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1 Section 61, Problem 2

Figure 1: Problem statement

Solution

Let 𝜓2 = 𝑓 + 𝐴𝜓1 such that �𝜓2, 𝜓1� = 0. Hence

�𝑓 + 𝐴𝜓1, 𝜓1� = 0
�𝑓, 𝜓1� + �𝐴𝜓1, 𝜓1� = 0
�𝑓, 𝜓1� + 𝐴 �𝜓1, 𝜓1� = 0

�𝑓, 𝜓1� + 𝐴 �𝜓1�
2 = 0

𝐴 = −
�𝑓, 𝜓1�

�𝜓1�
2

Therefore, since 𝜓2 = 𝑓 + 𝐴𝜓1 then

𝜓2 = 𝑓 −
�𝑓, 𝜓1�

�𝜓1�
2 𝜓1

Geometrically, the term
�𝜓1,𝑓�

�𝜓1�
2 𝜓1 represents the projection of 𝑓 on 𝜓1. The term

𝜓1
�𝜓1�

makes

a unit vector in the direction of 𝜓1 and the term
�𝑓,𝜓1�
�𝜓1�

is the magnitude of projection

�𝜓1� cos (𝜃) where 𝜃 is the inner angle between 𝑓, 𝜓1. The result of −
�𝑓,𝜓1�

�𝜓1�
2 𝜓1 is a vector

in the opposite direction of 𝜓1. Adding this to 𝑓 gives 𝜓2 which is now orthogonal to 𝑓.
This process is called Gram Schmidt.
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2 Section 61, Problem 3

Figure 2: Problem statement

Solution

Let

𝑓 = cos 𝑛𝑥 + sin 𝑛𝑥
𝜓1 = cos 𝑛𝑥

Then by Gram Schmidt process from problem 2 we know that

𝜓2 = 𝑓 −
�𝑓, 𝜓1�

�𝜓1�
2 𝜓1

Hence

𝜓2 = (cos 𝑛𝑥 + sin 𝑛𝑥) −
∫𝜋

−𝜋
(cos 𝑛𝑥 + sin 𝑛𝑥) cos 𝑛𝑥𝑑𝑥

∫𝜋

−𝜋
cos2 (𝑛𝑥) 𝑑𝑥

cos 𝑛𝑥

= (cos 𝑛𝑥 + sin 𝑛𝑥) −
∫𝜋

−𝜋
cos 𝑛𝑥 cos 𝑛𝑥𝑑𝑥 + ∫𝜋

−𝜋
sin 𝑛𝑥 cos 𝑛𝑥𝑑𝑥

𝜋
cos 𝑛𝑥

But ∫
𝜋

−𝜋
cos 𝑛𝑥 cos 𝑛𝑥𝑑𝑥 = ∫𝜋

−𝜋
cos2 𝑛𝑥𝑑𝑥 = 𝜋 and ∫𝜋

−𝜋
sin 𝑛𝑥 cos 𝑛𝑥𝑑𝑥 = 0 since these are

orthogonal. Hence the above simplifies to

𝜓2 = (cos 𝑛𝑥 + sin 𝑛𝑥) − cos 𝑛𝑥
= sin 𝑛𝑥



4

3 Section 63, Problem 3

Figure 3: Problem statement

Solution

The Fourier coe�cients of 𝑓 − 𝑔 are given by �𝑓 − 𝑔, 𝜙𝑛� by definition. But due to linearity
of inner product, this can be written as

�𝑓 − 𝑔, 𝜙𝑛� = �𝑓, 𝜙𝑛� − �𝑔, 𝜙𝑛�
But �𝑓, 𝜙𝑛� are the Fourier coe�cients of 𝑓 and �𝑔, 𝜙𝑛� are the Fourier coe�cients of 𝑔,
and we are told these are the same. Therefore

�𝑓 − 𝑔, 𝜙𝑛� = 0
Which implies that �𝑓 − 𝑔� = 0. Using part(b) in problem 4, section 61, which says that
if �𝑓� = 0 then 𝑓 (𝑥) = 0 except at possibly finite number of points in the interval, then
applying this to �𝑓 − 𝑔� = 0 leads to

