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1 Problem 1

. 1 1 1 1 1
Flndthesum0f1+2—1—6—6—44‘&4'103—“'
Solution

We would like to combine each two consecutive negative terms and combine each two
consecutive positive terms in the series in order to obtain an alternating series which is

easier to work with. But to do that, we first need to check that the series is absolutely

1
convergent. The |a,| term is oL therefore

L= lim |22
n—ooo| g,
1
= lim 4l
1n—00 i
41’1
47’1
= lim |—
n=oco 4n+1
1
4

Since |L| < 1 then the series is absolutely convergent so we are allowed now to group (or
rearrange) terms as follows

1 1 1 1 1 1
—+—|+ + - + +
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But Z;ozo (-1)" (—6) has the form E ( 1)" " where r = — and since |r| <1 then by the
binomial series
M ED P =1—r 12—+

n=0
1

1+r



Therefore the sum in (1) becomes, when using r = 11—6 the following

_5(16
C4\17
Hence
20
S=1
Or

S =1.176



2 Problem 2

. 1 2 3
Fmdthesumofa+ﬂ+z+...

Solution

n+1
_2 n'

n=0

B n 1

_EE—F n!

n=0 n=0

E(ﬂ)(ﬂ 1)'

_Z 1

= (n-1)!
1

=) —+e
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1 1
=——+ ) —+e
(=1)! Z%n!

1
_m+€+€
1

Now to handle %, we use Gamma function definition for factorials I' (n) = (1 —1)! for

positive integers, and the generalized I'(z) = £Oo x*le7*dx for non positive integers. By

definition I' (=k) where k is negative integer is co. (Gamma function is defined only for
negative values other than the negative integers).

1 1 o
Hence — = — = 0. So the above result now simplifies to

(-1)!
S=2e



3 Problem 3

Sum the following series assuming that 0 < 6 < 7 for definiteness.
1 1 1
f(0) =sin(0) + 3 sin (20) + 5 sin (30) + 7 sin (460) + ---
Solution

Since "9 = cos (16) + isin (n0) then the above is the same as writing

o 1, 1. 1,
£(0) = Im(e'? + =9 + =39 + —H0 + ...) 1)
3 5 7
.0
Let ¢'2 = x, then the above becomes
1 1 1
0) = Im(x? + =x* + =2 + =28 + ...
f(0) = Im(x 3x 5x 7x )
1 1 1
=1 o8+ =+ =+
m(x(x 3x 5x 7x ))

1
x> + ;x7 + ---, hence the above becomes

£(6) = Im (xg (x))

_ 13, 1
Letg(x)—x+3x + 3

=Im (x f g (x) dx) (2)
2
But ¢’ (x) =1+ 3% + §x4 ++-=1+x%+x*+x%+ ---. Now for |x| < 1 and using Binomial
series this has the sum
§M=1"02
Substituting the above into (2) gives
1
£(6) =Tm (x f — xzdx) 3)
But
1 1
——dx = f—d
f1—x2 Tl a-oa+o™
1 A B
Let m = Eﬁ'm Hence A(1+X)+B(1—X) =lorA+Ax+B-Bx =1 or

x(A-B)+ (A+B) =1. Therefore A=1-Band A =B. Hence 2B=1or B = % and also



A= % It follows that the above integral becomes

1 A B
d :jl——+ d
fl—xzx 1-x 1+xx
1 1

1
== | —+
2J1-x 1+«x

dx
1
=Emﬂ+m—ma—m

1 1+x
=—In
2 1-x

Substituting the above into (3) gives

o-nfonf)

0
Now, replacing x back by ¢'2 gives

.0

1 0 [1+¢2
ﬂ@z—mF%m(+:H

2 iz

1-e¢2

-i6
Multiplying the numerator and denominator inside the In by e ¢ gives

L)
1 i0 et +e'1
fO)=5ImfezIn)——7p
et —¢'1
0 -i0
1 0 €t +et
= EIHI e2ln ﬂ
0 o -0 0
0 ed+e 4 . 0 e d ¢4
But cos (Z) =— and sin (Z) == therefore

0 ~if [}
;8 -i6
e4+e4 =2cos 1

i -0 o 0
4 — 4 = 1 _
e e ZSIH(4)

Using these in (4) gives

1 P 2 cos (Z)
f(0) ==Im|e'2In| ——
2 i (g)
isin
4
0
0 cos (Z)

= ~Im|e'Z In|i
2 . 0
Sln(z)

(4)

(4)



COS| —
Using Inz = In|z| + iarg (z), where the principal argument is used. Here z = i (4). This

sin(g)
i(g)
sin(g)

gives [z| = and

0
COS(Z)
. 0
Sin (Z)
0

cos(2) o2

5 > 0 for all O in the range 0 < 0 < 7t then i >
ﬁn(z) ﬁn(z)

i direction. Hence

arg (z) = arg|i

Since since

is complex in the positive

I
arg (z) = —
g(2) >
Therefore we can write that
0 0
cos|y cos | .
In =1 +i—

I—— | = —F—
. [0 . [06 2
sm(z) sin (—)

