 𝑒𝑖
𝜃
2 gives

𝑓 (𝜃) =
1
2

Im

⎛
⎜⎜⎜⎜⎜⎝𝑒

𝑖𝜃2 ln

⎛
⎜⎜⎜⎜⎜⎝
1 + 𝑒𝑖

𝜃
2

1 − 𝑒𝑖
𝜃
2

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

Multiplying the numerator and denominator inside the ln by 𝑒
−𝑖𝜃
4 gives

𝑓 (𝜃) =
1
2

Im

⎛
⎜⎜⎜⎜⎜⎜⎝𝑒

𝑖𝜃2 ln

⎛
⎜⎜⎜⎜⎜⎜⎝
𝑒
−𝑖𝜃
4 + 𝑒𝑖

𝜃
4

𝑒
−𝑖𝜃
4 − 𝑒𝑖

𝜃
4

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

=
1
2

Im

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
𝑒𝑖

𝜃
2 ln

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
𝑒𝑖

𝜃
4 + 𝑒

−𝑖𝜃
4

− �𝑒𝑖
𝜃
4 − 𝑒

−𝑖𝜃
4 �

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4)

But cos �𝜃4 � =
𝑒𝑖
𝜃
4 +𝑒

−𝑖𝜃
4

2 and sin �𝜃4 � =
𝑒
−𝑖𝜃
4 −𝑒𝑖

𝜃
4

2𝑖 , therefore

𝑒𝑖
𝜃
4 + 𝑒

−𝑖𝜃
4 = 2 cos �

𝜃
4 �

𝑒𝑖
𝜃
4 − 𝑒

−𝑖𝜃
4 = 2𝑖 sin �

𝜃
4 �

Using these in (4) gives

𝑓 (𝜃) =
1
2

Im

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
𝑒𝑖

𝜃
2 ln

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 cos �𝜃4 �

−2𝑖 sin �𝜃4 �

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
1
2

Im

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
𝑒𝑖

𝜃
2 ln

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
𝑖
cos �𝜃4 �

sin �𝜃4 �

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5)
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Using ln 𝑧 = ln |𝑧| + 𝑖 arg (𝑧), where the principal argument is used. Here 𝑧 = 𝑖
cos�𝜃4 �

sin�𝜃4 �
. This

gives |𝑧| =
cos�𝜃4 �

sin�𝜃4 �
and

arg (𝑧) = arg

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
𝑖
cos �𝜃4 �

sin �𝜃4 �

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Since since
cos�𝜃4 �

sin�𝜃4 �
> 0 for all 𝜃 in the range 0 < 𝜃 < 𝜋 then 𝑖

cos�𝜃4 �

sin�𝜃4 �
is complex in the positive

𝑖 direction. Hence

arg (𝑧) =
𝜋
2

Therefore we can write that

ln

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
𝑖
cos �𝜃4 �

sin �𝜃4 �

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
= ln

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos �𝜃4 �

sin �𝜃4 �

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ 𝑖
𝜋
2

But we can simplify the above more using

ln

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos �𝜃4 �

sin �𝜃4 �

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
= ln

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

tan �𝜃4 �

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ln 1 − ln tan �
𝜃
4 �

= − ln tan �
𝜃
4 �

Substituting all the above back into (5) gives

𝑓 (𝜃) =
1
2

Im �𝑒𝑖
𝜃
2 �− ln tan

𝜃
4
+ 𝑖
𝜋
2 ��

=
1
2

Im ��cos
𝜃
2
+ 𝑖 sin

𝜃
2 � �

− ln tan
𝜃
4
+ 𝑖
𝜋
2 ��

=
1
2

Im �− cos
𝜃
2

ln tan
𝜃
4
− 𝑖 sin

𝜃
2

ln tan
𝜃
4
+ 𝑖
𝜋
2

cos
𝜃
2
−
𝜋
2

sin
𝜃
2 �

=
1
2

Im �𝑖 �− sin
𝜃
2

ln tan
𝜃
4
+
𝜋
2

cos
𝜃
2 �
+ �− cos

𝜃
2

ln tan
𝜃
4
+
𝜋
2

sin
𝜃
2 ��
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Now we can take the imaginary part, giving the final answer as