𝑓 − 𝑔 = 0
Which implies 𝑓 = 𝑔 which is what required to show.
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4 Section 63, Problem 4

Figure 4: Problem description

solution

4.1 Part (a)

Let the generalized Fourier series of 𝑓 (𝑥) be

𝑓 (𝑥) =
∞
�
𝑛=1

�𝑓 (𝑥) , 𝜙𝑛� 𝜙𝑛

Let the sum the above converges uniformly to be 𝑠 (𝑥). Therefore we have, per problem
statement the following equality

∞
�
𝑛=1

�𝑓 (𝑥) , 𝜙𝑛� 𝜙𝑛 = 𝑠 (𝑥)

Taking the inner product of both sides with respect to 𝜙𝑚 gives

�
𝑏

𝑎
�
∞
�
𝑛=1

�𝑓 (𝑥) , 𝜙𝑛� 𝜙𝑛� 𝜙𝑚𝑑𝑥 = �
𝑏

𝑎
𝑠 (𝑥) 𝜙𝑚𝑑𝑥

= �𝑠 (𝑥) , 𝜙𝑚�
Since the sum converges uniformly, then we are allowed to integrate the left side term by
term while keeping the equality with the right side. Hence moving the integration inside
the sum gives

∞
�
𝑛=1

�𝑓 (𝑥) , 𝜙𝑛��
𝑏

𝑎
𝜙𝑛𝜙𝑚𝑑𝑥 = �𝑠 (𝑥) , 𝜙𝑚�

But due to orthogonality of 𝜙𝑛 and 𝜙𝑚 and since they are normalized, then ∫𝑏

𝑎
𝜙𝑛𝜙𝑚𝑑𝑥 =

�𝜙𝑛, 𝜙𝑚� = 1 if 𝑛 = 𝑚 and zero otherwise. Hence the above simplifies to

�𝑓 (𝑥) , 𝜙𝑚� = �𝑠 (𝑥) , 𝜙𝑚�
And since the above is valid for any arbitrary 𝑚 = 1⋯∞, then it shows that 𝑓 (𝑥) and 𝑠 (𝑥)
have the same generalized Fourier coe�cients.

4.2 Part (b)

From part (a), we found

�𝑓, 𝜙𝑛� = �𝑠, 𝜙𝑛�
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By linearity of inner product, the above is the same as

�𝑓, 𝜙𝑛� − �𝑠, 𝜙𝑛� = 0
�𝑓 − 𝑠, 𝜙𝑛� = 0

But from problem 3, we know that �𝑓 − 𝑠, 𝜙𝑛� = 0 implies �𝑓 − 𝑠� = 0.

Next, using part(b) in problem 4, section 61, which says that if �𝑓� = 0 then 𝑓 (𝑥) = 0
except at possibly finite number of points in the interval, then applying this to our case
here that �𝑓 − 𝑠� = 0 leads to

𝑓 − 𝑠 = 0
𝑓 = 𝑠

Which is the result required to show.
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5 Section 66, Problem 4

Figure 5: Problem description

solution

5.1 Part (a)

We need to find

�𝜙0, 𝜙2𝑛�
�𝜙0, 𝜙2𝑛−1�
�𝜙2𝑛, 𝜙2𝑚�
�𝜙2𝑛−1, 𝜙2𝑚−1�
�𝜙2𝑚−1, 𝜙2𝑛�

And also show that

�𝜙0, 𝜙0� = �𝜙0�
2 = 1

�𝜙2𝑛, 𝜙2𝑛� = �𝜙2𝑛�
2 = 1

�𝜙2𝑛−1, 𝜙2𝑛−1� = �𝜙2𝑛−1�
2 = 1

�𝜙0, 𝜙2𝑛�

�𝜙0, 𝜙2𝑛� = �
𝑐

−𝑐

1

√2𝑐
1

√𝑐
cos �

𝑛𝜋
𝑐
𝑥� 𝑑𝑥

=
1

𝑐√2

⎡
⎢⎢⎢⎢⎢⎣
sin �𝑛𝜋𝑐 𝑥�

𝑛𝜋
𝑐

⎤
⎥⎥⎥⎥⎥⎦

𝑐

−𝑐

=
𝑐

𝑛𝜋𝑐√2
�sin �

𝑛𝜋
𝑐
𝑥��

𝑐

−𝑐

=
1

𝑛𝜋√2
[sin (𝑛𝜋) + sin (𝑛𝜋)]

= 0
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Since 𝑛 is integer.

