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1 Problem 1

Problem Solve 𝑥2𝑦′ + 𝑦2 = 𝑥𝑦𝑦′

Solution

Rewriting the ODE as

𝑦′ �𝑥2 − 𝑥𝑦� + 𝑦2 = 0 (1)

Dividing by 𝑥2 ≠ 0 gives
𝑑𝑦
𝑑𝑥
�1 −

𝑦
𝑥
� +

𝑦2

𝑥2
= 0

We see this is homogeneous of order 1. This can be confirmed by writing the above as

𝑑𝑦 �𝑥2 − 𝑥𝑦� + 𝑦2𝑑𝑥 = 0
𝑑𝑦𝑥2 − 𝑥𝑦𝑑𝑦 + 𝑦2𝑑𝑥 = 0

We want to find if a weight 𝑚 can be found, so that the substitution 𝑦 = 𝑣𝑥𝑚 makes the
above ODE separable. To find 𝑚, we assign weight 𝑚 to both 𝑦 and 𝑑𝑦, and a weight of 1
to both 𝑥 and 𝑑𝑥, and then try to find if there is an 𝑚 which makes each term sums to the
same total weight. (in other words, we want each term units to be the same).

The term �𝑑𝑦� �𝑥2� has total weight of 𝑚+2 (it is the exponents that we add). And the term

(𝑥) �𝑦� �𝑑𝑦� has total weight 1+ 2𝑚 and the last term �𝑦2� (𝑑𝑥) has weight 2𝑚+1. Therefore
we have this result for the weight of each term (there are 3 terms above).

{𝑚 + 2, 1 + 2𝑚, 1 + 2𝑚}
We see that if 𝑚 = 1 then each term will have the same total weight of 3 giving {3, 3, 3}.
So this is homogenous ODE of order 𝑚 = 1. Now that we know the weight, we use the
substitution

𝑦 = 𝑣𝑥

Hence 𝑦′ = 𝑣′𝑥 + 𝑣. Substituting these back into (1) gives a new ODE in 𝑣 which is
separable. If it is not separable, it means we made a mistake somewhere.

(𝑣′𝑥 + 𝑣) �𝑥2 − 𝑥2𝑣� + 𝑣2𝑥2 = 0
𝑣′𝑥3 − 𝑣′𝑣𝑥3 + 𝑣𝑥2 − 𝑥2𝑣2 + 𝑣2𝑥2 = 0

𝑣′𝑥3 − 𝑣′𝑣𝑥3 + 𝑣𝑥2 = 0
Dividing by 𝑥3 for 𝑥 ≠ 0 gives

𝑣′ − 𝑣′𝑣 +
𝑣
𝑥
= 0

𝑣′ (1 − 𝑣) = −
𝑣
𝑥

𝑑𝑣
𝑑𝑥
(1 − 𝑣)
𝑣

= −
1
𝑥

𝑑𝑣
(1 − 𝑣)
𝑣

= −
1
𝑥
𝑑𝑥

𝑑𝑣
(𝑣 − 1)
𝑣

=
1
𝑥
𝑑𝑥

Integrating both sides gives

�𝑣 −
1
𝑣
𝑑𝑣 = �

1
𝑥
𝑑𝑥

𝑣 − ln 𝑣 = ln 𝑥 + 𝐶
Taking exponential of both sides gives

𝑒𝑣−ln 𝑣 = 𝐶𝑥
𝑒𝑣

𝑣
= 𝐶𝑥
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But 𝑣 = 𝑦
𝑥 . Therefore the above becomes

𝑒
𝑦
𝑥

𝑦
𝑥

= 𝐶𝑥

𝑒
𝑦
𝑥

𝑦
= 𝐶

Hence the solution is

𝑦 = 𝐶1𝑒
𝑦
𝑥 𝑥 ≠ 0 (2)

Where 𝐶1 is the constant of integration. 𝑦 can not be solved for directly in the above. But
we can solve for 𝑥 in terms of 𝑦 if needed as follows

ln 𝑦 = ln𝐶1 +
𝑦
𝑥

ln 𝑦 − 𝐶2 =
𝑦
𝑥

𝑥 =
𝑦

ln 𝑦 − 𝐶2
(3)
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2 Problem 2

Problem Solve 𝑦′ = 𝑎2

�𝑥+𝑦�
2

Solution

Let 𝑣 (𝑥) = 𝑥 + 𝑦 (𝑥). Hence 𝑣′ = 1 + 𝑦′ or 𝑦′ = 𝑣′ − 1. Substituting this back into the ODE
gives

𝑣′ − 1 =
𝑎2

𝑣2
𝑑𝑣
𝑑𝑥

=
𝑎2

𝑣2
+ 1

This is separable.

𝑑𝑣
𝑎2

𝑣2 + 1
= 𝑑𝑥

𝑣2

𝑎2 + 𝑣2
𝑑𝑣 = 𝑑𝑥

By long division
𝑣2

𝑎2+𝑣2 = 1 −
𝑎2

𝑎2+𝑣2 . The above becomes

�1 −
𝑎2

𝑎2 + 𝑣2 �
𝑑𝑣 = 𝑑𝑥

Integrating both sides gives

��1 −
𝑎2

𝑎2 + 𝑣2 �
𝑑𝑣 = �𝑑𝑥

�𝑑𝑣 − 𝑎2�
1

𝑎2 + 𝑣2
𝑑𝑣 = �𝑑𝑥

But ∫ 1
𝑎2+𝑣2𝑑𝑣 =

1
𝑎2
∫ 1

1+� 𝑣𝑎 �
2𝑑𝑣 =

1
𝑎2
�𝑎 arctan �𝑣𝑎�� =

1
𝑎 arctan �𝑣𝑎�, hence the above becomes

𝑣 − 𝑎2 �
1
𝑎

arctan �
𝑣
𝑎
�� = 𝑥 + 𝐶

𝑣 − 𝑎 arctan �
𝑣
𝑎
� = 𝑥 + 𝐶

𝑎 arctan �
𝑣
𝑎
� = 𝑣 − 𝑥 − 𝐶

arctan �
𝑣
𝑎
� =

𝑣 − 𝑥
𝑎

+ 𝐶1

Where 𝐶1 =
−𝐶
𝑎 , a new constant. Taking the tan of both sides gives

𝑣
𝑎
= tan �

𝑣 − 𝑥
𝑎

+ 𝐶1�

But 𝑣 = 𝑥 + 𝑦, and the above becomes

𝑥 + 𝑦
𝑎

= tan

⎛
⎜⎜⎜⎜⎝
�𝑥 + 𝑦� − 𝑥

𝑎
+ 𝐶1

⎞
⎟⎟⎟⎟⎠

𝑥 + 𝑦
𝑎

= tan �
𝑦
𝑎
+ 𝐶1�

Therefore the final solution is

𝑦 = 𝑎 tan �
𝑦
𝑎
+ 𝐶1� − 𝑥 𝑎 ≠ 0

Where 𝐶1 is arbitrary constant.
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3 Problem 3

Problem Solve 𝑦′′ + �𝑦′�
2
+ 1 = 0

Solution

Since 𝑦 is missing from the ODE, we can convert this to a first order using 𝑦′ = 𝑝 (𝑥).
Therefore 𝑦′′ = 𝑑𝑝