𝑓 (𝜃) =
1
2 �
𝜋
2

cos
𝜃
2
− sin

𝜃
2

ln tan �
𝜃
4 ��
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4 Problem 4

Evaluate the series 𝑓 (𝑥) = ∑∞
𝑛=1

(−1)𝑛+1𝑛2𝑥2𝑛−1

(2𝑛−1)! = 𝑥 − 4𝑥3

3! +
9𝑥5

5! + ⋯ by comparing it with

sin (𝑥) = 𝑥 − 𝑥3

3! +
𝑥5

5! −⋯

Solution

Since

𝑓 (𝑥) =
∞
�
𝑛=1

(−1)𝑛+1 𝑛2𝑥2𝑛−1

(2𝑛 − 1)!
And since

sin (𝑥) =
∞
�
𝑛=1

(−1)𝑛+1 𝑥2𝑛−1

(2𝑛 − 1)!
Then we start by taking derivative of sin (𝑥) twice, which gives

𝑑
𝑑𝑥

sin (𝑥) =
∞
�
𝑛=1

(−1)𝑛+1 (2𝑛 − 1) 𝑥2𝑛−2

(2𝑛 − 1)!
(1)

And di�erentiating one more time

𝑑2

𝑑𝑥2
sin (𝑥) =

∞
�
𝑛=1

(−1)𝑛+1 (2𝑛 − 1) (2𝑛 − 2) 𝑥2𝑛−3

(2𝑛 − 1)!

=
∞
�
𝑛=1

(−1)𝑛+1 �4𝑛2 − 6𝑛 + 2� 𝑥2𝑛−3

(2𝑛 − 1)!

= 4
∞
�
𝑛=1

(−1)𝑛+1 𝑛2𝑥2𝑛−3

(2𝑛 − 1)!
− 6

∞
�
𝑛=1

(−1)𝑛+1 𝑛𝑥2𝑛−3

(2𝑛 − 1)!
+ 2

∞
�
𝑛=1

(−1)𝑛+1 𝑥2𝑛−3

(2𝑛 − 1)!

Multiplying both sides by 𝑥2 gives

𝑥2
𝑑2

𝑑𝑥2
sin (𝑥) = 4

∞
�
𝑛=1

(−1)𝑛+1 𝑛2𝑥2𝑛−1

(2𝑛 − 1)!
− 6

∞
�
𝑛=1

(−1)𝑛+1 𝑛𝑥2𝑛−1

(2𝑛 − 1)!
+ 2

∞
�
𝑛=1

(−1)𝑛+1 𝑥2𝑛−1

(2𝑛 − 1)!

= 4𝑓 (𝑥) − 6
∞
�
𝑛=1

(−1)𝑛+1 𝑛𝑥2𝑛−1

(2𝑛 − 1)!
+ 2 sin (𝑥) (2)

Let

𝑔 (𝑥) =
∞
�
𝑛=1

(−1)𝑛+1 𝑛𝑥2𝑛−1

(2𝑛 − 1)!
Then (2) becomes

𝑥2
𝑑2

𝑑𝑥2
sin (𝑥) = 4𝑓 (𝑥) − 6𝑔 (𝑥) + 2 sin (𝑥)

−𝑥2 cos 𝑥 = 4𝑓 (𝑥) − 6𝑔 (𝑥) + 2 sin (𝑥) (3)
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So we just need to find 𝑔 (𝑥). For this we can use (1). Writing (1) as

𝑑
𝑑𝑥

sin (𝑥) = 2
∞
�
𝑛=1

(−1)𝑛+1 𝑛𝑥2𝑛−2

(2𝑛 − 1)!
−

∞
�
𝑛=1

(−1)𝑛+1 𝑥2𝑛−2

(2𝑛 − 1)!

𝑥
𝑑
𝑑𝑥

sin (𝑥) = 2
∞
�
𝑛=1

(−1)𝑛+1 𝑛𝑥2𝑛−1

(2𝑛 − 1)!
−

∞
�
𝑛=1

(−1)𝑛+1 𝑥2𝑛−1

(2𝑛 − 1)!

𝑥
𝑑
𝑑𝑥

sin (𝑥) = 2𝑔 (𝑥) − sin (𝑥)

Hence

𝑔 (𝑥) =
𝑥 𝑑
𝑑𝑥 sin (𝑥) + sin (𝑥)

2
Using the above in (3) gives

𝑥2
𝑑2

𝑑𝑥2
sin (𝑥) = 4𝑓 (𝑥) − 6

⎛
⎜⎜⎜⎜⎜⎝
𝑥 𝑑
𝑑𝑥 sin (𝑥) + sin (𝑥)

2

⎞
⎟⎟⎟⎟⎟⎠ + 2 sin (𝑥)

