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1 Section 40, Problem 1

Figure 1: Problem statement

Solution

The PDE to solve is

𝑢𝑡𝑡 = 𝑘𝑢𝑥𝑥
With boundary conditions

𝑢 (0, 𝑡) = 0 (1)

𝐾𝑢𝑥 (𝜋, 𝑡) = 𝐴
And initial conditions

𝑢 (𝑥, 0) = 0
The solution to example 2 section 40 is

𝑈 (𝑥, 𝑡) =
∞
�
𝑛=1

𝐵2𝑛−1 exp
⎛
⎜⎜⎜⎝
− (2𝑛 − 1)2 𝑘

4
𝑡
⎞
⎟⎟⎟⎠ sin �

(2𝑛 − 1) 𝑥
2 � (2)

With

𝐵2𝑛−1 =
2
𝜋 �

𝜋

0
𝑓 (𝑥) sin �

(2𝑛 − 1) 𝑥
2 � 𝑑𝑥

Now, in this problem, we start by writing

𝑢 (𝑥, 𝑡) = 𝑈 (𝑥, 𝑡) + Φ (𝑥) (3)

The function Φ (𝑥) needs to satisfy the nonhomogeneous B.C. (1). Let

Φ (𝑥) = 𝑐1𝑥 + 𝑐2
When 𝑥 = 0 this gives 0 = 𝑐2. Hence Φ (𝑥) = 𝑐1𝑥. Taking derivative gives Φ ′ (𝑥) = 𝑐1. But
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from (1) 𝐾Φ ′ (𝜋) = 𝐴. Hence 𝑐1 =
𝐴
𝐾 . Therefore

Φ (𝑥) =
𝐴
𝐾
𝑥

Substituting the above back into (3) gives

𝑢 (𝑥, 𝑡) = 𝑈 (𝑥, 𝑡) +
𝐴
𝐾
𝑥

But 𝑈 (𝑥, 𝑡) is given by (2), hence the above becomes

𝑢 (𝑥, 𝑡) =
𝐴
𝐾
𝑥 +

∞
�
𝑛=1

𝐵2𝑛−1 exp
⎛
⎜⎜⎜⎝
− (2𝑛 − 1)2 𝑘

4
𝑡
⎞
⎟⎟⎟⎠ sin �

(2𝑛 − 1) 𝑥
2 � (4)

At 𝑡 = 0, the initial conditions is 0. Hence the above becomes

−
𝐴
𝐾
𝑥 =

∞
�
𝑛=1

𝐵2𝑛−1 sin �
(2𝑛 − 1) 𝑥

2 �

Hence 𝐵2𝑛−1 is the Fourier sine series of −
𝐴
𝐾𝑥 given by

𝐵2𝑛−1 =
2
𝜋 �

𝜋

0
�−
𝐴
𝐾
𝑥� sin �

(2𝑛 − 1) 𝑥
2 � 𝑑𝑥

= −
2𝐴
𝜋𝐾 �

𝜋

0
𝑥 sin �

(2𝑛 − 1) 𝑥
2 � 𝑑𝑥

Integration by parts. Let 𝑢 = 𝑥, 𝑑𝑣 = sin � (2𝑛−1)𝑥2
�, hence 𝑑𝑢 = 1 and 𝑣 = − 2

(2𝑛−1) cos � (2𝑛−1)𝑥2
�

and the above becomes

𝐵2𝑛−1 = −
2𝐴
𝜋𝐾

⎛
⎜⎜⎜⎜⎝�−

2𝑥
(2𝑛 − 1)

cos �
(2𝑛 − 1) 𝑥

2 ��
𝜋

0
+�

𝜋

0

2
(2𝑛 − 1)

cos �
(2𝑛 − 1) 𝑥

2 � 𝑑𝑥
⎞
⎟⎟⎟⎟⎠

= −
2𝐴
𝜋𝐾

⎛
⎜⎜⎜⎜⎝−

2
(2𝑛 − 1) �

𝑥 cos �
(2𝑛 − 1) 𝑥

2 ��
𝜋

0
+

4
(2𝑛 − 1)2

�sin �
(2𝑛 − 1) 𝑥

2 ��
𝜋

0

⎞
⎟⎟⎟⎟⎠

= −
2𝐴
𝜋𝐾 �

−
2𝜋

(2𝑛 − 1)
cos �

(2𝑛 − 1) 𝜋
2 � +

4
(2𝑛 − 1)2

sin �
(2𝑛 − 1) 𝜋

2 ��

Since 2𝑛 − 1 is odd, then the cosine terms above vanish and the above simplifies to