𝑑𝑥 and the ODE becomes

𝑑𝑝
𝑑𝑥
+ 𝑝2 + 1 = 0

𝑑𝑝
𝑑𝑥

= − �1 + 𝑝2�

𝑑𝑝
1 + 𝑝2

= −𝑑𝑥

Integrating both sides gives

�
𝑑𝑝

1 + 𝑝2
= −�𝑑𝑥

arctan �𝑝� = −𝑥 + 𝐶1

𝑝 = tan (−𝑥 + 𝐶1)

But 𝑝 = 𝑦′. Hence we need now to solve
𝑑𝑦
𝑑𝑥 = tan (−𝑥 + 𝐶1). Integrating both sides gives

𝑦 = � tan (−𝑥 + 𝐶1) 𝑑𝑥

= �
sin (−𝑥 + 𝐶1)
cos (−𝑥 + 𝐶1)

𝑑𝑥

= �
− sin (𝑥 − 𝐶1)
cos (𝑥 − 𝐶1)

𝑑𝑥

= �
𝑑
𝑑𝑥
(cos (𝑥 − 𝐶1))
cos (𝑥 − 𝐶1)

𝑑𝑥

But ∫ 𝑉′

𝑉 𝑑𝑥 = ln (𝑉), hence the above becomes

𝑦 = ln (cos (𝑥 − 𝐶1)) + 𝐶2

Replacing −𝐶1 by new constant 𝐶3, the final solution becomes

𝑦 = ln (cos (𝑥 + 𝐶3)) + 𝐶2

Where 𝐶2, 𝐶3 are constants of integration.
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4 Problem 4

Problem Solve 𝑥𝑦′ + 𝑦 + 𝑥4𝑦4𝑒𝑥 = 0

Solution

Dividing by 𝑥 ≠ 0 and rewriting gives

𝑦′ +
1
𝑥
𝑦 = �−𝑥3𝑒𝑥� 𝑦4 (1)

A Bernoulli ODE has the form 𝑦′ + 𝑎 (𝑥) 𝑦 = 𝑏 (𝑥) 𝑦𝑛 where 𝑛 ≠ 1. Comparing the above to

Bernoulli ODE form, show it is Bernoulli ODE where 𝑎 (𝑥) = 1
𝑥 , 𝑏 (𝑥) = −𝑥

3𝑒𝑥. Dividing (1)

by 𝑦4 gives
1
𝑦4
𝑦′ +

1
𝑥
𝑦−3 = −𝑥3𝑒𝑥

Letting 𝑣 = 𝑦−3 or 𝑑𝑣
𝑑𝑥 = −3𝑦

−4 𝑑𝑦
𝑑𝑥 . Hence

𝑑𝑦
𝑑𝑥 = −

𝑑𝑣
𝑑𝑥

𝑦4

3 . Substituting this in the above gives

1
𝑦4 �

−
𝑑𝑣
𝑑𝑥
𝑦4

3 �
+
1
𝑥
𝑣 = −𝑥3𝑒𝑥

−
1
3
𝑑𝑣
𝑑𝑥
+
1
𝑥
𝑣 = −𝑥3𝑒𝑥

𝑑𝑣
𝑑𝑥
−
3
𝑥
𝑣 = 3𝑥3𝑒𝑥

This is now linear in 𝑣. The integrating factor 𝜇 = 𝑒∫− 3
𝑥𝑑𝑥 = 𝑒−3 ln 𝑥 = 1

𝑥3 . Multiplying both
sides of the above by this integrating factor making the left side complete di�erential

𝑑
𝑑𝑥 �

1
𝑥3
𝑣� =

1
𝑥3
3𝑥3𝑒𝑥

𝑑
𝑑𝑥 �

1
𝑥3
𝑣� = 3𝑒𝑥

Integrating gives

1
𝑥3
𝑣 = 3𝑒𝑥 + 𝐶

𝑣 = 3𝑥3𝑒𝑥 + 𝐶𝑥3

= 𝑥3 (3𝑒𝑥 + 𝐶)

But 𝑣 = 𝑦−3, hence the above becomes

1
𝑦3
= 𝑥3 (3𝑒𝑥 + 𝐶)

𝑦3 =
1

𝑥3 (3𝑒𝑥 + 𝐶)
This shows that there are 3 solutions since the above is a cubic equation. But we can leave
the solution in implicit form

𝑦 =
1
3

�

1
𝑥3 (3𝑒𝑥 + 𝐶)

=
1
𝑥

1
3

�
1

3𝑒𝑥 + 𝐶
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5 Problem 5

Problem Find both a general solution and a singular solution of

𝑥2 �𝑦′�
2
− 2 �𝑥𝑦 − 4� 𝑦′ + 𝑦2 = 0

Solution

Rewriting the ODE as

𝑦2 − 2𝑥𝑦𝑦′ + 8𝑦′ + 𝑥2 �𝑦′�
2
= 0

Let 𝑦′ = 𝑝 and the above becomes

𝑦2 + 𝑦 �−2𝑥𝑝� + �8𝑝 + 𝑥2𝑝2� = 0

This is quadratic in 𝑦. Solving for 𝑦 = −𝑏
2𝑎 ±

1
2𝑎√𝑏

2 − 4𝑎𝑐

𝑦 = 𝑥𝑝 ±
1
2�

4𝑥2𝑝2 − 4 �8𝑝 + 𝑥2𝑝2�

= 𝑥𝑝 ± �𝑥
2𝑝2 − 8𝑝 − 𝑥2𝑝2

= 𝑥𝑝 ± 2�−2𝑝
case one

𝑦 = 𝑥𝑝 + 2�−2𝑝
= 𝑥𝑝 + 𝑓 �𝑝� (1)

This can be written as

𝑦 = 𝐺 �𝑥, 𝑝�

Where𝐺�𝑥, 𝑝� = 𝑥𝑝+𝑓 �𝑝�. This form of ODE is called the Clairaut ODE. Taking derivative
w.r.t. 𝑥 gives

𝑦′ =
𝜕𝐺
𝜕𝑥

+
𝜕𝐺
𝜕𝑝

𝑑𝑝
𝑑𝑥

But 𝑦′ = 𝑝 and the above becomes

𝑝 =
𝜕𝐺
𝜕𝑥

+
𝜕𝐺
𝜕𝑝

𝑑𝑝
𝑑𝑥

But
𝜕𝐺
𝜕𝑥 = 𝑝, hence the above reduces to

0 =
𝜕𝐺
𝜕𝑝

𝑑𝑝
𝑑𝑥

(2)

Then either
𝜕𝐺
𝜕𝑝 = 0 or

𝑑𝑝
𝑑𝑥 = 0.