−𝑥2 sin (𝑥) = 4𝑓 (𝑥) − 3 (𝑥 cos 𝑥 + sin 𝑥) + 2 sin 𝑥
Solving for 𝑓 (𝑥)

𝑓 (𝑥) =
−𝑥2 sin+3𝑥 cos 𝑥 + sin 𝑥

4

=
�1 − 𝑥2� sin 𝑥 + 3𝑥 cos 𝑥

4
Or

𝑥 −
4𝑥3

3!
+
9𝑥5

5!
+⋯ =

1
4
�1 − 𝑥2� sin 𝑥 +

3
4
𝑥 cos 𝑥
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5 Problem 5

The Euler numbers are defined by

sec (𝑥) =
∞
�
𝑛=0

(−1)𝑛
𝐸2𝑛
(2𝑛)!

𝑥2𝑛

(a) What is 𝐸0?

(b) Find recursion expansion for 𝐸2𝑛 when 𝑛 ≥ 1. Determine 𝐸2, 𝐸4, 𝐸6, 𝐸8 explicitly.

(c) The partial fraction expansion of secant is

sec (𝑘𝜋) =
4
𝜋

∞
�
𝑚=0

(−1)𝑚 (2𝑚 + 1)
(2𝑚 + 1)2 − 4𝑘2

Expand the right side in a power series in 𝑘 and use it to evaluate the sum
∞
�
𝑚=0

(−1)𝑚

(2𝑚 + 1)2𝑛+1

In terms of one or more Euler numbers.

Solution

5.1 Part (a)

Using the formula given, we see that

sec (𝑥) = 𝐸0 −
𝐸2
2!
𝑥2 +

𝐸4
4!
𝑥4 −

𝐸6
6!
𝑥6 +⋯

When 𝑥 = 0 the above gives
sec (0) = 𝐸0

Hence

𝐸0 = 1

5.2 Part (b)

Since cos (𝑥) sec (𝑥) = 1 then

1 = cos (𝑥) �
∞
�
𝑛=0

(−1)𝑛
𝐸2𝑛
(2𝑛)!

𝑥2𝑛�

Using power series expansion for cos (𝑥) = 1 − 𝑥2

2! +
𝑥4

4! −⋯ = ∑∞
𝑘=0

(−1)𝑘

(2𝑘)! 𝑥
2𝑘, then the above

becomes

1 =
⎛
⎜⎜⎜⎜⎝
∞
�
𝑘=0

(−1)𝑘

(2𝑘)!
𝑥2𝑘
⎞
⎟⎟⎟⎟⎠ �

∞
�
𝑛=0

(−1)𝑛
𝐸2𝑛
(2𝑛)!

𝑥2𝑛�
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To see the pattern, so that we can combine the product above, let us multiply few terms,
and collect on powers of 𝑥

1 = �1 −
𝑥2

2!
+
𝑥4

4!
−
𝑥6

6!
+⋯� �𝐸0 −

𝐸2
2!
𝑥2 +

𝐸4
4!
𝑥4 −

𝐸6
6!
𝑥6⋯�

= 𝑥0 (𝐸0) + 𝑥2 �−
𝐸2
2!
−
𝐸0
2! �

+ 𝑥4 �
𝐸4
4!
+
𝐸2
2!2!

+
𝐸0
4! �

+ 𝑥6 �−
𝐸6
6!
−
𝐸4
2!4!

−
𝐸2
4!2!

−
𝐸0
6! �

+⋯

= 𝑥0 (𝐸0) − 𝑥2 �
𝐸0
2!
+
𝐸2
2! �

+ 𝑥4 �
𝐸0
4!
+
𝐸2
2!2!

+
𝐸4
4! �

− 𝑥6 �
𝐸0
6!
+
𝐸2
4!2!

+
𝐸4
2!4!

+
𝐸6
6! �

+⋯

Therefore the above can be written as

1 =
∞
�
𝑛=0

�
𝑛
�
𝑘=0

1
(2𝑛 − 2𝑘)! (2𝑘)!

𝐸2𝑘� (−1)
𝑛 𝑥2𝑛

When 𝑛 = 0 then the RHS ∑𝑛
𝑘=0

1
(2𝑛−2𝑘)!(2𝑘)!𝐸2𝑘 = 𝐸0 = 1. Hence we can rewrite the above by

starting sum from 𝑛 = 1 as follows

1 = 1 +
∞
�
𝑛=1

�
𝑛
�
𝑘=0

1
(2𝑛 − 2𝑘)! (2𝑘)!