�𝜙0, 𝜙2𝑛−1�

�𝜙0, 𝜙2𝑛−1� = �
𝑐

−𝑐

1

√2𝑐
1

√𝑐
sin �

𝑛𝜋
𝑐
𝑥� 𝑑𝑥

=
1

𝑐√2

⎡
⎢⎢⎢⎢⎢⎣
− cos �𝑛𝜋𝑐 𝑥�

𝑛𝜋
𝑐

⎤
⎥⎥⎥⎥⎥⎦

𝑐

−𝑐

=
−𝑐

𝑛𝜋𝑐√2
�cos �

𝑛𝜋
𝑐
𝑥��

𝑐

−𝑐

=
−1

𝑛𝜋√2
[cos (𝑛𝜋) − cos (𝑛𝜋)]

= 0
�𝜙2𝑛, 𝜙2𝑚�

�𝜙2𝑛, 𝜙2𝑚� = �
𝑐

−𝑐

1

√𝑐
sin �

𝑛𝜋
𝑐
𝑥�

1

√𝑐
sin �

𝑚𝜋
𝑐
𝑥� 𝑑𝑥

=
1
𝑐 �

𝑐

−𝑐
sin �

𝑛𝜋
𝑐
𝑥� sin �

𝑚𝜋
𝑐
𝑥� 𝑑𝑥

Let
𝑐
𝜋𝑠 = 𝑥, then 𝑑𝑥 = 𝑐

𝜋𝑑𝑠. When 𝑥 = −𝑐 then 𝑠 = −𝜋 and when 𝑥 = 𝑐 then 𝑠 = 𝜋 and the
above becomes

�𝜙2𝑛, 𝜙2𝑚� =
1
𝑐 �

𝜋

−𝜋
sin (𝑛𝑠) sin (𝑚𝑠)

𝑐
𝜋
𝑑𝑠

=
1
𝜋 �

𝜋

−𝜋
sin (𝑛𝑠) sin (𝑚𝑠) 𝑑𝑠

Since the integrand is even, then

�𝜙2𝑛, 𝜙2𝑚� =
2
𝜋 �

𝜋

0
sin (𝑛𝑠) sin (𝑚𝑠) 𝑑𝑠

From equation (1), page 192 we see that

�𝜙2𝑛, 𝜙2𝑚� = 0
Since 𝑛,𝑚 are di�erent.

�𝜙2𝑛−1, 𝜙2𝑚−1�

�𝜙2𝑛−1, 𝜙2𝑚−1� = �
𝑐

−𝑐

1

√𝑐
cos �

𝑛𝜋
𝑐
𝑥�

1

√𝑐
cos �

𝑚𝜋
𝑐
𝑥� 𝑑𝑥

=
1
𝑐 �

𝑐

−𝑐
cos �

𝑛𝜋
𝑐
𝑥� cos �

𝑚𝜋
𝑐
𝑥� 𝑑𝑥

Let
𝑐
𝜋𝑠 = 𝑥, then 𝑑𝑥 = 𝑐

𝜋𝑑𝑠. When 𝑥 = −𝑐 then 𝑠 = −𝜋 and when 𝑥 = 𝑐 then 𝑠 = 𝜋 and the
above becomes

�𝜙2𝑛−1, 𝜙2𝑚−1� =
1
𝑐 �

𝜋

−𝜋
cos (𝑛𝑠) cos (𝑚𝑠)