When
𝑑𝑝
𝑑𝑥 = 0 or 𝑦

′′ = 0 therefore the solution is

𝑦 = 𝐶1𝑥 + 𝐶2 (3)

But we are solving a first order ODE. So we expect it to have one constant of integration
only. By comparing (3) with equation (1) which is 𝑦 = 𝑥𝑝 + 𝑓 �𝑝� shows that

𝐶2 = 𝑓 (𝐶1) = 2�−2𝐶1

Then the solution will now contain one constant of integration 𝐶1. Hence the first solution
is

𝑦 = 𝐶1𝑥 + 2�−2𝐶1
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The second possibility comes from
𝜕𝐺
𝜕𝑝 = 0. This gives

𝑥 + 𝑓′ �𝑝� = 0

𝑥 + 2
𝑑
𝑑𝑝
�−2𝑝�

1
2 = 0

𝑥 + 2
1
2
�−2𝑝�

−1
2 (−2) = 0

𝑥 −
2

√−2𝑝
= 0

𝑥�−2𝑝 = 2
−2𝑝𝑥2 = 4

𝑝 = −
2
𝑥2

Now that we found 𝑝, we substitute it back into (1) given by 𝑦 = 𝑥𝑝 + 2√−2𝑝. Hence the
second solution is found directly as follows

𝑦 = 𝑥𝑝 + 2�−2𝑝

= −
2
𝑥
+ 2

�
−2 �−

2
𝑥2 �

= −
2
𝑥
+ 2

�
4
𝑥2

= −
2
𝑥
+
4
𝑥

=
2
𝑥

Summary of case one From above we obtained the following two solutions

𝑦1 = 𝐶1𝑥 + 2�−2𝐶1

𝑦2 =
2
𝑥

Where 𝑦2 (𝑥) is the singular solution since it can’t be obtained from the first solution with
the constants of integrations by changing them to any value.

We now do the same steps for the case of 𝑦 = 𝑥𝑝 − 2√−2𝑝. This follows the same steps as
above as the only di�erence is the sign and hence the steps will not be repeated. It gives
the solution

𝑦3 = 𝐶1𝑥 − 2�−2𝐶1

With the same singular solution. Therefore there are three solutions to this ODE and these
are summarized below

𝑦1 = 𝐶1𝑥 + 2�−2𝐶1

𝑦2 =
2
𝑥

𝑦3 = 𝐶1𝑥 − 2�−2𝐶1

With 𝑦2 (𝑥) being the singular solution. Singular solutions do not have constant of integra-
tion in them and can not be obtained from the general solution by any substitution for
constants of integration. The general solution contain constant of integrations in them.
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6 Problem 6

Problem

Find the general real solution to the following equation where 𝐴 (𝑥) is a known function

𝐴 (𝑥) 𝑦′′ + 𝐴′ (𝑥) 𝑦′ +
𝑦

𝐴 (𝑥)
= 0

Solution

Let us first assume 𝐴 (𝑥) is constant not zero. The above reduces to

𝑦′′ +
𝑦
𝐴2 = 0

This is harmonic oscillator It has the form of 𝑦′′ + 𝜔2𝑦 = 0 with 𝜔 = 1
𝐴 being the natural

frequency. The solution to this is easily found to be

𝑦 (𝑥) = 𝐶1 cos (𝜔𝑥) + 𝐶2 sin (𝜔𝑥)

= 𝐶1 cos �
𝑥
𝐴
� + 𝐶2 sin �

𝑥
𝐴
� (1)

Since 𝐴 is not constant, then we can try a similar solution1 but use 𝑓 (𝑥) for the arguments
of the trigonometric functions

𝑦 (𝑥) = 𝐶1 cos �𝑓 (𝑥)� + 𝐶2 sin �𝑓 (𝑥)� (2)

where 𝑓 (𝑥) is function of 𝑥 to be determined. Hence. From now on, we will write 𝑓 instead
of 𝑓 (𝑥) to simplify notation.

𝑦′ = −𝐶1𝑓′ sin �𝑓� + 𝐶2𝑓′ cos �𝑓�

𝑦′′ = −𝐶1𝑓′′ sin �𝑓� − 𝐶1 �𝑓′�
2

cos �𝑓� + 𝐶2𝑓′′ cos �𝑓� − 𝐶2 �𝑓′�
2

sin �𝑓�
Substituting these back into the original ODE gives

𝐴2 �−𝐶1𝑓′′ sin �𝑓� − 𝐶1 �𝑓′�
2

cos �𝑓� + 𝐶2𝑓′′ cos �𝑓� − 𝐶2 �𝑓′�
2

sin �𝑓�� +

𝐴𝐴′ �−𝐶1𝑓′ sin �𝑓� + 𝐶2𝑓′ cos �𝑓�� + 𝐶1 cos �𝑓� + 𝐶2 sin �𝑓� = 0
Collecting terms gives

cos �𝑓� �−𝐶1𝐴2 �𝑓′�
2
+ 𝐶2𝐴2𝑓′′ + 𝐶2𝐴𝐴′𝑓′ + 𝐶1�+sin �𝑓� �−𝐶1𝐴2𝑓′′ − 𝐶2𝐴2 �𝑓′�

2
− 𝐶1𝐴𝐴′𝑓′ + 𝐶2� = 0

Since this is zero for all sin and cos then

−𝐶1𝐴2 �𝑓′�
2
+ 𝐶2𝐴2𝑓′′ + 𝐶2𝐴𝐴′𝑓′ + 𝐶1 = 0

−𝐶1𝐴2𝑓′′ − 𝐶2𝐴2 �𝑓′�
2
− 𝐶1𝐴𝐴′𝑓′ + 𝐶2 = 0

Multiplying the first equation by 𝐶2 and the second by 𝐶1 gives

−𝐶2𝐶1𝐴2 �𝑓′�
2
+ 𝐶2

2𝐴2𝑓′′ + 𝐶2
2𝐴𝐴′𝑓′ + 𝐶1𝐶2 = 0

−𝐶2
1𝐴2𝑓′′ − 𝐶1𝐶2𝐴2 �𝑓′�

2
− 𝐶2

1𝐴𝐴′𝑓′ + 𝐶1𝐶2 = 0
Subtracting the second equation from the first gives

�−𝐶2𝐶1𝐴2 �𝑓′�
2
+ 𝐶2

2𝐴2𝑓′′ + 𝐶2
2𝐴𝐴′𝑓′ + 𝐶1𝐶2� − �−𝐶2

1𝐴2𝑓′′ − 𝐶1𝐶2𝐴2 �𝑓′�
2
− 𝐶2

1𝐴𝐴′𝑓′ + 𝐶1𝐶2� = 0

−𝐶2𝐶1𝐴2 �𝑓′�
2
+ 𝐶2

2𝐴2𝑓′′ + 𝐶2
2𝐴𝐴′𝑓′ + 𝐶1𝐶2 + 𝐶2

1𝐴2𝑓′′ + 𝐶1𝐶2𝐴2 �𝑓′�
2
+ 𝐶2

1𝐴𝐴′𝑓′ − 𝐶1𝐶2 = 0
𝐶2
2𝐴2𝑓′′ + 𝐶2

2𝐴𝐴′𝑓′ + 𝐶2
1𝐴2𝑓′′ + 𝐶2

1𝐴𝐴′𝑓′ = 0
𝑓′′ �𝐶2

2𝐴2 + 𝐶2
1𝐴2� + 𝑓′ �𝐶2

2𝐴𝐴′ + 𝐶2
1𝐴𝐴′� = 0

Let us call 𝐶2
2𝐴2+𝐶2

1𝐴2 = 𝜇 and 𝐶2
2𝐴𝐴′+𝐶2

1𝐴𝐴′ = 𝛽 for the moment. The above becomes

𝜇𝑓′′ + 𝛽𝑓′ = 0
Since 𝑓 is missing, then we can solve the above by assuming 𝑓′ = 𝑣. The above becomes

1Thanks to hint from the Professor.