𝐵2𝑛−1 = −
𝐴
𝜋𝐾

8 (−1)𝑛+1

(2𝑛 − 1)2

=
𝐴
𝜋𝐾

8 (−1)𝑛+2

(2𝑛 − 1)2

=
𝐴
𝜋𝐾

8 (−1)𝑛

(2𝑛 − 1)2
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Substituting the above in (4) gives

𝑢 (𝑥, 𝑡) =
𝐴
𝐾
𝑥 +

∞
�
𝑛=1

𝐴
𝜋𝐾

8 (−1)𝑛

(2𝑛 − 1)2
exp

⎛
⎜⎜⎜⎝
− (2𝑛 − 1)2 𝑘

4
𝑡
⎞
⎟⎟⎟⎠ sin �

(2𝑛 − 1) 𝑥
2 �

=
𝐴
𝐾

⎧⎪⎨
⎪⎩𝑥 +

8
𝜋

∞
�
𝑛=1

(−1)𝑛

(2𝑛 − 1)2
exp

⎛
⎜⎜⎜⎝
− (2𝑛 − 1)2 𝑘

4
𝑡
⎞
⎟⎟⎟⎠ sin �

(2𝑛 − 1) 𝑥
2 �

⎫⎪⎬
⎪⎭

Which is the result required.



5

2 Section 40, Problem 3

Figure 2: Problem statement

Solution

The PDE is

𝑣𝑡 = 𝑘𝑣𝑥𝑥 − 𝑏𝑣
With boundary conditions

𝑣𝑥 (0, 𝑡) = 0
𝑣𝑥 (𝑐, 𝑡) = 0

And initial conditions

𝑣 (𝑥, 0) = 𝑓 (𝑥)
Let 𝑣 (𝑥, 𝑡) = 𝑋 (𝑥) 𝑇 (𝑡). Substituting into the PDE gives

𝑇′𝑋 = 𝑘𝑋′′𝑇 − 𝑏𝑋𝑇
Dividing by 𝑋𝑇 ≠ 0 gives

𝑇′

𝑇
= 𝑘

𝑋′′

𝑋
− 𝑏

𝑇′

𝑇
+ 𝑏 = 𝑘

𝑋′′

𝑋
𝑇′

𝑘𝑇
+
𝑏
𝑘
=
𝑋′′

𝑋
= −𝜆
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Where 𝜆 is the separation constant. We obtain the boundary value eigenvalue ODE as

𝑋′′ + 𝜆𝑋 = 0 (1)

𝑋′ (0) = 0
𝑋′ (𝑐) = 0

And the time ODE as
𝑇′

𝑘𝑇
+
𝑏
𝑘
= −𝜆

𝑇′ +
𝑏
𝑘
𝑘𝑇 = −𝜆𝑘𝑇

𝑇′ +
𝑏
𝑘
𝑘𝑇 + 𝜆𝑘𝑇 = 0

𝑇′ + 𝑇 (𝑏 + 𝜆𝑘) = 0
Now we solve the space ODE (1) in order to determine the eigenvalues 𝜆.

Case 𝜆 < 0

The solution to (1) becomes

𝑋 (𝑥) = 𝐴 cosh �√−𝜆𝑥� + 𝐵 sinh �√−𝜆𝑥�

𝑋′ = 𝐴√−𝜆 sinh �√−𝜆𝑥� + 𝐵√−𝜆 cosh �√−𝜆𝑥�

Satisfying 𝑋′ (0) = 0 gives

0 = 𝐵√−𝜆
Hence 𝐵 = 0 and the solution becomes𝑋 (𝑥) = 𝐴 cosh �√−𝜆𝑥�. Therefore𝑋′ = 𝐴√−𝜆 sinh �√−𝜆𝑥�.
Satisfying 𝑋′ (𝑐) = 0 gives

0 = 𝐴√𝜆 sinh �√−𝜆𝑐�

But sinh is zero only when its argument is zero, which is not the case here since 𝜆 ≠ 0. This
implies 𝐴 = 0, leading to trivial solution. Therefore 𝜆 < 0 is not possible.

Case 𝜆 = 0

The solution to (1) becomes

𝑋 (𝑥) = 𝐴𝑥 + 𝐵
𝑋′ = 𝐴

Satisfying 𝑋′ (0) = 0 gives
0 = 𝐴

And the solution becomes 𝑋 (𝑥) = 𝐵. Therefore 𝑋′ = 0. Satisfying 𝑋′ (𝑐) = 0 gives
0 = 0

Which is valid for any 𝐵. Hence choosing 𝐵 = 1 shows that 𝜆 = 0 is valid eigenvalue with
corresponding eigenfunction 𝑋0 (𝑥) = 1.
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Case 𝜆 > 0