𝑐
𝜋
𝑑𝑠

=
1
𝜋 �

𝜋

−𝜋
cos (𝑛𝑠) cos (𝑚𝑠) 𝑑𝑠

Since the integrand is even, then

�𝜙2𝑛−1, 𝜙2𝑚−1� =
2
𝜋 �

𝜋

0
cos (𝑛𝑠) cos (𝑚𝑠) 𝑑𝑠

From equation (4), page 192 we see that

�𝜙2𝑛−1, 𝜙2𝑚−1� = 0
Since 𝑛,𝑚 are di�erent.
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�𝜙2𝑚−1, 𝜙2𝑛�

�𝜙2𝑚−1, 𝜙2𝑛� = �
𝑐

−𝑐

1

√𝑐
cos �

𝑚𝜋
𝑐
𝑥�

1

√𝑐
sin �

𝑛𝜋
𝑐
𝑥� 𝑑𝑥

=
1
𝑐 �

𝑐

−𝑐
cos �

𝑚𝜋
𝑐
𝑥� sin �

𝑛𝜋
𝑐
𝑥� 𝑑𝑥

Let
𝑐
𝜋𝑠 = 𝑥, then 𝑑𝑥 = 𝑐

𝜋𝑑𝑠. When 𝑥 = −𝑐 then 𝑠 = −𝜋 and when 𝑥 = 𝑐 then 𝑠 = 𝜋 and the
above becomes

�𝜙2𝑚−1, 𝜙2𝑛� =
1
𝑐 �

𝜋

−𝜋
cos (𝑚𝑠) sin (𝑛𝑠)

𝑐
𝜋
𝑑𝑠

=
1
𝜋 �

𝜋

−𝜋
cos (𝑚𝑠) sin (𝑛𝑠) 𝑑𝑠

Using cos (𝑚𝑠) sin (𝑛𝑠) = 1
2
(cos (𝑠 (𝑚 + 𝑛)) + cos (𝑠 (𝑚 − 𝑛))). Hence the above becomes

�𝜙2𝑚−1, 𝜙2𝑛� =
1
2𝜋 ��

𝜋

−𝜋
cos (𝑠 (𝑚 + 𝑛)) 𝑑𝑠 +�

𝜋

−𝜋
cos (𝑠 (𝑚 − 𝑛)) 𝑑𝑠�

Since the integration is over one full period, then each is zero. Hence

�𝜙2𝑚−1, 𝜙2𝑛� = 0
�𝜙0, 𝜙0�

�𝜙0, 𝜙0� = �
𝑐

−𝑐

1

√2𝑐
1

√2𝑐
𝑑𝑥

�𝜙0�
2 =

1
2𝑐 �

𝑐

−𝑐
𝑑𝑥

= 1

Hence �𝜙0� = 1 .
�𝜙2𝑛, 𝜙2𝑛�

�𝜙2𝑛, 𝜙2𝑛� = �
𝑐

−𝑐

1

√𝑐
sin �

𝑛𝜋
𝑐
𝑥�

1

√𝑐
sin �

𝑛𝜋
𝑐
𝑥� 𝑑𝑥

=
1
𝑐 �

𝑐

−𝑐
sin2 �

𝑛𝜋
𝑐
𝑥� 𝑑𝑥

=
1
𝑐 �

𝑐

−𝑐

1
2
−
1
2

cos �2
𝑛𝜋
𝑐
𝑥� 𝑑𝑥

=
1
2𝑐 ��

𝑐

−𝑐
𝑑𝑥 −�

𝑐

−𝑐
cos �2

𝑛𝜋
𝑐
𝑥� 𝑑𝑥�

=
1
2𝑐

⎛
⎜⎜⎜⎜⎜⎜⎝2𝑐 −

⎡
⎢⎢⎢⎢⎢⎣
sin �2𝑛𝜋𝑐 𝑥�

2𝑛𝜋𝑐

⎤
⎥⎥⎥⎥⎥⎦

𝑐

−𝑐

⎞
⎟⎟⎟⎟⎟⎟⎠

=
1
2𝑐 �

2𝑐 −
𝑐

2𝑛𝜋 �sin �2
𝑛𝜋
𝑐
𝑥��

𝑐

−𝑐
�

=
1
2𝑐

(2𝑐)

