HW 11
 Physics 5041 Mathematical Methods for Physics Spring 2019
 University of Minnesota, Twin Cities

[^0]
Contents

1 Problem 1 2

| 2 Problem 2 | 8 |
| :--- | :--- | :--- |

3 Problem 3 12
4 Problem 4 16

1 Problem 1

Find the normal modes of a rectangular drum with sides of length L_{x} and L_{y} solution

The geometry of the problem is

Figure 1: Problem to solve

Using Cartesian coordinates. Wave displacement is $u \equiv u(x, y, t)$ (out of page).

$$
\begin{aligned}
\frac{\partial^{2} u(x, y, t)}{\partial t^{2}} & =c^{2}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right) \\
0 & <x<L_{x} \\
0 & <y<L_{y}
\end{aligned}
$$

Boundary conditions on x

$$
\begin{array}{r}
u(0, y, t)=0 \\
u\left(L_{x}, y, t\right)=0
\end{array}
$$

And boundary conditions on y

$$
\begin{array}{r}
u(x, 0, t)=0 \\
u\left(x, L_{y}, t\right)=0
\end{array}
$$

Solution
Let $u=X(x) Y(y) T(t)$. Substituting into the PDE gives

$$
\begin{aligned}
\frac{1}{c^{2}} T^{\prime \prime} X Y & =X^{\prime \prime} Y T+Y^{\prime \prime} X T \\
\frac{1}{c^{2}} \frac{T^{\prime \prime}}{T} & =\frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}
\end{aligned}
$$

Hence, using λ as first separation constant we obtain

$$
\begin{aligned}
\frac{1}{c^{2}} \frac{T^{\prime \prime}}{T} & =-\lambda \\
\frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y} & =-\lambda
\end{aligned}
$$

The time ODE becomes

$$
T^{\prime \prime}+c^{2} \lambda T=0
$$

And the space ODE becomes

$$
\frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}=-\lambda
$$

Separating the space ODE again

$$
\frac{X^{\prime \prime}}{X}=-\lambda-\frac{Y^{\prime \prime}}{Y}=-\mu
$$

Where μ is the new separation variable. This gives two new separate ODE's

$$
\begin{aligned}
\frac{X^{\prime \prime}}{X} & =-\mu \\
-\lambda-\frac{Y^{\prime \prime}}{Y} & =-\mu
\end{aligned}
$$

Or

$$
\begin{array}{r}
X^{\prime \prime}+\mu X=0 \\
Y^{\prime \prime}+Y(\lambda-\mu)=0
\end{array}
$$

Solving for X ODE first, and knowing that $\mu>0$ from nature of boundary conditions, we obtain

$$
X(x)=A \cos (\sqrt{\mu} x)+B \sin (\sqrt{\mu} x)
$$

Applying B.C. at $x=0$

$$
0=A
$$

Hence $X(x)=B \sin (\sqrt{\mu} x)$. Applying B.C. at $x=L_{x}$

$$
0=B \sin \left(\sqrt{\mu} L_{x}\right)
$$

Hence

$$
\begin{align*}
\sqrt{\mu} L_{x} & =n \pi \\
\mu_{n} & =\left(\frac{n \pi}{L_{x}}\right)^{2} \quad n=1,2,3, \cdots \tag{1}
\end{align*}
$$

Therefore the $X_{n}(x)$ solution is

$$
\begin{equation*}
X_{n}(x)=B_{n} \sin \left(\frac{n \pi}{L_{x}} x\right) \quad n=1,2,3, \cdots \tag{2}
\end{equation*}
$$

Solving the $Y(y)$ ODE using the same eigenvalues found above

$$
Y^{\prime \prime}+Y\left(\lambda-\left(\frac{n \pi}{L_{x}}\right)^{2}\right)=0
$$

The solution is

$$
Y(y)=C \cos \left(\sqrt{\lambda-\left(\frac{n \pi}{L_{x}}\right)^{2}} y\right)+D \sin \left(\sqrt{\lambda-\left(\frac{n \pi}{L_{x}}\right)^{2}} y\right)
$$

Applying first B.C. $Y(0)=0$ gives

$$
0=C
$$

Hence

$$
Y(y)=D \sin \left(\sqrt{\lambda-\left(\frac{n \pi}{L_{x}}\right)^{2}} y\right)
$$

Applying second B.C. $Y\left(L_{y}\right)=0$

$$
0=D \sin \left(\sqrt{\lambda-\left(\frac{n \pi}{L_{x}}\right)^{2}} L_{y}\right)
$$

Hence

$$
\begin{aligned}
\sqrt{\lambda-\left(\frac{n \pi}{L_{x}}\right)^{2}} L_{y} & =m \pi \quad m=1,2,3, \cdots \\
\lambda_{n m}-\left(\frac{n \pi}{L_{x}}\right)^{2} & =\left(\frac{m \pi}{L_{y}}\right)^{2} \\
\lambda_{n m} & =\left(\frac{m \pi}{L_{y}}\right)^{2}+\left(\frac{n \pi}{L_{x}}\right)^{2} \quad n=1,2,3, \cdots, m=1,2,3, \cdots
\end{aligned}
$$

Hence the $Y_{n m}$ solution is

$$
Y_{n m}=D_{n m} \sin \left(\frac{m \pi}{L_{y}} y\right) \quad n=1,2,3, \cdots, m=1,2,3, \cdots
$$

We notice that $X_{n}(x)$ solution depends on n only, while $Y_{n m}(y)$ solution depends on n and m. Now that we found λ we can we solve the time $T(t)$ ode

$$
\begin{aligned}
T_{n m}^{\prime \prime}+c^{2} \lambda_{n m} T_{n m} & =0 \\
T_{n m}(t) & =E_{n m} \cos \left(c \sqrt{\lambda_{n m}} t\right)+F_{n m} \sin \left(c \sqrt{\lambda_{n m}} t\right)
\end{aligned}
$$