10

𝑣′+ 𝛽
𝜇𝑣 = 0. This is linear in 𝑣. The integrating factor is 𝐼 = 𝑒

∫ 𝛽
𝜇𝑑𝑥. Hence the ode becomes

𝑑
𝑑𝑥 �

𝑒
∫ 𝛽

𝜇𝑑𝑥𝑣� = 0

𝑣 = 𝐶3𝑒
−∫ 𝛽

𝜇𝑑𝑥

Since the proposed solution in (2) contains integration of constants already, we can choose
𝐶3 = 1 without a�ecting the final solution. Hence

𝑓′ (𝑥) = 𝑒−
∫ 𝛽

𝜇𝑑𝑥

Therefore

𝑓 (𝑥) = �𝑒−
∫ 𝛽

𝜇𝑑𝑥𝑑𝑥 + 𝐶4

= �

⎛
⎜⎜⎜⎜⎜⎜⎝𝐶3𝑒

−∫
𝐶22𝐴𝐴

′+𝐶21𝐴𝐴
′

𝐶22𝐴
2+𝐶21𝐴

2 𝑑𝑥
𝑑𝑥

⎞
⎟⎟⎟⎟⎟⎟⎠ 𝑑𝑥 + 𝐶4 (3)

Again, since the proposed solution in (2) contains integration of constants already, we can
choose 𝐶4 = 0. The above becomes

𝑓 (𝑥) = �𝑒−
∫ 𝛽

𝜇𝑑𝑥𝑑𝑥

= �𝑒
−∫

𝐶22𝐴𝐴
′+𝐶21𝐴𝐴

′

𝐶22𝐴
2+𝐶21𝐴

2 𝑑𝑥
𝑑𝑥

The expression
𝐶2
2𝐴𝐴

′+𝐶2
1𝐴𝐴

′

𝐶2
2𝐴2+𝐶2

1𝐴2 can be simplified as follows

𝐶2
2𝐴𝐴′ + 𝐶2

1𝐴𝐴′

𝐶2
2𝐴2 + 𝐶2

1𝐴2 =
𝐴𝐴′ �𝐶2

2 + 𝐶2
1�

𝐴2 �𝐶2
2 + 𝐶2

1�
=
𝐴𝐴′

𝐴2

Hence (3) becomes

𝑓 (𝑥) = �𝑒−∫
𝐴𝐴′

𝐴2
𝑑𝑥𝑑𝑥

= �𝑒−∫
𝐴′
𝐴 𝑑𝑥𝑑𝑥

= �𝑒− ln𝐴𝑑𝑥

= �
1

𝐴 (𝑥)
𝑑𝑥

Therefore the solution from (2) is

𝑦 (𝑥) = 𝐶1 cos �𝑓 (𝑥)� + 𝐶2 sin �𝑓 (𝑥)�

= 𝐶1 cos ��
1

𝐴 (𝑥)
𝑑𝑥� + 𝐶2 sin ��

1
𝐴 (𝑥)

𝑑𝑥� (4)

Let us now try to verify this solution by substituting it back into the ODE. From (4), where
we now write 𝐴 instead of 𝐴 (𝑥) everywhere to simplify the notation

𝑦′ (𝑥) = −𝐶1 sin ��
1
𝐴
𝑑𝑥� ��

1
𝐴
𝑑𝑥�

′

+ 𝐶2 cos ��
1
𝐴
𝑑𝑥� ��

1
𝐴
𝑑𝑥�

′

= −𝐶1 sin ��
1
𝐴
𝑑𝑥�

1
𝐴
+ 𝐶2 cos ��

1
𝐴
𝑑𝑥�

1
𝐴

And 𝑦′′ (𝑥) becomes

𝑦′′ (𝑥) = −𝐶1 �cos ��
1
𝐴
𝑑𝑥� ��

1
𝐴
𝑑𝑥�

′ 1
𝐴
+ sin ��

1
𝐴
𝑑𝑥� �

−𝐴′

𝐴2 ��

+ 𝐶2 �− sin ��
1
𝐴
𝑑𝑥� ��

1
𝐴
𝑑𝑥�

′ 1
𝐴
+ cos ��

1
𝐴
𝑑𝑥� �

−𝐴′

𝐴2 ��
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or

𝑦′′ (𝑥) = −𝐶1 �cos ��
1
𝐴
𝑑𝑥�

1
𝐴2 − sin ��

1
𝐴
𝑑𝑥�

𝐴′

𝐴2 � + 𝐶2 �− sin ��
1
𝐴
𝑑𝑥�

1
𝐴2 − cos ��

1
𝐴
𝑑𝑥�

𝐴′

𝐴2 �

= −𝐶1 cos ��
1
𝐴
𝑑𝑥�

1
𝐴2 + 𝐶1 sin ��

1
𝐴
𝑑𝑥�

𝐴′

𝐴2 − 𝐶2 sin ��
1
𝐴
𝑑𝑥�

1
𝐴2 − 𝐶2 cos ��

1
𝐴
𝑑𝑥�

𝐴′

𝐴2

Substituting the above expression for 𝑦, 𝑦′, 𝑦′′ into the original ODE 𝐴2𝑦′′+𝐴𝐴′𝑦′+𝑦 = 0
gives

𝐴2 �−𝐶1 cos ��
1
𝐴
𝑑𝑥�

1
𝐴2 + 𝐶1 sin ��

1
𝐴
𝑑𝑥�

𝐴′

𝐴2 − 𝐶2 sin ��
1
𝐴
𝑑𝑥�

1
𝐴2 − 𝐶2 cos ��

1
𝐴
𝑑𝑥�

𝐴′

𝐴2 �

+𝐴𝐴′ �−𝐶1 sin ��
1
𝐴
𝑑𝑥�

1
𝐴
+ 𝐶2 cos ��

1
𝐴
𝑑𝑥�

1
𝐴�
+𝐶1 cos ��

1
𝐴 (𝑥)

𝑑𝑥�+𝐶2 sin ��
1

𝐴 (𝑥)
𝑑𝑥� = 0

Simplifying gives

− 𝐶1 cos ��
1
𝐴
𝑑𝑥� + 𝐶1 sin ��

1
𝐴
𝑑𝑥�𝐴′ − 𝐶2 sin ��

1
𝐴
𝑑𝑥� − 𝐶2 cos ��

1
𝐴
𝑑𝑥�𝐴′

− 𝐶1𝐴′ sin ��
1
𝐴
𝑑𝑥� + 𝐶2𝐴′ cos ��

1
𝐴
𝑑𝑥� + 𝐶1 cos ��

1
𝐴
𝑑𝑥� + 𝐶2 sin ��

1
𝐴 (𝑥)

𝑑𝑥� = 0

Canceling 𝐶1terms gives

−𝐶2 sin ��
1
𝐴
𝑑𝑥� − 𝐶2 cos ��

1
𝐴
𝑑𝑥�𝐴′ + 𝐶2𝐴′ cos ��

1
𝐴
𝑑𝑥� + 𝐶2 sin ��

1
𝐴
𝑑𝑥� = 0

Which simplifies to

−𝐶2 cos ��
1
𝐴
𝑑𝑥�𝐴′ + 𝐶2𝐴′ cos ��

1
𝐴
𝑑𝑥� = 0

Or

0 = 0
Solution (4) has been verified.
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7 Problem 7