The solution to (1) becomes

𝑋 (𝑥) = 𝐴 cos �√𝜆𝑥� + 𝐵 sin �√𝜆𝑥�

𝑋′ = −𝐴√𝜆 sin �√𝜆𝑥� + 𝐵√𝜆 cos �√𝜆𝑥�

Satisfying 𝑋′ (0) = 0 gives

0 = 𝐵√𝜆
Hence 𝐵 = 0 and the solution becomes𝑋 (𝑥) = 𝐴 cos �√𝜆𝑥�. Therefore𝑋′ = −𝐴√𝜆 sin �√𝜆𝑥�.
Satisfying 𝑋′ (𝑐) = 0 gives

0 = −𝐴√𝜆 sin �√𝜆𝑐�

For nontrivial solution we want

sin �√𝜆𝑐� = 0

√𝜆𝑐 = 𝑛𝜋 𝑛 = 1, 2, 3,⋯

𝜆𝑛 = �
𝑛𝜋
𝑐
�
2

(2)

And the corresponding eigenfunctions

𝑋𝑛 (𝑥) = cos ��𝜆𝑛𝑥� (3)

Now that we found 𝜆𝑛, we can solve the time ODE 𝑇′ + 𝑇 (𝑏 + 𝜆𝑘) = 0. The solution is

𝑇𝑛 (𝑡) = 𝑒−(𝑏+𝜆𝑛𝑘)𝑡 (4)

Hence the fundamental solution is

𝑣𝑛 (𝑥, 𝑡) = 𝑋𝑛 (𝑥) 𝑇𝑛 (𝑡)

= cos ��𝜆𝑛𝑥� 𝑒−(𝑏+𝜆𝑛𝑘)𝑡

And the general solution is the superposition of all these solutions

𝑣 (𝑥, 𝑡) = 𝐴0𝑋0𝑇0 +
∞
�
𝑛=1

𝐴𝑛𝑋𝑛 (𝑥) 𝑇𝑛 (𝑡)

= 𝐴0𝑒−𝑏𝑡 +
∞
�
𝑛=1

𝐴𝑛 cos ��𝜆𝑛𝑥� 𝑒−(𝑏+𝜆𝑛𝑘)𝑡

Which can be written as

𝑣 (𝑥, 𝑡) = 𝑢 (𝑥, 𝑡) 𝑒−𝑏𝑡

Where 𝑢 (𝑥, 𝑡) is

𝑢 (𝑥, 𝑡) = 𝐴0 +
∞
�
𝑛=1

𝐴𝑛 cos ��𝜆𝑛𝑥� 𝑒−𝜆𝑛𝑘𝑡
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Which is the same as given in section 36, page 106. In the above

𝜆0 = 0

𝜆𝑛 = �
𝑛𝜋
𝑐
�
2

𝑛 = 1, 2, 3,⋯
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3 Section 41, Problem 3

Figure 3: Problem statement

Solution

The heat PDE in spherical coordinates, assuming no dependency on 𝜙 nor on 𝜃 is given by

𝑢𝑡 = 𝑘∇ 2𝑢 (1)

= 𝑘
1
𝑟
(𝑟𝑢)𝑟𝑟

Where 1 < 𝑟 < 2 and 𝑡 > 0. With the boundary conditions

𝑢 (1, 𝑡) = 0
𝑢 (2, 0) = 𝑢0

And initial conditions

𝑢 (𝑟, 0) = 0
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3.1 Part (a)

Let 𝑣 (𝑟, 𝑡) = 𝑟𝑢 (𝑟, 𝑡). Hence 𝑣𝑡 = 𝑟𝑢𝑡 and
1
𝑟
(𝑟𝑢)𝑟𝑟 =

1
𝑟𝑣𝑟𝑟. Substituting these in(1), the PDE

simplifies to

𝑣𝑡 = 𝑘𝑣𝑟𝑟 (2)

And the boundary conditions 𝑢 (1, 𝑡) = 0 becomes 𝑣 (1, 𝑡) = 0 and 𝑢 (2, 0) = 𝑢0 becomes
𝑣 (2, 𝑡) = 2𝑢0. And initial conditions 𝑢 (𝑟, 0) = 0 becomes 𝑣 (𝑟, 0) = 0. Hence the new
boundary conditions

𝑣 (1, 𝑡) = 0
𝑣 (2, 𝑡) = 2𝑢0

And new initial conditions

𝑣 (𝑟, 0) = 0

Now let 𝑠 = 𝑟 − 1. Since 𝜕𝑟
𝜕𝑠 = 1, then the PDE becomes 𝑣𝑡 = 𝑘𝑣𝑠𝑠. When 𝑟 = 1, then 𝑠 = 0

and the boundary conditions 𝑣 (1, 𝑡) = 0 becomes 𝑣 (0, 𝑡) = 0 and the boundary conditions
𝑣 (2, 𝑡) = 2𝑢0 becomes 𝑣 (1, 𝑡) = 2𝑢0. And initial conditions do not change. Hence the new
problem is to solve for 𝑣 (𝑠, 𝑡) in

𝑣𝑡 = 𝑘𝑣𝑠𝑠 (3)

𝑣 (1, 𝑡) = 0
𝑣 (1, 𝑡) = 2𝑢0
𝑣 (𝑠, 0) = 0

With 0 < 𝑠 < 1 and 𝑡 > 0.