Combining all solution, and merging all constants into two, we find

$$
\begin{aligned}
u_{n m}(x, y, t) & =X_{n}(x) Y_{n m}(y) T_{n m}(t) \\
& =\left(B_{n} X_{n}\right)\left(D_{n m} \sin \left(\frac{m \pi}{L_{y}} y\right)\right)\left(E_{n m} \cos \left(c \sqrt{\lambda_{n m}} t\right)+F_{n m} \sin \left(c \sqrt{\lambda_{n m}} t\right)\right) \\
& =B_{n} X_{n} \sin \left(\frac{m \pi}{L_{y}} y\right)\left(E_{n m}^{\prime} \cos \left(c \sqrt{\lambda_{n m}} t\right)+F_{n m}^{\prime} \sin \left(c \sqrt{\lambda_{n m}} t\right)\right) \\
& =X_{n} \sin \left(\frac{m \pi}{L_{y}} y\right)\left(E_{n m}^{\prime \prime} \cos \left(c \sqrt{\lambda_{n m}} t\right)+F_{n m}^{\prime \prime} \sin \left(c \sqrt{\lambda_{n m}} t\right)\right)
\end{aligned}
$$

Where $E_{n m}^{\prime \prime}, F_{n m}^{\prime \prime}$ are the new constants after merging them with the other constants. Renaming $E_{n m}^{\prime \prime}=A_{n m}, F_{n m}^{\prime \prime}=B_{n m}$ the above solution can be written as

$$
\begin{align*}
u(x, y, t) & =\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} X_{n}(x) Y_{m n}(y) T_{m n}(t) \\
& =\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} A_{n m} \sin \left(\frac{n \pi}{L_{x}} x\right) \sin \left(\frac{m \pi}{L_{y}} y\right) \cos \left(c \sqrt{\lambda_{n m}} t\right) \\
& +\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} B_{n m} \sin \left(\frac{n \pi}{L_{x}} x\right) \sin \left(\frac{m \pi}{L_{y}} y\right) \sin \left(c \sqrt{\lambda_{n m}} t\right) \tag{3}
\end{align*}
$$

To solve this completely, we apply initial conditions to find $A_{n m}, B_{n m}$. But the problem is just asking for the normal modes. These are given by $X_{n}(x) Y_{m n}(y)$. Therefore for $n=1$, we have the modes $\sin \left(\frac{\pi}{L_{x}} x\right) \sin \left(\frac{\pi}{L_{y}} y\right), \sin \left(\frac{\pi}{L_{x}} x\right) \sin \left(\frac{2 \pi}{L_{y}} y\right), \sin \left(\frac{\pi}{L_{x}} x\right) \sin \left(\frac{3 \pi}{L_{y}} y\right), \cdots$ and for $n=2$ we have $\sin \left(\frac{2 \pi}{L_{x}} x\right) \sin \left(\frac{\pi}{L_{y}} y\right), \sin \left(\frac{2 \pi}{L_{x}} x\right) \sin \left(\frac{2 \pi}{L_{y}} y\right), \sin \left(\frac{2 \pi}{L_{x}} x\right) \sin \left(\frac{3 \pi}{L_{y}} y\right), \cdots$ and so on.

n	$m=1$	2	3	4
1	$\sin \left(\frac{\pi}{L_{x}} x\right) \sin \left(\frac{\pi}{L_{y}} y\right)$	$\sin \left(\frac{\pi}{L_{x}} x\right) \sin \left(\frac{2 \pi}{L_{y}} y\right)$	$\sin \left(\frac{\pi}{L_{x}} x\right) \sin \left(\frac{3 \pi}{L_{y}} y\right)$	\cdots
2	$\sin \left(\frac{2 \pi}{L_{x}} x\right) \sin \left(\frac{\pi}{L_{y}} y\right)$	$\sin \left(\frac{2 \pi}{L_{x}} x\right) \sin \left(\frac{2 \pi}{L_{y}} y\right)$	$\sin \left(\frac{2 \pi}{L_{x}} x\right) \sin \left(\frac{3 \pi}{L_{y}} y\right)$	\cdots
3	$\sin \left(\frac{3 \pi}{L_{x}} x\right) \sin \left(\frac{\pi}{L_{y}} y\right)$	$\sin \left(\frac{3 \pi}{L_{x}} x\right) \sin \left(\frac{2 \pi}{L_{y}} y\right)$	$\sin \left(\frac{3 \pi}{L_{x}} x\right) \sin \left(\frac{3 \pi}{L_{y}} y\right)$	\cdots
\vdots	\vdots	\vdots	\vdots	\vdots

To draw these modes, let us assume that $L_{x}=1, L_{y}=1$. This gives

n	$m=1$	2	3	4
1	$\sin (\pi x) \sin (\pi y)$	$\sin (\pi x) \sin (2 \pi y)$	$\sin (\pi x) \sin (3 \pi y)$	\cdots
2	$\sin (2 \pi x) \sin (\pi y)$	$\sin (2 \pi x) \sin (2 \pi y)$	$\sin (2 \pi x) \sin (3 \pi y)$	\cdots
3	$\sin (3 \pi x) \sin (\pi y)$	$\sin (3 \pi x) \sin (2 \pi y)$	$\sin (3 \pi x) \sin (3 \pi y)$	\cdots
\vdots	\vdots	\vdots	\vdots	\vdots

The following is a plot of the above modes for illustrations with the code used to generate these plots.

Figure 2: Modes using $L_{x}=1, L_{y}=1$
makePlot[n_, $\left.m_{-}\right]:=$
ContourPlot [Sin[nPix] * Sin[mPiy], \{x, 0, 1\}, \{y, 0, 1\},
PlotLegends \rightarrow None,
 Grid@Table[makePlot[n, m] , $n, 1,3\}$, $\{m, 1,3\}$]

Figure 3: Code used to draw above plot

The following is 3D view of the above modes.