Problem Find the general real solution to the equation

𝑥𝑦′′ +
3
𝑥
𝑦 = 1 + 𝑥3

Solution

We start by writing the ODE as

𝑥2𝑦′′ + 3𝑦 = 𝑥 + 𝑥4 (1)

The solution is given by

𝑦 = 𝑦ℎ + 𝑦𝑝
where 𝑦ℎ is solution to homogeneous ODE 𝑥2𝑦′′ℎ + 3𝑦ℎ = 0 and 𝑦𝑝 is a particular solution
to 𝑥2𝑦′′𝑝 + 3𝑦𝑝 = 𝑥 + 𝑥4. We start by solving the homogeneous

𝑥2𝑦′′ + 3𝑦 = 0
This is Euler type ODE. Using the standard substitution 𝑦 = 𝐴𝑥𝑟, then 𝑦′ = 𝐴𝑟𝑥𝑟−1, 𝑦′′ =
𝐴𝑟 (𝑟 − 1) 𝑥𝑟−2 and the above becomes

𝑥2𝐴𝑟 (𝑟 − 1) 𝑥𝑟−2 + 3𝐴𝑥𝑟 = 0
𝐴𝑟 (𝑟 − 1) 𝑥𝑟 + 3𝐴𝑥𝑟 = 0

Since 𝑥𝑟 ≠ 0 and 𝐴 ≠ 0 then the above simplifies to

𝑟 (𝑟 − 1) + 3 = 0
𝑟2 − 𝑟 + 3 = 0

Hence

𝑟 =
−𝑏
2𝑎

±
1
2𝑎
√𝑏2 − 4𝑎𝑐

=
1
2
±
1
2√

1 − 12

=
1
2
±
1
2
𝑖√11

Hence the solution is

𝑦 = 𝐶1𝑥
1
2+

𝑖
2√11 + 𝐶2𝑥

1
2−

𝑖
2√11

= 𝐶1𝑥
1
2𝑥

𝑖
2√11 + 𝐶2𝑥

1
2𝑥

−𝑖
2 √11

= 𝐶1√𝑥𝑒ln 𝑥
𝑖
2√11 + 𝐶2√𝑥𝑒ln 𝑥

−𝑖
2 √11

= 𝐶1√𝑥𝑒
𝑖
2√11 ln 𝑥 + 𝐶2√𝑥𝑒

−𝑖
2 √11 ln 𝑥

Using Euler formula the above can now be written in terms of sin and cos

𝑦 = √𝑥 �𝐶1𝑒
𝑖
2√11 ln 𝑥 + 𝐶2𝑒

−𝑖
2 √11 ln 𝑥�

𝑦ℎ = √𝑥 �𝐶3 cos �
1
2√

11 ln 𝑥� + 𝐶4 sin �
1
2√

11 ln 𝑥�� (2)

Now we find the particular solution using the method of undetermined coe�cients. Since
the RHS is polynomial 𝑥 + 𝑥4 then we guess

𝑦𝑝 = 𝐴 + 𝐵𝑥 + 𝐶𝑥2 + 𝐷𝑥3 + 𝐸𝑥4

Then 𝑦′ = 𝐵 + 2𝐶𝑥 + 3𝐷𝑥2 + 4𝐸𝑥3 and 𝑦′′ = 2𝐶 + 6𝐷𝑥 + 12𝐸𝑥2. Substituting these back in
(1)

𝑥2 �2𝐶 + 6𝐷𝑥 + 12𝐸𝑥2� + 3 �𝐴 + 𝐵𝑥 + 𝐶𝑥2 + 𝐷𝑥3 + 𝐸𝑥4� = 𝑥 + 𝑥4

2𝐶𝑥2 + 6𝐷𝑥3 + 12𝐸𝑥4 + 3𝐴 + 3𝐵𝑥 + 3𝐶𝑥2 + 3𝐷𝑥3 + 3𝐸𝑥4 = 𝑥 + 𝑥4

3𝐴 + 𝑥 (3𝐵) + 𝑥2 (2𝐶 + 3𝐶) + 𝑥3 (6𝐷 + 3𝐷) + (3𝐸 + 12𝐸) 𝑥4 = 𝑥 + 𝑥4

3𝐴 + 𝑥 (3𝐵) + 𝑥2 (5𝐶) + 𝑥3 (9𝐷) + 15𝐸𝑥4 = 𝑥 + 𝑥4
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By comparing coe�cients the following equations are generated

𝐴 = 0
3𝐵 = 1
5𝐶 = 0
9𝐷 = 0
15𝐸 = 1

Hence 𝐴 = 0, 𝐵 = 1
3 , 𝐶 = 0,𝐷 = 0, 𝐸 = 1

15 . Therefore

𝑦𝑝 =
1
3
𝑥 +

1
15
𝑥4

Hence the final solution is

𝑦 = 𝑦ℎ + 𝑦𝑝

= √𝑥 �𝐶3 cos �
1
2√

11 ln 𝑥� + 𝐶4 sin �
1
2√

11 ln 𝑥�� +
1
3
𝑥 +

1
15
𝑥4
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8 Problem 8

Problem For what values of 𝑘 does the equation

𝑦′′ − �
1
4
+
𝑘
𝑥�
𝑦 = 0 (1)

defined for 0 < 𝑥 < ∞ have a solution vanishing at 𝑥 = 0 and at 𝑥 = ∞ ?

Solution

Let us look what happens at 𝑥 → ∞, then the term
1
4 ≫

𝑘
𝑥 and the ODE simplifies to

𝑦′′ −
1
4
𝑦 = 0

Which has the solutions 𝑦 = �𝑒
1
2𝑥, 𝑒

−1
2 𝑥�. We reject the first one since it does not vanish at

𝑥 → ∞, and use 𝑦 = 𝑒
−1
2 𝑥. Now we assume the solution to (1) is of the form

𝑦 = 𝑃 (𝑥) 𝑒
−1
2 𝑥 (2)

And we now try to find 𝑃 (𝑥). Substituting this solution back into (1), given that

𝑦′ = 𝑃′𝑒
−𝑥
2 −

1
2
𝑃𝑒

−𝑥
2

𝑦′′ = 𝑃′′𝑒
−𝑥
2 −

1
2
𝑃′𝑒

−𝑥
2 −

1
2
𝑃′𝑒

−𝑥
2 +

1
4
𝑃𝑒

−𝑥
2

= 𝑃′′𝑒
−𝑥
2 − 𝑃′𝑒

−𝑥
2 +

1
4
𝑃𝑒

−𝑥
2

Substituting the above into (1) and canceling common term 𝑒
−𝑥
2 gives

�𝑃′′ − 𝑃′ +
1
4
𝑃� − �

1
4
+
𝑘
𝑥�
𝑃 = 0

𝑃′′ − 𝑃′ −
𝑘
𝑥
𝑃 = 0

𝑥𝑃′′ − 𝑥𝑃′ − 𝑘𝑃 = 0 (3)