3.2 Part (b)

The PDE (3) in part(a) is now the same as result of problem 2 section 40. Hence we can
use that solution for (3) which gives

𝑣 (𝑠, 𝑡) = 2𝑢0 �𝑥 +
2
𝜋

∞
�
𝑛=1

(−1)𝑛

𝑛
𝑒−𝑛2𝜋2𝑘𝑡 sin (𝑛𝜋𝑠)�

Replacing 𝑠 by 𝑟 − 1 in the above gives

𝑣 (𝑟, 𝑡) = 2𝑢0 �(𝑟 − 1) +
2
𝜋

∞
�
𝑛=1

(−1)𝑛

𝑛
𝑒−𝑛2𝜋2𝑘𝑡 sin (𝑛𝜋 (𝑟 − 1))�

But 𝑣 (𝑟, 𝑡) = 𝑟𝑢 (𝑟, 𝑡), hence 𝑢 (𝑟, 𝑡) = 𝑣
𝑟 and therefore

𝑢 (𝑟, 𝑡) = 2𝑢0 �
(𝑟 − 1)
𝑟

+
2
𝜋𝑟

∞
�
𝑛=1

(−1)𝑛

𝑛
𝑒−𝑛2𝜋2𝑘𝑡 sin (𝑛𝜋 (𝑟 − 1))�

= 2𝑢0 ��1 −
1
𝑟�
+
2
𝜋𝑟

∞
�
𝑛=1

(−1)𝑛

𝑛
𝑒−𝑛2𝜋2𝑘𝑡 sin (𝑛𝜋 (𝑟 − 1))�

Which is the result required.
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4 Section 42, Problem 4

Figure 4: Problem statement

Solution

Using method of eigenfunction expansion (or method of variation of parameters as the book
calls it), we start by assuming the solution to the PDE 𝑢𝑡 = 𝑘𝑢𝑥𝑥 + 𝑞 (𝑥, 𝑡) is given by

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

𝑎𝑛 (𝑡) Φ𝑛 (𝑥) (1)

Where Φ𝑛 (𝑥) are the eigenfunctions associated with the homogeneous PDE 𝑢𝑡 = 𝑘𝑢𝑥𝑥 with
the homogeneous boundary conditions 𝑢 (0, 𝑡) = 0 and 𝑢 (𝑐, 𝑡) = 0. But we solved this
homogeneous PDE before. It has eigenvalues and corresponding eigenfunctions

𝜆𝑛 = �
𝑛𝜋
𝑐
�
2

𝑛 = 1, 2, 3,⋯

Φ𝑛 (𝑥) = sin ��𝜆𝑛𝑥�
Substituting (1) into the original PDE 𝑢𝑡 = 𝑘𝑢𝑥𝑥 + 𝑞 (𝑥, 𝑡) results in

𝜕
𝜕𝑡

∞
�
𝑛=1

𝑎𝑛 (𝑡) Φ𝑛 (𝑥) = 𝑘
𝜕2

𝜕𝑥2
∞
�
𝑛=1

𝑎𝑛 (𝑡) Φ𝑛 (𝑥) + 𝑞 (𝑥, 𝑡)

∞
�
𝑛=1

𝑎′𝑛 (𝑡) Φ𝑛 (𝑥) = 𝑘
∞
�
𝑛=1

𝑎𝑛 (𝑡) Φ ′′
𝑛 (𝑥) + 𝑞 (𝑥, 𝑡)

But from the Sturm-Liouville ODE, we know that Φ ′′
𝑛 (𝑥) + 𝜆𝑛Φ𝑛 (𝑥) = 0. Hence Φ ′′

𝑛 (𝑥) =



12

−𝜆𝑛Φ𝑛 (𝑥) and the above reduces to
∞
�
𝑛=1

𝑎′𝑛 (𝑡) Φ𝑛 (𝑥) = −𝑘
∞
�
𝑛=1

𝑎𝑛 (𝑡) 𝜆𝑛Φ𝑛 (𝑥) + 𝑞 (𝑥, 𝑡) (2)

Since the eigenfunctions Φ𝑛 (𝑥) are complete, we can expand 𝑞 (𝑥, 𝑡) using them. Therefore

𝑞 (𝑥, 𝑡) =
∞
�
𝑛=1

𝑏𝑛 (𝑡) Φ𝑛 (𝑥)