= 1

Hence �𝜙2𝑛� = 1 .
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�𝜙2𝑛−1, 𝜙2𝑛−1�

�𝜙2𝑛−1, 𝜙2𝑛−1� = �
𝑐

−𝑐

1

√𝑐
cos �

𝑛𝜋
𝑐
𝑥�

1

√𝑐
cos �

𝑛𝜋
𝑐
𝑥� 𝑑𝑥

�𝜙2𝑛−1�
2 =

1
𝑐 �

𝑐

−𝑐
cos2 �

𝑛𝜋
𝑐
𝑥� 𝑑𝑥

=
1
𝑐 �

𝑐

−𝑐

1
2
+
1
2

sin �2
𝑛𝜋
𝑐
𝑥� 𝑑𝑥

=
1
2𝑐 ��

𝑐

−𝑐
𝑑𝑥 +�

𝑐

−𝑐
sin �2

𝑛𝜋
𝑐
𝑥� 𝑑𝑥�

=
1
2𝑐

⎛
⎜⎜⎜⎜⎜⎜⎝2𝑐 −

⎡
⎢⎢⎢⎢⎢⎣
cos �2𝑛𝜋𝑐 𝑥�

2𝑛𝜋𝑐

⎤
⎥⎥⎥⎥⎥⎦

𝑐

−𝑐

⎞
⎟⎟⎟⎟⎟⎟⎠

=
1
2𝑐 �

2𝑐 −
𝑐

2𝑛𝜋 �cos �2
𝑛𝜋
𝑐
𝑥��

𝑐

−𝑐
�

=
1
2𝑐

�2𝑐 −
𝑐

2𝑛𝜋
[cos (2𝑛𝜋) − cos (2𝑛𝜋)]�

=
1
2𝑐
2𝑐

= 1

Hence �𝜙2𝑛−1� = 1 .

5.2 Part (b)

𝜙0 (𝑥) =
1

√2𝑐

𝜙2𝑛−1 (𝑥) =
1

√𝑐
cos �

𝑛𝜋𝑥
𝑐

�

𝜙2𝑛 (𝑥) =
1

√𝑐
sin �

𝑛𝜋𝑥
𝑐

�

On −𝑐 < 𝑥 < 𝑐. The generalized Fourier series for 𝑓 (𝑥) in 𝐶𝑝 (−𝑐, 𝑐) is
∞
�
𝑛=0

𝑐𝑛𝜙𝑛 (𝑥) = 𝑐0𝜙0 (𝑥) +
∞
�
𝑛=1

�𝑐2𝑛−1𝜙2𝑛−1 (𝑥) + 𝑐2𝑛𝜙2𝑛 (𝑥)�

That is

𝑓 (𝑥) ∼ 𝑐0
1

√2𝑐
+

∞
�
𝑛=1

�
𝑐2𝑛−1
√𝑐

cos �
𝑛𝜋𝑥
𝑐

� +
𝑐2𝑛
√𝑐

sin �
𝑛𝜋𝑥
𝑐

�� (1)