To solve this for 𝑃 (𝑥), we use Frobenius series . Assuming

𝑃 (𝑥) =
∞
�
𝑛=0

𝑐𝑛𝑥𝑛+𝑟

𝑃′ (𝑥) =
∞
�
𝑛=0

(𝑛 + 𝑟) 𝑐𝑛𝑥𝑛+𝑟−1

𝑃′′ (𝑥) =
∞
�
𝑛=0

(𝑛 + 𝑟) (𝑛 + 𝑟 − 1) 𝑐𝑛𝑥𝑛+𝑟−2

Hence (3) becomes

𝑥
∞
�
𝑛=0

(𝑛 + 𝑟) (𝑛 + 𝑟 − 1) 𝑐𝑛𝑥𝑛+𝑟−2 − 𝑥
∞
�
𝑛=0

(𝑛 + 𝑟) 𝑐𝑛𝑥𝑛+𝑟−1 − 𝑘
∞
�
𝑛=0

𝑐𝑛𝑥𝑛+𝑟 = 0

∞
�
𝑛=0

(𝑛 + 𝑟) (𝑛 + 𝑟 − 1) 𝑐𝑛𝑥𝑛+𝑟−1 −
∞
�
𝑛=0

(𝑛 + 𝑟) 𝑐𝑛𝑥𝑛+𝑟 − 𝑘
∞
�
𝑛=0

𝑐𝑛𝑥𝑛+𝑟 = 0

∞
�
𝑛=0

(𝑛 + 𝑟) (𝑛 + 𝑟 − 1) 𝑐𝑛𝑥𝑛+𝑟−1 −
∞
�
𝑛=1

(𝑛 + 𝑟 − 1) 𝑐𝑛−1𝑥𝑛+𝑟−1 − 𝑘
∞
�
𝑛=1

𝑐𝑛−1𝑥𝑛+𝑟−1 = 0

For 𝑛 = 0, and assuming 𝑐0 ≠ 0 then
(𝑛 + 𝑟) (𝑛 + 𝑟 − 1) 𝑐𝑛 = 0

(𝑟) (𝑟 − 1) 𝑐0 = 0
𝑟 (𝑟 − 1) = 0

Hence 𝑟 = 1 or 𝑟 = 0.
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Case 𝑟 = 1

𝑃 =
∞
�
𝑛=0

𝑐𝑛𝑥𝑛+1

=
∞
�
𝑛=1

𝑐𝑛−1𝑥𝑛

Hence

𝑃′ =
∞
�
𝑛=1

𝑛𝑐𝑛−1𝑥𝑛−1

𝑃′′ =
∞
�
𝑛=1

(𝑛) (𝑛 − 1) 𝑐𝑛−1𝑥𝑛−2

And now (3) becomes

𝑥
∞
�
𝑛=1

(𝑛) (𝑛 − 1) 𝑐𝑛−1𝑥𝑛−2 − 𝑥
∞
�
𝑛=1

𝑛𝑐𝑛−1𝑥𝑛−1 − 𝑘
∞
�
𝑛=1

𝑐𝑛−1𝑥𝑛 = 0

∞
�
𝑛=1

(𝑛) (𝑛 − 1) 𝑐𝑛−1𝑥𝑛−1 −
∞
�
𝑛=1

𝑛𝑐𝑛−1𝑥𝑛 − 𝑘
∞
�
𝑛=1

𝑐𝑛−1𝑥𝑛 = 0

∞
�
𝑛=2

(𝑛) (𝑛 − 1) 𝑐𝑛−1𝑥𝑛−1 −
∞
�
𝑛=1

𝑛𝑐𝑛−1𝑥𝑛 − 𝑘
∞
�
𝑛=1

𝑐𝑛−1𝑥𝑛 = 0

∞
�
𝑛=1

(𝑛 + 1) (𝑛) 𝑐𝑛𝑥𝑛 −
∞
�
𝑛=1

𝑛𝑐𝑛−1𝑥𝑛 − 𝑘
∞
�
𝑛=1

𝑐𝑛−1𝑥𝑛 = 0

Hence for 𝑛 ≥ 1 we obtain
(𝑛 + 1) (𝑛) 𝑐𝑛 − 𝑛𝑐𝑛−1 − 𝑘𝑐𝑛−1 = 0

𝑐𝑛 =
(𝑛 + 𝑘) 𝑐𝑛−1
𝑛 (𝑛 + 1)

For 𝑛 = 1

𝑐1 =
(𝑘 + 1) 𝑐0

2
For 𝑛 = 2

𝑐2 =
(𝑘 + 2) 𝑐1
2 (3)

=
(𝑘 + 2)
2 (3)

(𝑘 + 1)
2

𝑐0 =
(𝑘 + 1) (𝑘 + 2)
(2) (2) (3)

𝑐0

For 𝑛 = 3

𝑐3 =
(𝑘 + 3) 𝑐2
3 (4)

=
(𝑘 + 3)
(3) (4)

(𝑘 + 1) (𝑘 + 2)
(2) (2) (3)

𝑐0 =
(𝑘 + 1) (𝑘 + 2) (𝑘 + 3)
(2) (2) (3) (3) (4)

𝑐0

For 𝑛 = 4

𝑐4 =
(𝑘 + 4) 𝑐𝑛−1
(4) (5)

=
(𝑘 + 4) 𝑐3
(4) (5)

=
(𝑘 + 1) (𝑘 + 2) (𝑘 + 3) (𝑘 + 4)
(2) (2) (3) (3) (4) (4) (5)

𝑐0

And so on. Hence

𝑃 (𝑥) =
∞
�
𝑛=1

𝑐𝑛−1𝑥𝑛

= 𝑐0𝑥 + 𝑐1𝑥2 + 𝑐2𝑥3 + 𝑐3𝑥4 +⋯

= 𝑐0 �𝑥 +
(𝑘 + 1)
2

𝑥2 +
(𝑘 + 1) (𝑘 + 2)
(2) (2) (3)

𝑥3 +
(𝑘 + 1) (𝑘 + 2) (𝑘 + 3)
(2) (2) (3) (3) (4)

𝑥4 +
(𝑘 + 1) (𝑘 + 2) (𝑘 + 3) (𝑘 + 4)
(2) (2) (3) (3) (4) (4) (5)

𝑥5 +⋯�

= 𝑐0 �𝑥 + (𝑘 + 1)
𝑥2

2!
+
(𝑘 + 1) (𝑘 + 2)

2!
𝑥3

3!
+
(𝑘 + 1) (𝑘 + 2) (𝑘 + 3)

3!
𝑥4

4!
+
(𝑘 + 1) (𝑘 + 2) (𝑘 + 3) (𝑘 + 4)

4!
𝑥5

5!
+⋯�

(4)

But 𝑒𝑥 = 1 + 𝑥 + 𝑥2

2! +
𝑥3

3! +⋯. Or 𝑒𝑥 − 1 = 𝑥 + 𝑥2

2! +
𝑥3

3! +⋯. So there is an exponential term
inside (4). Hence to make (4) vanish at 𝑥 → ∞, then 𝑘 needs to be a negative integer.
Taking 𝑘 = −1 makes all terms with 𝑘 in them vanish, leaving

𝑃 (𝑥) = 𝑐0𝑥
So now the solution from (2) becomes

𝑦 (𝑥) = 𝑐0𝑥𝑒
− 𝑥
2
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Which goes to zero as 𝑥 → ∞ since an exponential decays to zero faster that 𝑥 going to
infinity.