Substituting the above back in (2) gives
∞
�
𝑛=1

𝑎′𝑛 (𝑡) Φ𝑛 (𝑥) = −𝑘
∞
�
𝑛=1

𝑎𝑛 (𝑡) 𝜆𝑛Φ𝑛 (𝑥) +
∞
�
𝑛=1

𝑏𝑛 (𝑡) Φ𝑛 (𝑥)

Since Φ𝑛 (𝑥) are never zero, we can simplify the above to

𝑎′𝑛 (𝑡) = −𝑘𝑎𝑛 (𝑡) 𝜆𝑛 + 𝑏𝑛 (𝑡)
𝑎′𝑛 (𝑡) + 𝑘𝑎𝑛 (𝑡) 𝜆𝑛 = 𝑏𝑛 (𝑡)

The above is first order ODE in 𝐼𝑛 (𝑡). It is linear ODE. The integrating factor is 𝜇 = 𝑒∫𝑘𝜆𝑛𝑑𝑡 =
𝑒𝑘𝜆𝑛𝑡. Multiplying the above ODE by this integrating factor gives

𝑑
𝑑𝑡
�𝑎𝑛 (𝑡) 𝑒𝑘𝜆𝑛𝑡� = 𝑏𝑛 (𝑡) 𝑒𝑘𝜆𝑛𝑡

Integrating both sides

𝑎𝑛 (𝑡) 𝑒𝑘𝜆𝑛𝑡 = �
𝑡

0
𝑏𝑛 (𝜏) 𝑒𝑘𝜆𝑛𝜏𝑑𝜏

𝑎𝑛 (𝑡) = �
𝑡

0
𝑏𝑛 (𝜏) 𝑒−𝑘𝜆𝑛(𝑡−𝜏)𝑑𝜏

Now that we found 𝑎𝑛 (𝑡), we substitute it back into (1) which gives

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

��
𝑡

0
𝑏𝑛 (𝜏) 𝑒−𝑘𝜆𝑛(𝑡−𝜏)𝑑𝜏�Φ𝑛 (𝑥) (3)

What is left is to find 𝑏𝑛 (𝑡). Since 𝑞 (𝑥, 𝑡) = ∑
∞
𝑛=1 𝑏𝑛 (𝑡) Φ𝑛 (𝑥), then by orthogonality we obtain

�
𝑐

0
𝑞 (𝑥, 𝑡) Φ𝑚 (𝑥) 𝑑𝑥 = �

𝑐

0

∞
�
𝑛=1

𝑏𝑛 (𝑡) Φ𝑛 (𝑥)Φ𝑚 (𝑥) 𝑑𝑥

=
∞
�
𝑛=1

𝑏𝑛 (𝑡)�
𝑐

0
Φ𝑛 (𝑥)Φ𝑚 (𝑥) 𝑑𝑥

= 𝑏𝑚 (𝑡)�
𝑐

0
Φ2
𝑚 (𝑥) 𝑑𝑥

= 𝑏𝑚 (𝑡)
𝑐
2

Hence

𝑏𝑛 (𝑡) =
2
𝑐 �

𝑐

0
𝑞 (𝑥, 𝑡) Φ𝑚 (𝑥) 𝑑𝑥
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Substituting this back into (3) gives

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

��
𝑡

0
𝑒−𝑘𝜆𝑛(𝑡−𝜏)

2
𝑐 ��

𝑐

0
𝑞 (𝑥, 𝜏)Φ𝑚 (𝑥) 𝑑𝑥� 𝑑𝜏�Φ𝑛 (𝑥)

=
2
𝑐

∞
�
𝑛=1

��
𝑡

0
𝑒−𝑘𝜆𝑛(𝑡−𝜏) ��

𝑐

0
𝑞 (𝑥, 𝜏)Φ𝑚 (𝑥) 𝑑𝑥� 𝑑𝜏�Φ𝑛 (𝑥) (4)

If we let

𝐼𝑛 (𝑡) = �
𝑡

0
𝑒−𝑘𝜆𝑛(𝑡−𝜏) ��

𝑐

0
𝑞 (𝑥, 𝜏)Φ𝑚 (𝑥) 𝑑𝑥� 𝑑𝜏

Then (4) becomes

𝑢 (𝑥, 𝑡) =
2
𝑐

∞
�
𝑛=1

𝐼𝑛 (𝑡) Φ𝑛 (𝑥)

Since Φ𝑛 (𝑥) = sin �𝑛𝜋𝑐 𝑥� then the above is

𝑢 (𝑥, 𝑡) =
2
𝑐

∞
�
𝑛=1

𝐼𝑛 (𝑡) sin �
𝑛𝜋
𝑐
𝑥�

Which is what required to show.
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5 Section 42, Problem 5