𝐸2𝑘� (−1)
𝑛 𝑥2𝑛

0 =
∞
�
𝑛=1

�
𝑛
�
𝑘=0

1
(2𝑛 − 2𝑘)! (2𝑘)!

𝐸2𝑘� (−1)
𝑛 𝑥2𝑛

Equating terms of powers of 𝑥 on both sides: since left side has no 𝑥, then this implies the
coe�cient of 𝑥 in the RHS must be zero. This implies

𝑛
�
𝑘=0

(−1)𝑛

(2𝑛 − 2𝑘)! (2𝑘)!
𝐸2𝑘 = 0

𝑛
�
𝑘=0

1
(2𝑛 − 2𝑘)! (2𝑘)!

𝐸2𝑘 = 0

Since we want 𝐸2𝑛, then we make the sum stop at 𝑛− 1 to isolate that term. Hence the above
becomes

�
𝑛−1
�
𝑘=0

1
(2𝑛 − 2𝑘)! (2𝑘)!

𝐸2𝑘� +
1

(2𝑛 − 2𝑛)! (2𝑛)!
𝐸2𝑛 = 0

�
𝑛−1
�
𝑘=0

1
(2𝑛 − 2𝑘)! (2𝑘)!

𝐸2𝑘� +
1

(2𝑛)!
𝐸2𝑛 = 0

�
𝑛−1
�
𝑘=0

(2𝑛)!
(2𝑛 − 2𝑘)! (2𝑘)!

𝐸2𝑘� + 𝐸2𝑛 = 0
⎛
⎜⎜⎜⎝
𝑛−1
�
𝑘=0

⎛
⎜⎜⎜⎝
2𝑛
2𝑘

⎞
⎟⎟⎟⎠ 𝐸2𝑘

⎞
⎟⎟⎟⎠ + 𝐸2𝑛 = 0

Therefore the recursion formula is finally found as

𝐸2𝑛 = −
𝑛−1
�
𝑘=0

⎛
⎜⎜⎜⎝
2𝑛
2𝑘

⎞
⎟⎟⎟⎠ 𝐸2𝑘 (4)
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Using (4), we now calculate 𝐸2, 𝐸4, 𝐸6, 𝐸8.

For 𝑛 = 1 then (4) becomes

𝐸2 = −
0
�
𝑘=0

(2)!
(2 − 2𝑘)! (2𝑘)!

𝐸2𝑘

=
(2)!
(2)!

𝐸0

= −𝐸0
= −1

For 𝑛 = 2 then (5) becomes

𝐸4 = −
1
�
𝑘=0

(4)!
(4 − 2𝑘)! (2𝑘)!

𝐸2𝑘

= − �
(4)!
(4)!

𝐸0 +
(4)!

(4 − 2)! (2)!
𝐸2�

= − �𝐸0 +
(4) (3) (2)
(2) (2)

𝐸2�

= − (1 + (2) (3) (−1))
= − (1 − 6)
= 5

For 𝑛 = 3 then (5) becomes

𝐸6 = −
2
�
𝑘=0

(6)!
(6 − 2𝑘)! (2𝑘)!

𝐸2𝑘

= − �
(6)!
(6)!

𝐸0 +
(6)!

(6 − 2)! (2)!
𝐸2 +

(6)!
(2)! (4)!

𝐸4�

= − �𝐸0 +
(6) (5)
2

𝐸2 +
(6) (5)
2

𝐸4�

= − (𝐸0 + 15𝐸2 + 15𝐸4)
= − (1 + 15 (−1) + 15 (5))
= −61
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For 𝑛 = 4 then (5) becomes

𝐸6 = −
3
�
𝑘=0

(8)!
(8 − 2𝑘)! (2𝑘)!

𝐸2𝑘

= − �
(8)!
(8)!

𝐸0 +
(8)!

(8 − 2)! (2)!
𝐸2 +

(8)!
(4)! (4)!

𝐸4 +
(8)!

(8 − 6)! (6)!
𝐸6�

= − �𝐸0 +
(8)!

(6)! (2)!
𝐸2 +

(8) (7) (6) (5)
(4)!

𝐸4 +
(8)!

(2)! (6)!
𝐸6�

= − �𝐸0 +
(8) (7)
(2)!