We now need to check if negative 𝑘 integer value (specifically 𝑘 = −1 which we picked from
above) will also make the solution vanish as 𝑥 → 0. When 𝑥 → 0 the ODE becomes

𝑦′′ −
𝑘
𝑥
𝑦 = 0 (5)

Since
𝑘
𝑥 ≫

1
4 close to 𝑥 = 0. Since 𝑘 is negative integer −1 then the above becomes

𝑦′′ +
𝑘
𝑥
𝑦 = 0

To see this will go to zero as 𝑥 → 0, Intuitively since
𝑘
𝑥 is now positive and very large,

then this is like a harmonic oscillator with very large sti�ness. (Spring mass system). When
the sti�ness becomes very large, the solution goes to zero (the natural frequency goes to

infinity, since 𝜔 = �
𝑘
𝑥 which means the period goes to zero since 𝜔 = 2𝜋𝑇) which implies

no motion. So this shows that negative integer value of 𝑘 found from first part makes the
solution vanish at both 𝑥 → ∞ and at 𝑥 → 0. Actually for 𝑥 → 0 we just needed 𝑘 to be
negative in order to change the sign. But for 𝑥 → ∞ we found we needed 𝑘 to be a negative
integer which we choose −1. So this will work for 𝑥 = 0 and 𝑥 = ∞.

8.1 Appendix

I first tried to solve the give ODE directly using series method. I left this here as an
appendix, not to be graded but as a reference.

𝑥 is singular point. But it is a regular singular point since lim𝑥→0 𝑥2
𝑘
𝑥 = 𝑥 and hence the

limit exist. Therefore assuming solution is Frobenius series

𝑦 = 𝑥𝑟
∞
�
𝑛=0

𝑐𝑛𝑥𝑛 =
∞
�
𝑛=0

𝑐𝑛𝑥𝑛+𝑟

Therefore 𝑦′ = ∑∞
𝑛=0 (𝑛 + 𝑟) 𝑐𝑛𝑥

𝑛+𝑟−1 and 𝑦′′ = ∑∞
𝑛=0 (𝑛 + 𝑟) (𝑛 + 𝑟 − 1) 𝑐𝑛𝑥

𝑛+𝑟−2, then (1)
becomes

∞
�
𝑛=0

(𝑛 + 𝑟) (𝑛 + 𝑟 − 1) 𝑐𝑛𝑥𝑛+𝑟−2 − �
1
4
+
𝑘
𝑥�

∞
�
𝑛=0

𝑐𝑛𝑥𝑛+𝑟 = 0

∞
�
𝑛=0

(𝑛 + 𝑟) (𝑛 + 𝑟 − 1) 𝑐𝑛𝑥𝑛+𝑟−2 −
𝑘
𝑥

∞
�
𝑛=0

𝑐𝑛𝑥𝑛+𝑟 −
1
4

∞
�
𝑛=0

𝑐𝑛𝑥𝑛+𝑟 = 0

∞
�
𝑛=0

(𝑛 + 𝑟) (𝑛 + 𝑟 − 1) 𝑐𝑛𝑥𝑛+𝑟−2 − 𝑘
∞
�
𝑛=0

𝑐𝑛𝑥𝑛+𝑟−1 −
1
4

∞
�
𝑛=0

𝑐𝑛𝑥𝑛+𝑟 = 0

But 𝑘∑∞
𝑛=0 𝑐𝑛𝑥

𝑛+𝑟−1 = 𝑘∑∞
𝑛=1 𝑐𝑛−1𝑥

𝑛+𝑟−2 and ∑∞
𝑛=0 𝑐𝑛𝑥

𝑛+𝑟 = ∑∞
𝑛=2 𝑐𝑛−2𝑥

𝑛+𝑟−2 and the above
becomes

∞
�
𝑛=0

(𝑛 + 𝑟) (𝑛 + 𝑟 − 1) 𝑐𝑛𝑥𝑛+𝑟−2 − 𝑘
∞
�
𝑛=1

𝑐𝑛−1𝑥𝑛+𝑟−2 −
1
4

∞
�
𝑛=2

𝑐𝑛−2𝑥𝑛+𝑟−2 = 0 (2)

The first step is to obtain the indicial equation. As the nature of the roots will tell us how
to proceed. The indicial equation is obtained from 𝑛 = 0 in (2) with the assumption that
𝑐0 ≠ 0. This leads to

(𝑛 + 𝑟) (𝑛 + 𝑟 − 1) 𝑐𝑛 = 0
𝑟 (𝑟 − 1) 𝑐0 = 0

𝑐0 is always taken as non-zero. This leads to

𝑟 (𝑟 − 1) = 0
With solutions 𝑟1 = 1 or 𝑟2 = 0. (We take 𝑟1 as the larger root first, since Frobenius series
solution can only guarantee solution for the larger root, when the roots di�er by an integer
as this is the case).

Since 𝑟1 − 𝑟2 is an integer, then this tells us we can obtain a first solution 𝑦1 (𝑥) associated
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with 𝑟1 = 1 from the Frobenius series

𝑦1 (𝑥) =
∞
�
𝑛=0

𝑐𝑛𝑥𝑛+1 (3)

But to find the second solution 𝑦2 (𝑥) associated with 𝑟2 = 0 we can try either reduction of
order method or use

𝑦2 (𝑥) = 𝐴𝑦1 (𝑥) ln (𝑥) +
∞
�
𝑛=0

𝑑𝑛𝑥𝑛 (4)

Where 𝐴 is some constant, which can be zero, and 𝑑𝑛 are the coe�cients for the sec-
ond series. We have to do the above when the roots of the indicial equation di�er by
integer. Otherwise, the second solution would have been found using Frobenius series
𝑦2 (𝑥)∑

∞
𝑛=0 𝑐𝑛𝑥

𝑛+𝑟2 like with the first solution.

OK, Now we will first find 𝑦1 (𝑥) from (3)

case 𝑟1 = 1

Using (3)

𝑦′ =
∞
�
𝑛=0

(𝑛 + 1) 𝑐𝑛𝑥𝑛

𝑦′′ =
∞
�
𝑛=0

𝑛 (𝑛 + 1) 𝑐𝑛𝑥𝑛−1

=
∞
�
𝑛=1

𝑛 (𝑛 + 1) 𝑐𝑛𝑥𝑛−1

Substituting the above into (1) gives
∞
�
𝑛=1

𝑛 (𝑛 + 1) 𝑐𝑛𝑥𝑛−1 − �
1
4
+
𝑘
𝑥�

∞
�
𝑛=0

𝑐𝑛𝑥𝑛+1 = 0

∞
�
𝑛=1

𝑛 (𝑛 + 1) 𝑐𝑛𝑥𝑛−1 −
1
4

∞
�
𝑛=0

𝑐𝑛𝑥𝑛+1 −
𝑘
𝑥

∞
�
𝑛=0

𝑐𝑛𝑥𝑛+1 = 0

∞
�
𝑛=1

𝑛 (𝑛 + 1) 𝑐𝑛𝑥𝑛−1 −
1
4

∞
�
𝑛=0

𝑐𝑛𝑥𝑛+1 − 𝑘
∞
�
𝑛=0

𝑐𝑛𝑥𝑛 = 0

∞
�
𝑛=0

(𝑛 + 1) (𝑛 + 2) 𝑐𝑛+1𝑥𝑛 −
1
4

∞
�
𝑛=1

𝑐𝑛−1𝑥𝑛 − 𝑘
∞
�
𝑛=0

𝑐𝑛𝑥𝑛 = 0

For 𝑛 = 0
(1) (2) 𝑐1 − 𝑘𝑐0 = 0

𝑐1 =
𝑘
2
𝑐0

For 𝑛 > 0 we obtain the recursion equation

(𝑛 + 1) (𝑛 + 2) 𝑐𝑛+1 −
1
4
𝑐𝑛−1 − 𝑘𝑐𝑛 = 0

𝑐𝑛+1 =
1
4𝑐𝑛−1 + 𝑘𝑐𝑛
(𝑛 + 1) (𝑛 + 2)