Figure 5: Problem statement

Solution

The solution in problem 4 above us

𝑢 (𝑥, 𝑡) =
2
𝑐

∞
�
𝑛=1

𝐼𝑛 (𝑡) sin �
𝑛𝜋
𝑐
𝑥� (1)

Where

𝐼𝑛 (𝑡) = �
𝑡

0
𝑒−𝑘𝜆𝑛(𝑡−𝜏) ��

𝑐

0
𝑞 (𝑥, 𝜏) sin �

𝑛𝜋
𝑐
𝑥� 𝑑𝑥� 𝑑𝜏

And 𝜆𝑛 = �
𝑛𝜋
𝑐
�
2
. Let 𝑐 = 1, 𝑘 = 1 and 𝑞 (𝑥, 𝑡) = 𝑥𝑝 (𝑡), then the above becomes

𝐼𝑛 (𝑡) = �
𝑡

0
𝑒−𝑛2𝜋2(𝑡−𝜏) ��

1

0
𝑥𝑝 (𝜏) sin (𝑛𝜋𝑥) 𝑑𝑥� 𝑑𝜏

Substituting this in (1), using 𝑐 = 1, then (1) becomes

𝑢 (𝑥, 𝑡) = 2
∞
�
𝑛=1

��
𝑡

0
𝑒−𝑛2𝜋2(𝑡−𝜏) ��

1

0
𝑥𝑝 (𝜏) sin (𝑛𝜋𝑥) 𝑑𝑥� 𝑑𝜏� sin (𝑛𝜋𝑥)

= 2
∞
�
𝑛=1

��
𝑡

0
𝑝 (𝜏) 𝑒−𝑛2𝜋2(𝑡−𝜏) ��

1

0
𝑥 sin (𝑛𝜋𝑥) 𝑑𝑥� 𝑑𝜏� sin (𝑛𝜋𝑥) (2)

But ∫
1

0
𝑥 sin (𝑛𝜋𝑥) 𝑑𝑥 can now be integrated by parts. Let 𝑢 = 𝑥, 𝑑𝑣 = sin (𝑛𝜋𝑥), hence

𝑑𝑢 = 1, 𝑣 = − cos(𝑛𝜋𝑥)
𝑛𝜋 and therefore

�
1

0
𝑥 sin (𝑛𝜋𝑥) 𝑑𝑥 = −

1
𝑛𝜋

[𝑥 cos (𝑛𝜋𝑥)]10 +
1
𝑛𝜋 �

1

0
cos (𝑛𝜋𝑥) 𝑑𝑥

= −
1
𝑛𝜋

cos (𝑛𝜋) +
1
𝑛𝜋 �

sin (𝑛𝜋𝑥)
𝑛𝜋 �

1

0

= −
1
𝑛𝜋

(−1)𝑛 +
1

𝑛2𝜋2 [sin (𝑛𝜋)]

=
(−1)𝑛+1

𝑛𝜋
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Substituting this back in (2) gives

𝑢 (𝑥, 𝑡) = 2
∞
�
𝑛=1

⎛
⎜⎜⎜⎝�

𝑡

0
𝑝 (𝜏) 𝑒−𝑛2𝜋2(𝑡−𝜏)

⎛
⎜⎜⎜⎝
(−1)𝑛+1

𝑛𝜋

⎞
⎟⎟⎟⎠ 𝑑𝜏

⎞
⎟⎟⎟⎠ sin (𝑛𝜋𝑥)

=
2
𝜋

∞
�
𝑛=1

(−1)𝑛+1

𝑛
sin (𝑛𝜋𝑥) ��

𝑡

0
𝑝 (𝜏) 𝑒−𝑛2𝜋2(𝑡−𝜏)𝑑𝜏�

Which is the solution for problem 1.
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6 Section 42, Problem 8

Figure 6: Problem statement

Solution

The PDE to solve is

𝑢𝑡 = 𝑘𝑢𝑥𝑥 + 𝑎𝑥2

With boundary conditions

𝑢𝑥 (0, 𝑡) = 0
𝑢𝑥 (𝑐, 𝑡) = 0

And initial conditions

𝑢 (𝑥, 0) = 0
Using method of eigenfunction expansion, we start by assuming the solution to the PDE

𝑢𝑡 = 𝑘𝑢𝑥𝑥 + 𝑎𝑥2 is given by

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=0

𝑎𝑛 (𝑡) Φ𝑛 (𝑥) (1)

Where Φ𝑛 (𝑥) are the eigenfunctions associated with the homogeneous PDE 𝑢𝑡 = 𝑘𝑢𝑥𝑥 with
the homogeneous boundary conditions 𝑢𝑥 (0, 𝑡) = 0 and 𝑢𝑥 (𝑐, 𝑡) = 0. But we solved this
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homogeneous PDE before. It has eigenvalues and corresponding eigenfunctions