Figure 4: 3D view of the modes using $L_{x}=1, L_{y}=1$

```
In[o]:= makePlot[n_, m_] :=
    Plot3D[Sin[nPi x] * Sin[mPi y], {x, 0, 1}, {y, 0, 1},
    PlotLabel -> Style[Row[{"N=", n, ", M=", m}], 12],
    Boxed -> False, Axes }->\mathrm{ False
    ];
    Grid@Table[makePlot[n, m], {n, 1, 3}, {m, 1, 3}]
```

Figure 5: Code used to draw above plot

2 Problem 2

Find the normal modes of an acoustic waves in a hollow sphere of radius R. The wave equation is

$$
\nabla^{2} \psi(r, \theta, \phi, t)=\frac{1}{c^{2}} \psi_{t t}
$$

With boundary conditions $\psi_{r}=0$ at $r=0$ and at $r=r_{0}$. (I used r_{0} in place of R because wanted to use $R(r)$ for separation of variables).

What is the lowest frequency?

solution

Let

$$
\psi(r, \theta, \phi, t)=u(r, \theta, \phi) e^{-i \omega t}
$$

Substituting this back in the original PDE gives

$$
\nabla^{2} u(r, \theta, \phi)+\frac{\omega^{2}}{c^{2}} u(r, \theta, \phi)=0
$$

Let $k=\frac{\omega}{c}$ (wave number) and the above becomes

$$
\begin{equation*}
\nabla^{2} u+k^{2} u=0 \tag{1}
\end{equation*}
$$

The above is called the Helmholtz PDE. In spherical coordinates it becomes

$$
\overbrace{u_{r r}+\frac{2}{r} u_{r}}^{\text {Radial part }} \overbrace{\frac{1}{r^{2}}\left(\frac{\cos \theta}{\sin \theta} u_{\theta}+u_{\theta \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} u_{\phi \phi}}^{\text {Angular part }}+k^{2} u=0
$$

Let $u(r, \theta, \phi)=R(r) \Theta(\theta) \Phi(\phi)$ and the above becomes

$$
R^{\prime \prime} T \Theta \Phi+\frac{2}{r} R^{\prime} T \Theta \Phi+\frac{1}{r^{2}}\left(\frac{\cos \theta}{\sin \theta} \Theta^{\prime} R T \Phi+\Theta^{\prime \prime} R T \Phi\right)+\frac{1}{r^{2} \sin ^{2} \theta} \Phi^{\prime \prime} R \Theta T+k^{2} R \Theta T=0
$$

Dividing by $R \Theta \Phi \neq 0$ gives

$$
\begin{gathered}
\frac{R^{\prime \prime}}{R}+\frac{2}{r} \frac{R^{\prime}}{R}+\frac{1}{r^{2}}\left(\frac{\cos \theta}{\sin \theta} \frac{\Theta^{\prime}}{\Theta}+\frac{\Theta^{\prime \prime}}{\Theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\Phi^{\prime \prime}}{\Phi}+k^{2}=0 \\
r^{2} \sin ^{2} \theta \frac{R^{\prime \prime}}{R}+r^{2} \sin ^{2} \theta \frac{2}{r} \frac{R^{\prime}}{R}+\sin ^{2} \theta\left(\frac{\cos \theta}{\sin \theta} \frac{\Theta^{\prime}}{\Theta}+\frac{\Theta^{\prime \prime}}{\Theta}\right)+k^{2} r^{2} \sin ^{2} \theta=-\frac{\Phi^{\prime \prime}}{\Phi}
\end{gathered}
$$

The left side depends only on r, θ and the right side depends only on ϕ. Let the second separation constant be m^{2} and the above becomes

$$
\begin{equation*}
r^{2} \sin ^{2} \theta \frac{R^{\prime \prime}}{R}+r^{2} \sin ^{2} \theta \frac{2}{r} \frac{R^{\prime}}{R}+\sin ^{2} \theta\left(\frac{\cos \theta}{\sin \theta} \frac{\Theta^{\prime}}{\Theta}+\frac{\Theta^{\prime \prime}}{\Theta}\right)+k^{2} r^{2} \sin ^{2} \theta=-\frac{\Phi^{\prime \prime}}{\Phi}=m^{2} \tag{2}
\end{equation*}
$$

Which gives the first angular ODE as

$$
\begin{equation*}
\Phi^{\prime \prime}+m^{2} \Phi=0 \tag{2A}
\end{equation*}
$$

We now go back to (2) to obtain the rest of the solutions. We now have

$$
\begin{aligned}
r^{2} \sin ^{2} \theta \frac{R^{\prime \prime}}{R}+r^{2} \sin ^{2} \theta \frac{2}{r} \frac{R^{\prime}}{R}+\sin ^{2} \theta\left(\frac{\cos \theta}{\sin \theta} \frac{\Theta^{\prime}}{\Theta}+\frac{\Theta^{\prime \prime}}{\Theta}\right)+k^{2} r^{2} \sin ^{2} \theta & =m^{2} \\
k^{2} r^{2}+r^{2}\left(\frac{R^{\prime \prime}}{R}+\frac{2}{r} \frac{R^{\prime}}{R}\right)+\left(\frac{\cos \theta}{\sin \theta} \frac{\Theta^{\prime}}{\Theta}+\frac{\Theta^{\prime \prime}}{\Theta}\right) & =\frac{m^{2}}{\sin ^{2} \theta} \\
k^{2} r^{2}+r^{2}\left(\frac{R^{\prime \prime}}{R}+\frac{2}{r} \frac{R^{\prime}}{R}\right) & =-\left(\frac{\cos \theta}{\sin \theta} \frac{\Theta^{\prime}}{\Theta}+\frac{\Theta^{\prime \prime}}{\Theta}\right)+\frac{m^{2}}{\sin ^{2} \theta}
\end{aligned}
$$