Where

𝑐0 = �𝑓, 𝜙0 (𝑥)� =
1

√2𝑐
�

𝑐

−𝑐
𝑓 (𝑥) 𝑑𝑥

And

𝑐2𝑛−1 = �𝑓, 𝜙2𝑛−1 (𝑥)� =
1

√𝑐
�

𝑐

−𝑐
𝑓 (𝑥) cos �

𝑛𝜋𝑥
𝑐

� 𝑑𝑥 𝑛 = 1, 2,⋯

𝑐2𝑛 = �𝑓, 𝜙2𝑛 (𝑥)� =
1

√𝑐
�

𝑐

−𝑐
𝑓 (𝑥) sin �

𝑛𝜋𝑥
𝑐

� 𝑑𝑥 𝑛 = 1, 2,⋯

If we write

𝑎0 = 2
𝑐0
√2𝑐

, 𝑎𝑛 =
𝑐2𝑛−1
√𝑐

, 𝑏𝑛 =
𝑐2𝑛
√𝑐

𝑛 = 1, 2,⋯

Then (1) becomes

𝑓 (𝑥) ∼
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos �
𝑛𝜋𝑥
𝑐

� + 𝑏𝑛 sin �
𝑛𝜋𝑥
𝑐

�
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Where

𝑎𝑛 =
1
𝑐 �

𝑐

−𝑐
𝑓 (𝑥) cos �

𝑛𝜋𝑥
𝑐

� 𝑑𝑥 𝑛 = 1, 2,⋯

𝑏𝑛 =
1
𝑐 �

𝑐

−𝑐
𝑓 (𝑥) sin �

𝑛𝜋𝑥
𝑐

� 𝑑𝑥 𝑛 = 1, 2,⋯

This is the ordinary Fourier series on −𝑐 < 𝑥 < 𝑐.

5.3 Part (c)

From (1) section 65
𝑁
�
𝑛=0

𝑐2𝑛 ≤ �𝑓�2 (1)

But from part (b) we found that

𝑎0 = 2
𝑐0
√2𝑐

, 𝑎𝑛 =
𝑐2𝑛−1
√𝑐

, 𝑏𝑛 =
𝑐2𝑛
√𝑐

𝑛 = 1, 2,⋯

Hence

𝑐0 =
𝑎0
2 √2𝑐

𝑐2𝑛−1 = 𝑎𝑛√𝑐
𝑐2𝑛 = 𝑏𝑛√𝑐

Substituting the above into (1) gives

𝑐20 +
𝑁
�
𝑛=1

𝑐22𝑛−1 +
𝑁
�
𝑛=1

𝑐22𝑛 ≤ �𝑓�2

�
𝑎0
2 √2𝑐�

2
+

𝑁
�
𝑛=1

�𝑎𝑛√𝑐�
2
+

𝑁
�
𝑛=1

�𝑏𝑛√𝑐�
2
≤ ��𝑓 (𝑥)�

2
𝑑𝑥

�
𝑎20
4
2𝑐� +

𝑁
�
𝑛=1

𝑎2𝑛𝑐 +
𝑁
�
𝑛=1

𝑏2𝑛𝑐 ≤ ��𝑓 (𝑥)�
2
𝑑𝑥

𝑎20
2
+

𝑁
�
𝑛=1

�𝑎2𝑛 + 𝑏2𝑛� ≤
1
𝑐 �

�𝑓 (𝑥)�
2
𝑑𝑥
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6 Section 66, Problem 5

Figure 6: Problem description

solution

The function 𝑆𝑁 (𝑥) is almost 1 everywhere as can be seen from this diagram

1
x

1
2

1
4

1
3

1
5

N = 1
N = 2N = 3

SN (x)

1
x

f(x) = 1

1

1

SN (x) = 0

SN (x) = 1

Figure 7: Showing the function 𝑆𝑁(𝑥) and 𝑓(𝑥)

And the problem is asking us to show that 𝑆𝑁 (𝑥) → 𝑓 (𝑥) in the mean. This means we
need to show the following is true

lim
𝑁→∞

�𝑆𝑁 (𝑥) − 𝑓 (𝑥)� = 0

Except at possibly finite number of points 𝑥. But this is the case here. Looking at 𝑆𝑁 (𝑥) we
see it is equal to 𝑓 (𝑥) = 1 everywhere except at the points 𝑥 = 1, 12 ,

1
3 ,⋯ and compared to

all the points between 0 and 1, then 𝑆𝑁 (𝑥) = 𝑓 (𝑥) = 1 almost everywhere. Even though as
𝑁 → ∞ the number of points where 𝑆𝑁 (𝑥) ≠ 1 increases, it is still finitely many compared
to the number of points where 𝑆𝑁 (𝑥) = 𝑓 (𝑥) = 1.
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To answer the second part: Since 𝑆𝑁 (𝑥) = 0 at any 𝑥 value which can written as
1
𝑝 where

𝑝 is an integer (this by definition given), then 𝑆𝑁 �1
𝑝
� = 0. Then it clearly follows that

lim𝑁→∞ 𝑆𝑁 �1
𝑝
� = 0.
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