𝜆0 = 0
Φ0 (𝑥) = 1

𝜆𝑛 =
𝑛2𝜋2

𝑐2
𝑛 = 1, 2, 3,⋯

Φ𝑛 (𝑥) = cos �
𝑛𝜋
𝑐
𝑥�

Substituting (1) into the original PDE 𝑢𝑡 = 𝑘𝑢𝑥𝑥 + 𝑎𝑥2 results in
𝜕
𝜕𝑡

∞
�
𝑛=0

𝑎𝑛 (𝑡) Φ𝑛 (𝑥) = 𝑘
𝜕2

𝜕𝑥2
∞
�
𝑛=0

𝑎𝑛 (𝑡) Φ𝑛 (𝑥) + 𝑎𝑥2

∞
�
𝑛=0

𝑎′𝑛 (𝑡) Φ𝑛 (𝑥) = 𝑘
∞
�
𝑛=0

𝑎𝑛 (𝑡) Φ ′′
𝑛 (𝑥) + 𝑎𝑥2

But from the Sturm-Liouville ODE, we know that Φ ′′
𝑛 (𝑥) + 𝜆𝑛Φ𝑛 (𝑥) = 0. Hence Φ ′′

𝑛 (𝑥) =
−𝜆𝑛Φ𝑛 (𝑥) and the above reduces to

∞
�
𝑛=0

𝑎′𝑛 (𝑡) Φ𝑛 (𝑥) = −𝑘
∞
�
𝑛=0

𝑎𝑛 (𝑡) 𝜆𝑛Φ𝑛 (𝑥) + 𝑎𝑥2 (2)

Since the eigenfunctions Φ𝑛 (𝑥) are complete, we can expand 𝑎𝑥2 using them. Therefore

𝑎𝑥2 =
∞
�
𝑛=0

𝑏𝑛 (𝑥)Φ𝑛 (𝑥)

Substituting the above back in (2) gives
∞
�
𝑛=0

𝑎′𝑛 (𝑡) Φ𝑛 (𝑥) = −𝑘
∞
�
𝑛=0

𝑎𝑛 (𝑡) 𝜆𝑛Φ𝑛 (𝑥) +
∞
�
𝑛=0

𝑏𝑛 (𝑥)Φ𝑛 (𝑥)

Since Φ𝑛 (𝑥) are never zero, we can simplify the above to

𝑎′𝑛 (𝑡) = −𝑘𝑎𝑛 (𝑡) 𝜆𝑛 + 𝑏𝑛 (𝑥)
𝑎′𝑛 (𝑡) + 𝑘𝑎𝑛 (𝑡) 𝜆𝑛 = 𝑏𝑛 (𝑥)

The above is first order ODE in 𝐼𝑛 (𝑡). It is linear ODE. The integrating factor is 𝜇 = 𝑒∫𝑘𝜆𝑛𝑑𝑡 =
𝑒𝑘𝜆𝑛𝑡. Multiplying the above ODE by this integrating factor gives

𝑑
𝑑𝑡
�𝑎𝑛 (𝑡) 𝑒𝑘𝜆𝑛𝑡� = 𝑏𝑛 (𝑥) 𝑒𝑘𝜆𝑛𝑡

Integrating both sides

𝑎𝑛 (𝑡) 𝑒𝑘𝜆𝑛𝑡 = 𝑏𝑛 (𝑥)�
𝑡

0
𝑒𝑘𝜆𝑛𝜏𝑑𝜏

𝑎𝑛 (𝑡) = 𝑏𝑛 (𝑥)�
𝑡

0
𝑒−𝑘𝜆𝑛(𝑡−𝜏)𝑑𝜏 (3)

What is left is to find 𝑏𝑛 (𝑥). Since 𝑎𝑥2 = ∑
∞
𝑛=0 𝑏𝑛 (𝑥)Φ𝑛 (𝑥), and from example 1 section 8,
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we found that

𝑏0 (𝑥) = 𝑎
𝑐2

3

𝑏𝑛 (𝑥) = 𝑎
4𝑐2

𝜋2
(−1)𝑛

𝑛2
𝑛 = 1, 2, 3,⋯

Hence when 𝑛 = 0, then (3) becomes (since 𝜆0 = 0)