For 𝑛 = 1

𝑐2 =
1
4𝑐0 + 𝑘𝑐1
(2) (3)

=

1
4𝑐0 + 𝑘 �

𝑘
2𝑐0�

6
=

1
4𝑐0 +

𝑘2

2 𝑐0
6

= 𝑐0

1
4 +

𝑘2

2
6

= 𝑐0
1 + 2𝑘2

24
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For 𝑛 = 2

𝑐3 =
1
4𝑐1 + 𝑘𝑐2
(3) (4)

=
1
4
𝑘
2𝑐0 + 𝑘𝑐0

1+2𝑘2

24
12

=
𝑘
8𝑐0 + 𝑘𝑐0

1+2𝑘2

24
12

= 𝑐0

3𝑘+𝑘+2𝑘3

24
(12)

= 𝑐0
4𝑘 + 2𝑘3

288
And so on. Hence

𝑦1 (𝑥) = 𝑐0𝑥 + 𝑐1𝑥2 + 𝑐2𝑥3 + 𝑐3𝑥4 +⋯

= 𝑐0𝑥 +
𝑘
2
𝑐0𝑥2 + 𝑐0

1 + 2𝑘2

24
𝑥3 + 𝑐0

4𝑘 + 2𝑘3

288
𝑥4 +⋯

= 𝑐0𝑥 �1 +
𝑘
2
𝑥 +

1 + 2𝑘2

24
𝑥2 +

4𝑘 + 2𝑘3

288
𝑥3 +⋯�

= 𝑐0𝑥 �1 +
𝑘
2
𝑥 + �

1
24
+
1
12
𝑘2� 𝑥2 +

𝑘
288

�4 + 2𝑘2� 𝑥3 +⋯�

I could not find closed form function for the above.

Now that we found 𝑦1 (𝑥), then 𝑦2 (𝑥) is, from (4), repeated here

𝑦2 (𝑥) = 𝐴𝑦1 (𝑥) ln (𝑥) +
∞
�
𝑛=0

𝑑𝑛𝑥𝑛 (4)

Since we want the solution to vanish at 𝑥 = 0 then we set 𝐴 = 0 and 𝑦2 (𝑥) simplifies to

𝑦2 (𝑥) =
∞
�
𝑛=0

𝑑𝑛𝑥𝑛 (4)

Where 𝑑0 ≠ 0. Hence 𝑦′ (𝑥) = ∑∞
𝑛=0 𝑛𝑑𝑛𝑥

𝑛−1 and 𝑦′′ = ∑∞
𝑛=0 𝑛 (𝑛 − 1) 𝑑𝑛𝑥

𝑛−2. Rewriting the

ODE as 𝑥𝑦′′ − �𝑥4 + 𝑘� 𝑦 = 0 and now substituting the derivatives into this gives

𝑥
∞
�
𝑛=0

𝑛 (𝑛 − 1) 𝑑𝑛𝑥𝑛−2 − �
𝑥
4
+ 𝑘�

∞
�
𝑛=0

𝑑𝑛𝑥𝑛 = 0

∞
�
𝑛=0

𝑛 (𝑛 − 1) 𝑑𝑛𝑥𝑛−1 −
𝑥
4

∞
�
𝑛=0

𝑑𝑛𝑥𝑛 − 𝑘
∞
�
𝑛=0

𝑑𝑛𝑥𝑛 = 0

∞
�
𝑛=2

𝑛 (𝑛 − 1) 𝑑𝑛𝑥𝑛−1 −
1
4

∞
�
𝑛=0

𝑑𝑛𝑥𝑛+1 − 𝑘
∞
�
𝑛=0

𝑑𝑛𝑥𝑛 = 0

∞
�
𝑛=1

(𝑛 + 1) (𝑛) 𝑑𝑛+1𝑥𝑛 −
1
4

∞
�
𝑛=1

𝑑𝑛−1𝑥𝑛 − 𝑘
∞
�
𝑛=0

𝑑𝑛𝑥𝑛 = 0

For 𝑛 = 0 we obtain 𝑘𝑑0 = 0 which implies 𝑑0 = 0 since 𝑘 ≠ 0.

For 𝑛 > 0

(𝑛 + 1) (𝑛) 𝑑𝑛+1 −
1
4
𝑑𝑛−1 − 𝑘𝑑𝑛 = 0

𝑑𝑛+1 =
1
4𝑑𝑛−1 + 𝑘𝑑𝑛
(𝑛) (𝑛 + 1)

For 𝑛 = 1

𝑑2 =
1
4𝑑0 + 𝑘𝑑1

2
=
𝑘
2
𝑑1
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For 𝑛 = 2

𝑑3 =
1
4𝑑1 + 𝑘𝑑2
(2) (3)

=

1
4𝑑1 + 𝑘 �

𝑘
2𝑑1�

6
=
𝑑1 + 2𝑘2𝑑1

32
= 𝑑1

1 + 2𝑘2

32
For 𝑛 = 3

𝑑4 =
1
4𝑑2 + 𝑘𝑑3
(3) (4)

=
𝑑2 + 4𝑘𝑑3

48
=

𝑘
2𝑑1 + 4𝑘 �𝑑1

1+2𝑘2

32
�

48
= 𝑑1

1
8𝑘 �2𝑘

2 + 5�
48

= 𝑑1
�2𝑘3 + 5𝑘�

384
And so on. Hence the second solution is

𝑦2 (𝑥) =
∞
�
𝑛=0

𝑑𝑛𝑥𝑛

= 𝑑0 + 𝑑1𝑥 + 𝑑2𝑥2 + 𝑑3𝑥3 + 𝑑4𝑥4 +⋯

= 𝑑1𝑥 +
𝑘
2
𝑑1𝑥2 + 𝑑1

1 + 2𝑘2

32
𝑥3 + 𝑑1

�2𝑘3 + 5𝑘�
384

𝑥4 +⋯

= 𝑑1𝑥
⎛
⎜⎜⎜⎜⎝1 +

𝑘
2
𝑥 + 𝑑1

1 + 2𝑘2

32
𝑥2 + 𝑑1

�2𝑘3 + 5𝑘�
384

𝑥3+
⎞
⎟⎟⎟⎟⎠

I am not sure if the above solution for 𝑦2 (𝑥) is correct. I need to check this again later.
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