The left side depends on r and the right side depends on θ only. Let the separation constant be $l(l+1)$ where l is integer which results in

$$
\begin{equation*}
k^{2} r^{2}+r^{2}\left(\frac{R^{\prime \prime}}{R}+\frac{2}{r} \frac{R^{\prime}}{R}\right)=-\left(\frac{\cos \theta}{\sin \theta} \frac{\Theta^{\prime}}{\Theta}+\frac{\Theta^{\prime \prime}}{\Theta}\right)+\frac{m^{2}}{\sin ^{2} \theta}=l(l+1) \tag{3}
\end{equation*}
$$

Therefore the next angular ODE is

$$
\begin{align*}
-\left(\frac{\cos \theta}{\sin \theta} \frac{\Theta^{\prime}}{\Theta}+\frac{\Theta^{\prime \prime}}{\Theta}\right)+\frac{m^{2}}{\sin ^{2} \theta} & =l(l+1) \\
-\left(\frac{\cos \theta}{\sin \theta} \frac{\Theta^{\prime}}{\Theta}+\frac{\Theta^{\prime \prime}}{\Theta}\right)+\frac{m^{2}}{\sin ^{2} \theta}-l(l+1) & =0 \\
\left(\frac{\cos \theta}{\sin \theta} \frac{\Theta^{\prime}}{\Theta}+\frac{\Theta^{\prime \prime}}{\Theta}\right)-\frac{m^{2}}{\sin ^{2} \theta}+l(l+1) & =0 \\
\Theta^{\prime \prime}+\frac{\cos \theta}{\sin \theta} \Theta^{\prime}+\left(l(l+1)-\frac{m^{2}}{\sin ^{2} \theta}\right) \Theta & =0 \tag{4}
\end{align*}
$$

Let $z=\cos \theta$, then $\frac{d \Theta}{d \theta}=\frac{d \Theta}{d z} \frac{d z}{d \theta}=-\frac{d \Theta}{d z} \sin \theta$ and

$$
\begin{aligned}
\frac{d^{2} \Theta}{d \theta^{2}} & =\frac{d}{d \theta}\left(-\frac{d \Theta}{d z} \sin \theta\right) \\
& =-\frac{d^{2} \Theta}{d z^{2}} \frac{d z}{d \theta} \sin \theta-\frac{d \Theta}{d z} \cos \theta \\
& =\frac{d^{2} \Theta}{d z^{2}} \sin ^{2} \theta-\frac{d \Theta}{d z} \cos \theta
\end{aligned}
$$

But $\sin ^{2} \theta=1-\cos ^{2} \theta=1-z^{2}$ and the above becomes

$$
\frac{d^{2} \Theta}{d \theta^{2}}=\frac{d^{2} \Theta}{d z^{2}}\left(1-z^{2}\right)-\frac{d \Theta}{d z} z
$$

Using these in (4) gives

$$
\begin{array}{r}
\frac{d^{2} \Theta}{d z^{2}}\left(1-z^{2}\right)-\frac{d \Theta}{d z} z+\frac{z}{\sin \theta}\left(-\frac{d \Theta}{d z} \sin \theta\right)+\left(l(l+1)-\frac{m^{2}}{1-z^{2}}\right) \Theta(z)=0 \\
\left(1-z^{2}\right) \Theta^{\prime \prime}-2 z \Theta^{\prime}+\left(l(l+1)-\frac{m^{2}}{1-z^{2}}\right) \Theta(z)=0 \tag{3A}
\end{array}
$$

And finally, we obtain the final ODE, which is the radial ODE from (3)

$$
\begin{align*}
k^{2} r^{2}+r^{2}\left(\frac{R^{\prime \prime}}{R}+\frac{2}{r} \frac{R^{\prime}}{R}\right) & =l(l+1) \\
k^{2} r^{2} R+r^{2}\left(R^{\prime \prime}+\frac{2}{r} R^{\prime}\right)-l(l+1) R & =0 \\
r^{2} R^{\prime \prime}+2 r R^{\prime}+\left(k^{2} r^{2}-l(l+1)\right) R & =0 \\
R^{\prime \prime}+\frac{2}{r} R^{\prime}+\left(k^{2}-\frac{l(l+1)}{r^{2}}\right) R & =0 \tag{4~A}
\end{align*}
$$

In summary we have obtained the following 4 ODE's to solve ($1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}, 4 \mathrm{~A}$)

$$
\begin{align*}
\Phi^{\prime \prime}+m^{2} \Phi & =0 \tag{2A}\\
\left(1-z^{2}\right) \Theta^{\prime \prime}-2 z \Theta^{\prime}+\left(l(l+1)-\frac{m^{2}}{1-z^{2}}\right) \Theta(z) & =0 \tag{3A}\\
R^{\prime \prime}+\frac{2}{r} R^{\prime}+\left(k^{2}-\frac{l(l+1)}{r^{2}}\right) R & =0 \tag{4~A}
\end{align*}
$$

Solution to (2A) requires m to be integer due to periodicity requirements of solution. The solution is $\Phi(\phi)=e^{ \pm i m \phi}$. Equation (3A) is the associated Legendre ODE. Since we are taking l as integer then the solution is known to be $\Theta(z)=P_{l}^{m}(z)+Q_{l}^{m}(z)$ where $P_{l}^{m}(z)$ is called the associated Legendre polynomial and Q_{l}^{m} is the Legendre function of the second kind. Finally (4A) can be converted to Bessel ODE as shown in class notes using the transformation $R(r)=\frac{u(r)}{\sqrt{r}}$ which results in

$$
u^{\prime \prime}+\frac{1}{r} u^{\prime}+\left(k^{2}-\frac{\left(l+\frac{1}{2}\right)^{2}}{r^{2}}\right) u=0
$$

Which has solution $J_{l+\frac{1}{2}}(k r)$. The second solution $J_{-\left(l+\frac{1}{2}\right)}(k r)$ is rejected since it is not finite at zero and hence makes the solution blow up at center of sphere. Therefore solution to $(4 \mathrm{~A})$ is

$$
\begin{aligned}
R(r) & =C \sqrt{\frac{\pi}{2 k r}} J_{l+\frac{1}{2}}(k r) \\
& =C j_{l}(k r)
\end{aligned}
$$

