1. (40 points)

With the aid of the expansion

$$
\pi-x=2 \sum_{n=1}^{\infty} \frac{\sin n x}{n}, 0<x<\pi
$$

solve the following problem.

$$
u_{t}(x, t)=u_{x x}(x, t)+t(\pi-x), 0<x<\pi, t>0
$$

$$
\text { Source. } \quad u(0, t)=0, u(\pi, t)=0 ; u(x, 0)=0
$$

2. (20 points) Verify that all of the conditions of the Fourier sine integral representation are satisfied by the function f defined by

$$
f(x):=\left\{\begin{array}{cc}
x & \text { when } 0 \leq x \leq 1 \\
2-x & \text { when } 1<x \leq 2 \\
0 & \text { when } x<0 \text { or } x>2
\end{array}\right.
$$

and show that for $0<x<\infty$,

$$
f(x)=\frac{2}{\pi} \int_{0}^{\infty} \frac{(2 \sin \alpha-\sin 2 \alpha) \sin \alpha x}{\alpha^{2}} d \alpha
$$

3. (40 points)

Find the bounded harmonic function $u(x, y)$ in the semi-infinite strip $0<x<$ $\infty, 0<y<1$ that satisfies the conditions $u(x, 0)=0, u(0, y)=0$ and $u(x, 1)=$ $f(x)$, where $f(x)$ is the function given in problem 2 .