But we can simplify the above more using
0
cos | 1
n(? can [

sin ( 4) an (4)

0
=Inl-1Intan (—)

4

5
=—Intan|—
4

Substituting all the above back into (5) gives

Iy

In

0

1 ;8 0 .
f(@)zEIm ez l—lntanz+zg )

1 e . 06 0 m
=—Im||lcos=+isin=][-Intan — +i—
2 2 4 2

2

1 0 o .. 0 0 .7 6 n 0
=—Im|-cos=Intan— —isin —Intan — + i— cos — — — sin —

2 2 4 2 4 2 2 2 2

1 ) 0 6 =« v} 6 6 n 06
:EIm 1 —s1n51ntan—+—cos— +|—cos—Intan — + —sin —

4 2 2 2 4 2 2



Now we can take the imaginary part, giving the final answer as

1 0 0 0
f(0) = > (g cos 5 sin 5 In tan (Z))



4 Problem 4

. —1)"* 2201 4x3 9x°
Evaluate the series f(x) = 2:’:1 ()(Zn——l)' = 3 =

. x3 x5
SID(X):X—§+§—"'

Solution
Since
(- 1)n+1 2,2n-1
f = ;::1 2n-1)!
And since

o] _1 n+1 2n—1
sin (x) = E ()—x

— (@n-1)
Then we start by taking derivative of sin (x) twice, which gives

d . QEYT en-1)a2
rIOEDY 2n—-1)!

n=1

And differentiating one more time

2 & (1) 2n 1) (2n - 2) x2173
£ = 3 V@02
— 2n-1)!
@ (=1)" (402 — 6n + 2) 1213
4 (2n -1)!
o ﬂ+1 n2y2n-3 < (_1 n+l _ 2p-3
2 ¢ Z -1)"" nx
| (2n 1)! — (@-1)
Multiplying both sides by x? gives
dz )n+1 n2x2n 1 ) (_1)n+1 nxzn_
- 4 e ML=
o ) = 2_:1 2n-1)! 2211 2n—1)!
1 n+1 Zn 1
(x)—6 Z - ) + 2 sin (x)

Let
_ ) (_1)n+1 nxzn_1
g = ;:31 2n 1)
Then (2) becomes
2

i
x? ﬁsm x) = 4f (x) — 6g (x) + 2sin (x)

—x? cos x = 4f (x) — 6¢ (x) + 2 sin (x)

22

-+ by comparing it with

n=1

22

) (_1)n+1 xzn_3
2n —1)!

1)n+1 2n-1
(2n-1)!

(1)

(2)

(3)



So we just need to find g (x). For this we can use (1). Writing (1) as
( 1)}’Z+1 2n_2 [es) (_1)i’l+1 x2n_2

2 sin () = 22—1)!—2

— (@2n-1)
( 1)1’l+1 2n—1 ( 1)i’l+l 2n—1
x— sin (x) =2 2 - - ,12:1 =1
d
XE sin (x) = 2g (x) — sin (x)
Hence
d
X— sin (x) + sin (x)
_ _dx
g = 5
Using the above in (3) gives
d
d2 X— sin (x) + sin (x)
d —— sin (x) = 4f(x)—6[ dx 5 + 2 sin (x)
—x?sin (x) = 4f (x) — 3 (x cos x + sin x) + 2sin x
Solving for f (x)
—x?sin +3x cos x + sin x
fx) = y
(1 - xz) sinx + 3x cosx
4
Or
X 49C3+9XB+ 1(1 xz)'x+3x X
4 L. =2(1- in e
3l 5l 4 ST e

10
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5 Problem 5

The Euler numbers are defined by

sec (x) = E (-1)" ( 2 ) X
(a) What is Ej?
(b) Find recursion expansion for E;, when n > 1. Determine E,, E4, E4, Eg explicitly.

(c) The partial fraction expansion of secant is

D" 2m + 1)
k
sec (km) = mzlo T 1)

Expand the right side in a power series in k and use it to evaluate the sum

= (2m + 1)27’l+1

In terms of one or more Euler numbers.

Solution

5.1 Part (a)

Using the formula given, we see that
E
sec(x) = Ej— =x“+ —x* - —

When x = 0 the above gives

Hence

5.2 Part (b)

Since cos (x) sec (x) =1 then
1 =cos(x)(2( 1)" (2 )' )

2
Using power series expansion for cos (x) =1 - + 2+ - Ek 0 (2k

( 1) n EZn n
[E i J(Z(_” M"Z)

x2k , then the above

becomes



12

To see the pattern, so that we can combine the product above, let us multiply few terms,
and collect on powers of x

2 4 6 E E E
1:(1_x_+x__x_+ )(EO__2x2+ 44 _6x6)
20 41 6! 2! 4' 6!