Where C is arbitrary constant. Putting all the above together, then the final solution is

$$
\psi(r, \theta, \phi, t)=\left\{e ^ { - i \omega t } \left\{\begin{array} { c }
{ e ^ { i m \phi } } \\
{ e ^ { - i m \phi } }
\end{array} \left\{\begin{array} { c }
{ P _ { l } ^ { m } (\operatorname { c o s } \theta) } \\
{ Q _ { l } ^ { m } (\operatorname { c o s } \theta) }
\end{array} \left\{j_{l}(k r)\right.\right.\right.\right.
$$

Where $j_{l}(k r)$ are the spherical Bessel functions. Now we need to satisfy the boundary conditions. Since only $j_{l}(k r)$ depends on r, then $\psi_{r}=0$ at $r=0$ and at $r=r_{0}$ are equivalent to looking at $R^{\prime}(r)=0$ at $r=0$ and $r=r_{0}$. Therefore we need to find the smallest l, k which satisfy both conditions. This will give the lowest frequency.

I found from DLMF that the series expansion of $j_{l}(k r)$ is

$$
\begin{equation*}
j_{l}(k r)=\frac{(k r)^{l}}{(2 l+1)!!}\left(1-\frac{(k r)^{2}}{2(2 l+3)}+\frac{(k r)^{4}}{8(2 l+5)(2 l+3)}+\cdots\right) \tag{5}
\end{equation*}
$$

Hence for $r \rightarrow 0$, we can approximate the above as the following by ignoring all higher order terms

$$
\lim _{r \rightarrow 0} j_{l}(k r)=\frac{(k r)^{l}}{(2 l+1)!!}
$$

Which means for small r, the derivative is

$$
\frac{d}{d r} j_{l}(k r)=\frac{l(k r)^{l-1}}{(2 l+1)!!}
$$

At $r=0$ then setting $\left[\frac{d}{d r} j_{l}(k r)\right]_{r \rightarrow 0}=0$ is satisfied for all l. Now taking derivative of (5) gives

$$
\frac{d}{d r} j_{l}(k r)=\frac{l(k r)^{l-1}}{(2 l+1)!!}\left(1-\frac{(k r)^{2}}{2(2 l+3)}+\frac{(k r)^{4}}{8(2 l+5)(2 l+3)}+\cdots\right)+\frac{(k r)^{l}}{(2 l+1)!!}\left(1-\frac{2(k r)}{2(2 l+3)}+\frac{4(k r)^{3}}{8(2 l+5)(2 l+3)}+\cdots\right)
$$

At $r=r_{0}$ the above becomes

$$
\left[\frac{d}{d r} j_{l}(k r)\right]_{r \rightarrow r_{0}}=\frac{l\left(k r_{0}\right)^{l-1}}{(2 l+1)!!}\left(1-\frac{\left(k r_{0}\right)^{2}}{2(2 l+3)}+\frac{\left(k r_{0}\right)^{4}}{8(2 l+5)(2 l+3)}+\cdots\right)+\frac{\left(k r_{0}\right)^{l}}{(2 l+1)!!}\left(1-\frac{2\left(k r_{0}\right)}{2(2 l+3)}+\frac{4\left(k r_{0}\right)^{3}}{8(2 l+5)(2 l+3)}+\cdots\right)
$$

Now we ask, for which values of l is the above zero? If we let $l \rightarrow \infty$ then we obtain

$$
\begin{aligned}
{\left[\frac{d}{d r} j_{l}(k r)\right]_{\substack{r \rightarrow r_{0} \\
l \rightarrow \infty}} } & =\lim _{l \rightarrow \infty} \frac{l\left(k r_{0}\right)^{l-1}}{(2 l+1)!!}+\frac{\left(k r_{0}\right)^{l}}{(2 l+1)!!} \\
& =0
\end{aligned}
$$

Therefore, to satisfy both $\left[\frac{d}{d r} j_{l}(k r)\right]_{r \rightarrow 0}=0$ and $\left[\frac{d}{d r} j_{l}(k r)\right]_{r \rightarrow r_{0}}=0$ we need $l \rightarrow \infty$. In other words, a very large integer. The larger l is, the lower the radial frequency. In addition, increasing k while keeping l fixed will increase the frequency. And decreasing k while keeping l fixed decreases the frequency. And for fixed k, increasing l decreases the frequency.

3 Problem 3

A sphere of radius R is at temperature $u=0$. At time $t=0$ it is immersed in a heat bath of temperature u_{0}. What is the temperature distribution $u(r, t)$ as function of time?
solution
Note: I Used $u(r, t)$ instead of $T(r, t)$ as the dependent variable to allow using $T(t)$ for separation of variables without confusing it with the original $T(r, t)$.

The PDE specification is, solve for $u(r, t)$

$$
u_{t}=k \nabla^{2} u \quad t>0,0<r<R
$$

With initial conditions

$$
u(r, 0)=0
$$

And boundary conditions

$$
\begin{array}{r}
u(R, t)=u_{0} \\
|u(0, t)|<\infty
\end{array}
$$

Where the second B.C. above means the temperature u is bounded at origin (center of sphere). In spherical coordinates, the PDE becomes (There are no dependency on θ, ϕ due to symmetry), and only radial dependency.

$$
\begin{equation*}
\frac{1}{k} u_{t}=\frac{1}{r}(r u)_{r r} \tag{1}
\end{equation*}
$$