𝐸2 +
(8) (7) (6) (5)
(4) (3) (2)

𝐸4 +
(8) (7)
(2)

𝐸6�

= − (𝐸0 + 28𝐸2 + 70𝐸4 + 28𝐸6)
= − (1 + 28 (−1) + 70 (5) + 28 (−61))
= 1385

Summary

𝑛 𝐸2𝑛
0 𝐸0 = 1
1 𝐸2 = −1
2 𝐸4 = 5
3 𝐸6 = −61
4 𝐸8 = 1385

5.3 Part c

sec (𝑘𝜋) =
4
𝜋

∞
�
𝑚=0

(−1)𝑚 (2𝑚 + 1)
(2𝑚 + 1)2 − (2𝑘)2

=
4
𝜋

∞
�
𝑚=0

(−1)𝑚
(2𝑚 + 1)

(2𝑚 + 1)2 − (2𝑘)2

=
4
𝜋

∞
�
𝑚=0

(−1)𝑚
1

(2𝑚 + 1) − (2𝑘)2

(2𝑚+1)

=
4
𝜋

∞
�
𝑚=0

(−1)𝑚
1

(2𝑚 + 1) �1 − (2𝑘)2

(2𝑚+1)2
�

=
4
𝜋

∞
�
𝑚=0

(−1)𝑚

(2𝑚 + 1)
1

�1 − (2𝑘)2

(2𝑚+1)2
�

=
4
𝜋

∞
�
𝑚=0

(−1)𝑚

(2𝑚 + 1)
1

�1 − �
2𝑘

2𝑚+1
�
2
�
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Assuming � 2𝑘
2𝑚+1 � < 1 then

1

�1−�
2𝑘

2𝑚+1 �
2
�
= ∑∞

𝑛=0 �
2𝑘

2𝑚+1
�
2𝑛
. From Binomial series. Then the above

can be written as

sec (𝑘𝜋) =
4
𝜋

∞
�
𝑚=0

(−1)𝑚

(2𝑚 + 1)

⎛
⎜⎜⎜⎜⎝
∞
�
𝑛=0

�
2𝑘

2𝑚 + 1�
2𝑛⎞⎟⎟⎟⎟⎠

Interchanging the order of summation in order to combine 𝑚 terms

sec (𝑘𝜋) =
4
𝜋

∞
�
𝑛=0

𝑘2𝑛
⎛
⎜⎜⎜⎜⎝

∞
�
𝑚=0

(−1)𝑚

(2𝑚 + 1) �
2

2𝑚 + 1�
2𝑛⎞⎟⎟⎟⎟⎠

=
4
𝜋

∞
�
𝑛=0

𝑘2𝑛 �
∞
�
𝑚=0

(−1)𝑚
22𝑛

(2𝑚 + 1)2𝑛+1
� (1)

But since sec (𝑥) = ∑∞
𝑛=0 (−1)

𝑛 𝐸2𝑛
(2𝑛)!𝑥

2𝑛, then when 𝑥 = 𝑘𝜋, this becomes

sec (𝑘𝜋) =
∞
�
𝑛=0

(−1)𝑛
𝐸2𝑛
(2𝑛)!

(𝑘𝜋)2𝑛

=
∞
�
𝑛=0

𝑘2𝑛 (−1)𝑛
𝐸2𝑛
(2𝑛)!

(𝜋)2𝑛 (2)

Comparing (1) and (2), we see this correspondence

4
𝜋

∞
�
𝑛=0

𝑘2𝑛 �
∞
�
𝑚=0

(−1)𝑚
22𝑛

(2𝑚 + 1)2𝑛+1
� =

∞
�
𝑛=0

𝑘2𝑛 (−1)𝑛
𝐸2𝑛
(2𝑛)!

(𝜋)2𝑛

Hence
4
𝜋

∞
�
𝑚=0

(−1)𝑚
22𝑛

(2𝑚 + 1)2𝑛+1
= (−1)𝑛

𝐸2𝑛
(2𝑛)!

(𝜋)2𝑛

∞
�
𝑚=0

(−1)𝑚

(2𝑚 + 1)2𝑛+1
= (−1)𝑛 �

𝜋
4
� �

1
22𝑛 �

𝐸2𝑛
(2𝑛)!

(𝜋)2𝑛

= (−1)𝑛 �
1
22 � �

1
22𝑛 �

𝐸2𝑛
(2𝑛)!

(𝜋)2𝑛+1

Therefore
∞
�
𝑚=0

(−1)𝑚

(2𝑚 + 1)2𝑛+1
= (−1)𝑛 �

1
22(𝑛+1) �

𝐸2𝑛
(2𝑛)!

(𝜋)2𝑛+1

Where 𝐸2𝑛 are the Euler numbers found above.
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