Ey Eo\. ,(Es E» Eo\. ¢ E Ei E K
‘”Eo)”( 2 5)” (I+E+I R W TRy

E, E E, E, E E, E, E E
— 40 Y 420, =2  —4)_ 6|0, =2, 4 "6
= (Eo) x(2!+2!)+x(4!+2!2!+4!) x(6!+4!2!+2!4!+6!)+

Therefore the above can be written as
(59 n 1
= Eo | (=1)" x?"
g(gé (2n - 2Kk)! (2Kk)! Zk)( )" x

When n = 0 then the RHS ZZ:O mEzk = Ep = 1. Hence we can rewrite the above by

starting sum from 7 =1 as follows
1

t=1+ Z (E 2001 (2K)! Zk)( 1)

0= (kz% eEre i I

Equating terms of powers of x on both sides: since left side has no x, then this implies the
coefficient of x in the RHS must be zero. This implies

L " )
kz:% (2n - 2Kk)! (2k)!E2k =0
n 1
k§ (2n - 2Kk)! (Zk)!EZk

Since we want E,,, then we make the sum stop at 7 -1 to isolate that term. Hence the above
becomes

=0

n—-1 1 . 1 o
(,;) (2 — 21 (2K)! 2")+ @n—2ml@n! "

n—1 1 . . .
(kz:% (2n - 2Kk)! (2k)! Zk) + T
o (2n)! )
(E (2n - 2k)! (2k)!E2k) +E, =0

n-1 27’1] )
E Ex|+E,, =0
(k:o (Zk !

Therefore the recursion formula is finally found as

n-1 27’1]
Epy = - ( Eg (4)
2| 5




Using (4), we now calculate E;, Ey, Eg, Eg.

For n =1 then (4) becomes

R 2)!
Br=- IZ;) (2 = 2k)! (2k)!E2k
()
= @Eo
= —EO
=-1

For n = 2 then (5) becomes

1 4)|
==~ X G2 @— 201 201 2

k=0
@, @
@>' tas mwaﬁ)
@ Q
@“*(m@)E)
-1+ @O (D)
_ _(1-6)
=5

For n = 3 then (5) becomes

2 (6)!
== G (6 — 2k)! (2k)! Eax

—|Ep +

k=0
) ©)! ©)
- (a' Y 6o z(zE*Xmu@@J
00, , O,
2

(EO + 15E2 + 15E4)
-1+15(-1)+15(5))
—61

13



For n = 4 then (5) becomes

E 2k)'(2k)'
(8)! 8)! ®)! . (8)! E)

- @EO T @@ T Booe)e)

~ (8)! (8)(7)(6) (5) (8)!
=Bttt T @ E4+(2)!(6)!E6)
(L OO, ODO6,. O
ot T eee e E6)
= — (Eq + 28E, + 70E4 + 28Ey)

=—(1+28(-1) +70(5) + 28 (-61))

~ 1385

Summary

Eo=1
E,=-1
E,=5

E, = —61
Eg = 1385

Bl PO

5.3 Partc

(=1)" 2 +1)

L 2m +1) - — (2k)?
2m+1)

(2m +1)% — (2k)2
1
(2k)
m+1) - 2D
1

@ )
@m +1) (1 L

sec (kmt) =

M8 ||M8

3
I
o

|
—_
~—
3

SRS :1|u> :1|u>

DM ibMe

SHIS
T
=

3

3
I}
o

-" 1
_QW)
@m+1)%

SERS

3
I
o

Nk
[SIPS
3
—+
N

—_

SRS
D¢
N |~

3
I
(e}

+
—
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—
—_
|
—_—
N
NN
T | =
N
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N
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. 2k 1 ) 2k
Assuming |m| <1 then m = ano (m

“\2m+1

2n
) . From Binomial series. Then the above

can be written as

4 (0" ([ 2k )"
sec (k) = Eom(z(m))

Interchanging the order of summation in order to combine m terms

xS o2\
sec(kﬂ)—;zk2 (Z(2m+1) (2m+1) ]

n=0
== Nk -1 - 1
25 (3 e ) W
But since sec (x) = En 0( -1)" 52’; x%", then when x = k7, this becomes
sec (k7t) = 2( -1)" (2 )| kr)*"
n E n n
= Z]Okz" (D" G (2)
Comparing (1) and (2), we see this correspondence
E n n
—sz” 2( 1" )zm) nngZ”( ' G
Hence
43 m 22n _ EZn 2n
ng:O(—l) P (1" o] ()
. (_1)m _ n 1 E2n 2n
mz;o Qm+1)7 1) (_) (ﬁ) 2n)! ()
_ 1 EZn 2n+1
orf2) )
Therefore

Z 21 = (1)
Where E,,, are the Euler numbers found above.

n 1 E2n (n)2n+1
2201+1) | (2p)!
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