To simplify the solution, let

$$
U(r, t)=r u(r, t)
$$

And we obtain a new PDE

$$
\begin{equation*}
\frac{1}{k} U_{t}=U_{r r} \tag{2}
\end{equation*}
$$

And the boundary conditions $u(R, t)=u_{0}$ becomes $U(R, t)=R u_{0}$ and the initial conditions becomes $U(r, 0)=0$. So we will solve (2) and not (1). But since the boundary conditions are not homogenous, we can not use separation of variables. We introduce a reference function $w(r)$ which need to satisfy the nonhomogeneous boundary conditions only. Let $w(r)=B r$. When $r=R$ then $R u_{0}=B R$ or $B=u_{0}$ When $r=0$ then $w=0$ which is bounded. Hence

$$
w(r)=u_{0} r
$$

Therefore, the solution now can be written as

$$
\begin{equation*}
U(r, t)=v(r, t)+u_{0} r \tag{3}
\end{equation*}
$$

Where $v(r, t)$ now satisfies the PDE but with homogenous B.C. Substituting (3) into (2) gives

$$
\begin{align*}
& v_{t}=k \frac{\partial^{2}}{\partial r^{2}}\left(v(r, t)+u_{0} r\right) \\
& v_{t}=k v_{r r}(r, t) \tag{4}
\end{align*}
$$

We need to solve the above but with homogenous boundary conditions

$$
\begin{gathered}
v(R, t)=0 \\
|v(0, t)|<\infty
\end{gathered}
$$

This is standard PDE, who can be solved by separation of variables. let $v=F(r) T(t)$, hence (4) becomes

$$
\begin{aligned}
T^{\prime} F & =k F^{\prime \prime} T \\
k \frac{T^{\prime}}{T} & =\frac{F^{\prime \prime}}{F}=-\lambda^{2}
\end{aligned}
$$

Which gives

$$
F^{\prime \prime}+\lambda^{2} F=0
$$

Due to boundary conditions only $\lambda>0$ is eigenvalues. Hence solution is

$$
F(r)=A \cos (\lambda r)+B \sin (\lambda r)
$$

At $r=0$, since bounded, say 0 , then we can take $A=0$, leaving the solution

$$
F(r)=B \sin (\lambda r)
$$

At $r=R$

$$
0=B \sin (\lambda R)
$$

For nontrivial solution

$$
\begin{aligned}
\lambda R & =n \pi \quad n=1,2,3, \cdots \\
\lambda_{n} & =\frac{n \pi}{R}
\end{aligned}
$$

Hence eigenfunctions are

$$
F_{n}(r)=\sin \left(\frac{n \pi}{R} r\right) \quad n=1,2,3, \cdots
$$

The time ODE is therefore $T^{\prime}+\lambda^{2} k T=0$ with solution $T_{n}(t)=A_{n} e^{-\left(\frac{n \pi}{R}\right)^{2} k t}$. Hence the solution to (4) is

$$
v(r, t)=\sum_{n=1}^{\infty} A_{n} e^{-\left(\frac{n \pi}{R}\right)^{2} k t} \sin \left(\frac{n \pi}{R} r\right)
$$

Therefore from (3)

$$
U(r, t)=\left(\sum_{n=1}^{\infty} A_{n} e^{-\left(\frac{n \pi}{R}\right)^{2} k t} \sin \left(\frac{n \pi}{R} r\right)\right)+u_{0} r
$$

But $U(r, t)=r u(r, t)$, hence

$$
\begin{equation*}
u(r, t)=\left(\frac{1}{r} \sum_{n=1}^{\infty} A_{n} e^{-\left(\frac{n \pi}{R}\right)^{2} k t} \sin \left(\frac{n \pi}{R} r\right)\right)+u_{0} \tag{5}
\end{equation*}
$$

Now we find A_{n} from initial conditions. At $t=0$

$$
\begin{aligned}
0 & =u_{0}+\frac{1}{r} \sum_{n=1}^{\infty} A_{n} \sin \left(\frac{n \pi}{R} r\right) \\
-r u_{0} & =\sum_{n=1}^{\infty} A_{n} \sin \left(\frac{n \pi}{R} r\right)
\end{aligned}
$$

Therefore A_{n} are the Fourier series coefficients of $-r u_{0}$

$$
\begin{aligned}
\frac{R}{2} A_{n} & =-\int_{0}^{R} r u_{0} \sin \left(\frac{n \pi}{R} r\right) d r \\
A_{n} & =-\frac{2 u_{0}}{R} \int_{0}^{R} r \sin \left(\frac{n \pi}{R} r\right) d r \\
& =-\frac{2 u_{0}}{R}(-1)^{n+1} \frac{R^{2}}{n \pi} \\
& =(-1)^{n} \frac{2 R}{n \pi} u_{0}
\end{aligned}
$$

Hence the solution (5) becomes

$$
\begin{align*}
u(r, t) & =u_{0}+u_{0} \frac{2 R}{r \pi} \sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n} e^{-k\left(\frac{n \pi}{R}\right)^{2} t} \sin \left(\frac{n \pi}{R} r\right) \\
& =u_{0}\left(1+\frac{2 R}{r \pi} \sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n} e^{-k\left(\frac{n \pi}{R}\right)^{2} t} \sin \left(\frac{n \pi}{R} r\right)\right) \tag{7}
\end{align*}
$$

Verification of solution
Verification that (7) satisfies the PDE $u_{t}=k \nabla^{2} u$. Taking time derivative of (7) gives

$$
\begin{equation*}
u_{t}=-u_{0} \frac{2 R}{r \pi} k \sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n}\left(\frac{n \pi}{R}\right)^{2} e^{-k\left(\frac{n \pi}{R}\right)^{2} t} \sin \left(\frac{n \pi}{R} r\right) \tag{8}
\end{equation*}
$$

And taking space derivatives of (7) gives

$$
\begin{aligned}
& u_{x}=u_{0} \frac{2 R}{r \pi} \sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n} e^{-k\left(\frac{n \pi}{R}\right)^{2} t \frac{n \pi}{R} \cos \left(\frac{n \pi}{R} r\right)} \\
& u_{x x}=-u_{0} \frac{2 R}{r \pi} \sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n} e^{-k\left(\frac{n \pi}{R}\right)^{2} t}\left(\frac{n \pi}{R}\right)^{2} \sin \left(\frac{n \pi}{R} r\right)
\end{aligned}
$$

Hence $k u_{x x}$ becomes

$$
\begin{equation*}
k u_{x x}=-u_{0} \frac{2 R}{r \pi} k \sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n} e^{-k\left(\frac{n \pi}{R}\right)^{2} t}\left(\frac{n \pi}{R}\right)^{2} \sin \left(\frac{n \pi}{R} r\right) \tag{9}
\end{equation*}
$$

Comparing (8) and (9) shows they are the same expressions.
Verification that (7) satisfies the boundary condition.

When $r=R$, therefore (7) gives, when replacing r by R

$$
\begin{aligned}
u(R, t) & =u_{0}\left(1+\frac{2 R}{R \pi} \sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n} e^{-k\left(\frac{n \pi}{R}\right)^{2} t} \sin \left(\frac{n \pi}{R} R\right)\right) \\
& =u_{0}\left(1+\frac{2 R}{R \pi} \sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n} e^{-k\left(\frac{n \pi}{R}\right)^{2} t} \sin (n \pi)\right) \\
& =u_{0}(1+0) \\
& =u_{0}
\end{aligned}
$$

But n is integer. Hence $\sin (n \pi)=0$ for all n. And the above becomes

$$
\begin{aligned}
u(R, t) & =u_{0}(1+0) \\
& =u_{0}
\end{aligned}
$$

Verified.
Verification that (7) satisfies the initial conditions $u(r, 0)=0$ for $r<R$.
At $t=0$ (7) becomes

$$
\begin{aligned}
u(r, 0) & =u_{0}\left(1+\frac{2 R}{r \pi} \sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n} \sin \left(\frac{n \pi}{R} r\right)\right) \\
& =u_{0}+\frac{2 R}{r \pi} u_{0} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} \sin \left(\frac{n \pi}{R} r\right) \\
& =u_{0}+\frac{2 R}{r \pi} u_{0}\left(-\sin \left(\frac{\pi}{R} r\right)+\frac{1}{2} \sin \left(\frac{2 \pi}{R} r\right)-\frac{1}{3} \sin \left(\frac{3 \pi}{R} r\right)+\frac{1}{4} \sin \left(\frac{4 \pi}{R} r\right)-\cdots\right)
\end{aligned}
$$

I could not simplify the above by hand, but using the computer, I verified numerically it is zero for $0<r<R$ for a given R and given u_{0}.

```
mn[v]:= ClearAll[R,r]
    R = 1; (*radius*)
    u0 = 10; (*B.C. value*)
    S = Sum[(-1)^n 1/n Sin[nPi/Rr], {n, 1, Infinity} ] (*obtain sum*)
    Table[Chop[u0 + < 2RPi}u0*s],{r,0.05,R,.05}
Out[o]=-\frac{1}{2}\dot{\mathbb{i}}(-\operatorname{Log}[1+\mp@subsup{e}{}{i\mathbb{i}\pir}]+\operatorname{Log}[\mp@subsup{e}{}{-\dot{i}\pir}(1+\mp@subsup{e}{}{\dot{\mathbb{i}\pir}})])
Out[0]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
```

Figure 6: Obtaining the sum using the computer

4 Problem 4

Consider the Helmholtz equation

$$
\begin{equation*}
\nabla^{2} u(r, \theta)+k^{2} u(r, \theta)=0 \tag{1}
\end{equation*}
$$

inside the circle $r=r_{0}$ with the boundary condition $u\left(r_{0}, \theta\right)=f(\theta)$. The solution can be written in the form $u(r, \theta)=\int_{0}^{2 \pi} f\left(\theta^{\prime}\right) G\left(r, \theta ; \theta^{\prime}\right) d \theta^{\prime}$. Find the Green function G.

solution

I will solve (1) directly and then compare the solution obtain to $u(r, \theta)=\int_{0}^{2 \pi} f\left(\theta^{\prime}\right) G\left(r, \theta ; \theta^{\prime}\right) d \theta^{\prime}$ in order to read off the Green function expression. (1) in polar coordinates becomes

$$
u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}+k^{2} u=0
$$

Writing $u(r, \theta)=R(r) \Theta(\theta)$, the above PDE becomes

$$
\begin{aligned}
R^{\prime \prime} \Theta+\frac{1}{r} R^{\prime} \Theta+\frac{1}{r^{2}} \Theta^{\prime \prime} R+k^{2} R \Theta & =0 \\
\frac{R^{\prime \prime}}{R}+\frac{1}{r} \frac{R^{\prime}}{R}+\frac{1}{r^{2}} \frac{\Theta^{\prime \prime}}{\Theta}+k^{2} & =0 \\
r^{2} \frac{R^{\prime \prime}}{R}+r \frac{R^{\prime}}{R}+r^{2} k^{2} & =-\frac{\Theta^{\prime \prime}}{\Theta}=m
\end{aligned}
$$

Where m is the separation constant. The eigenvalue problem is taken as

$$
\Theta^{\prime \prime}+m \Theta=0
$$

Due to periodicity of the solution on the disk, then $\Theta(-\pi)=\Theta(\pi)$ and $\Theta^{\prime}(-\pi)=\Theta^{\prime}(\pi)$. These boundary conditions restrict m to only positive integer values. Hence let $m=n^{2}$ and the solution to the above becomes

$$
\Theta_{\alpha}(\theta)=A_{n} \cos (n \theta)+B_{n} \sin (n \theta)
$$

Now the radial ODE is

$$
\begin{aligned}
r^{2} \frac{R^{\prime \prime}}{R}+r \frac{R^{\prime}}{R}+r^{2} k^{2} & =\alpha^{2} \\
r^{2} R^{\prime \prime}+r R^{\prime}+\left(r^{2} k^{2}-n^{2}\right) R & =0 \\
R^{\prime \prime}+\frac{1}{r} R^{\prime}+\left(k^{2}-\frac{n^{2}}{r^{2}}\right) R & =0
\end{aligned}
$$

This is Bessel ODE whose solutions are (since n are integers) is

$$
R_{\alpha}(r)=C_{n} J_{n}(k r)+E_{n} Y_{n}(k r)
$$

But $Y_{n}(k r)$ blows up at $r=0$, hence it is rejected leaving solution $R_{n}(r)=C_{n} J_{n}(k r)$. Hence
the final solution is

$$
\begin{equation*}
u(r, \theta)=\sum_{m=1}^{\infty}\left(A_{n} \cos (n \theta)+B_{n} \sin (n \theta)\right) J_{n}(k r) \tag{2}
\end{equation*}
$$

Where the constant C_{n} is merged with the other two constants. Now, at $r=r_{0}$ we are told that $u\left(r_{0}, \theta\right)=f(\theta)$. Hence the above becomes

$$
f(\theta)=\sum_{m=1}^{\infty}\left(A_{n} \cos (n \theta)+B_{n} \sin (n \theta)\right) J_{n}\left(k r_{0}\right)
$$

By orthogonality of $\cos (n \theta), \sin (n \theta)$ we find the Fourier cosine and Fourier sine coefficients A_{n}, B_{n} as

$$
\begin{aligned}
& A_{n} J_{n}\left(k r_{0}\right) \frac{1}{\pi}=\int_{0}^{2 \pi} f(\theta) \cos (n \theta) d \theta \\
& B_{n} J_{n}\left(k r_{0}\right) \frac{1}{\pi}=\int_{0}^{2 \pi} f(\theta) \sin (n \theta) d \theta
\end{aligned}
$$

Substituting the above back into the solution found in (2) results in

$$
\begin{align*}
u(r, \theta) & =\sum_{m=1}^{\infty}\left[\left(\frac{\pi}{J_{n}\left(k r_{0}\right)} \int_{0}^{2 \pi} f\left(\theta^{\prime}\right) \cos \left(n \theta^{\prime}\right) d \theta^{\prime}\right) \cos (n \theta)+\left(\frac{\pi}{J_{n}\left(k r_{0}\right)} \int_{0}^{2 \pi} f\left(\theta^{\prime}\right) \sin \left(n \theta^{\prime}\right) d \theta^{\prime}\right) \sin (n \theta)\right] J_{n}(k r) \\
& =\sum_{m=1}^{\infty} \frac{\pi}{J_{n}\left(k r_{0}\right)}\left(\int_{0}^{2 \pi} f\left(\theta^{\prime}\right) \cos \left(n \theta^{\prime}\right) \cos (n \theta) d \theta^{\prime}+\int_{0}^{2 \pi} f\left(\theta^{\prime}\right) \sin \left(n \theta^{\prime}\right) \sin (n \theta) d \theta^{\prime}\right) J_{n}(k r) \tag{3}
\end{align*}
$$

Using trig relations

$$
\begin{aligned}
\cos A \cos B & =\frac{1}{2}(\cos (A+B)+\cos (A-B)) \\
\sin A \sin B & =\frac{1}{2}(\cos (A-B)-\cos (A+B))
\end{aligned}
$$

Then (3) becomes
$u(r, \theta)=\sum_{m=1}^{\infty} \frac{\pi}{2 J_{n}\left(k r_{0}\right)}\left(\int_{0}^{2 \pi} f\left(\theta^{\prime}\right)\left(\cos \left(n\left(\theta^{\prime}+\theta\right)\right)+\cos \left(n\left(\theta^{\prime}-\theta\right)\right)\right) d \theta^{\prime}+\int_{0}^{2 \pi} f\left(\theta^{\prime}\right)\left(\cos \left(n\left(\theta^{\prime}-\theta\right)\right)-\cos \left(n\left(\theta^{\prime}+\theta\right)\right)\right) d \theta^{\prime}\right) J_{n}(k$

Which is simplified to, after combining both integrals to one

$$
\begin{aligned}
u(r, \theta) & \left.=\sum_{m=1}^{\infty} \frac{\pi}{2 J_{n}\left(k r_{0}\right)}\left(\int_{0}^{2 \pi} f\left(\theta^{\prime}\right)\left(\cos \left(n\left(\theta^{\prime}+\theta\right)\right)+\cos \left(n\left(\theta^{\prime}-\theta\right)\right)+\cos \left(n\left(\theta^{\prime}-\theta\right)\right)-\cos n\left(\theta^{\prime}+\theta\right)\right) d \theta^{\prime}\right)\right) \\
& =\sum_{m=1}^{\infty} \frac{\pi}{2 J_{n}\left(k r_{0}\right)}\left[\int_{0}^{2 \pi} f\left(\theta^{\prime}\right) 2 \cos \left(\theta^{\prime}-\theta\right) d \theta^{\prime}\right] J_{n}(k r) \\
& =\sum_{m=1}^{\infty}\left[\int_{0}^{2 \pi} f\left(\theta^{\prime}\right) \frac{\pi}{J_{n}\left(k r_{0}\right)} \cos \left(\theta^{\prime}-\theta\right) d \theta^{\prime}\right] J_{n}(k r)
\end{aligned}
$$

Exchanging integration with summation gives

$$
u(r, \theta)=\int_{0}^{2 \pi} f\left(\theta^{\prime}\right)\left(\sum_{m=1}^{\infty} \frac{\pi}{J_{n}\left(k r_{0}\right)} \cos \left(\theta^{\prime}-\theta\right) J_{n}(k r)\right) d \theta^{\prime}
$$

Comparing the above to

$$
u(r, \theta)=\int_{0}^{2 \pi} f\left(\theta^{\prime}\right) G\left(r, \theta ; \theta^{\prime}\right) d \theta^{\prime}
$$

Shows that Green function is

$$
G\left(r, \theta ; \theta^{\prime}\right)=\sum_{m=1}^{\infty} \frac{\pi}{J_{n}\left(k r_{0}\right)} \cos \left(\theta^{\prime}-\theta\right) J_{n}(k r)
$$

Where r_{0} is radius of disk. It is symmetric in θ as expected.

[^0]: Nasser M. Abbasi