𝑎0 (𝑡) = 𝑎
𝑐2

3 �
𝑡

0
𝑑𝜏

=
𝑎𝑐2

3
𝑡

When 𝑛 > 0 then (3) becomes

𝑎𝑛 (𝑡) = �𝑎
4𝑐2

𝜋2
(−1)𝑛

𝑛2 ��
𝑡

0
𝑒−𝑘𝜆𝑛(𝑡−𝜏)𝑑𝜏

=
(−1)𝑛

𝑛2
4𝑎𝑐2

𝜋2 �
𝑡

0
𝑒−𝑘�

𝑛𝜋
𝑐 �

2
(𝑡−𝜏)𝑑𝜏

=
(−1)𝑛

𝑛2
4𝑎𝑐2

𝜋2 𝑒
−𝑘� 𝑛𝜋𝑐 �

2
𝑡�

𝑡

0
𝑒𝑘�

𝑛𝜋
𝑐 �

2
𝜏𝑑𝜏

=
(−1)𝑛

𝑛2
4𝑎𝑐2

𝜋2 𝑒
−𝑘� 𝑛𝜋𝑐 �

2
𝑡

⎡
⎢⎢⎢⎢⎢⎢⎣
𝑒𝑘�

𝑛𝜋
𝑐 �

2
𝜏

𝑘 �𝑛𝜋𝑐 �
2

⎤
⎥⎥⎥⎥⎥⎥⎦

𝑡

0

=
(−1)𝑛

𝑛2
4𝑎𝑐2

𝜋2
𝑒−𝑘�

𝑛𝜋
𝑐 �

2
𝑡

𝑘 �𝑛𝜋𝑐 �
2 �𝑒

𝑘� 𝑛𝜋𝑐 �
2
𝑡 − 1�

=
(−1)𝑛

𝑛2
4𝑎𝑐2

𝜋2
1 − 𝑒−𝑘�

𝑛𝜋
𝑐 �

2
𝑡

𝑘𝑛
2𝜋2

𝑐2

=
(−1)𝑛

𝑛4
4𝑎𝑐4

𝑘𝜋4 �1 − 𝑒
−𝑘� 𝑛𝜋𝑐 �

2
𝑡�

Now that we found 𝑎𝑛 (𝑡), we substitute it back into (1) which gives

𝑢 (𝑥, 𝑡) = 𝑎0 (𝑡) +
∞
�
𝑛=1

𝑎𝑛 (𝑡) Φ𝑛 (𝑥)

𝑢 (𝑥, 𝑡) =
𝑎𝑐2

3
𝑡 +

∞
�
𝑛=1

(−1)𝑛

𝑛4
4𝑎𝑐4

𝑘𝜋4 �1 − 𝑒
−𝑘� 𝑛𝜋𝑐 �

2
𝑡� cos �

𝑛𝜋
𝑐
𝑥�

=
𝑎𝑐2

3
𝑡 +

4𝑎𝑐4

𝑘𝜋4

∞
�
𝑛=1

(−1)𝑛

𝑛4 �1 − 𝑒−𝑘
� 𝑛𝜋𝑐 �

2
𝑡� cos �

𝑛𝜋
𝑐
𝑥�

= 𝑎𝑐2 �
𝑡
3
+
4𝑐2

𝑘𝜋4

∞
�
𝑛=1

(−1)𝑛

𝑛4 �1 − 𝑒−𝑘
� 𝑛𝜋𝑐 �

2
𝑡� cos �

𝑛𝜋
𝑐
𝑥��
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Which is the result required to show.
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7 Section 43, Problem 1

Figure 7: Problem statement

Solution

x

y

∇2u = 0

π

π

ux(π, y) = 0ux(0, y) = 0

u(x, 0) = 0

u(x, π) = f(x)

Figure 8: PDE and boundary conditions

Let 𝑢 �𝑥, 𝑦� = 𝑋 (𝑥) 𝑌 �𝑦�. The PDE becomes

𝑋′′𝑌 + 𝑌′′𝑋 = 0
𝑋′′

𝑋
= −

𝑌′′

𝑌
= −𝜆

Hence the eigenvalue problem is
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𝑋′′ + 𝜆𝑋 = 0 (1)

𝑋′ (0) = 0
𝑋′ (𝜋) = 0

And the ODE for 𝑌 �𝑦� is
𝑌′′ − 𝜆𝑌 = 0

We start by solving (1) to find the eigenvalues and eigenfunctions.

Case 𝜆 < 0 The solution is

𝑋 = 𝐴 cosh �√−𝜆𝑥� + 𝐵 sinh �√−𝜆𝑥�

𝑋′ = 𝐴√−𝜆 sinh �√−𝜆𝑥� + 𝐵√−𝜆 cosh �√−𝜆𝑥�

At 𝑥 = 0 the above becomes

0 = 𝐵√−𝜆
Hence 𝐵 = 0 and the solution becomes

𝑋 = 𝐴 cosh �√−𝜆𝑥�

𝑋′ = 𝐴√−𝜆 sinh �√−𝜆𝑥�

At 𝑥 = 𝜋 the above gives

0 = 𝐴√−𝜆 sinh �√−𝜆𝜋�

For nontrivial solution sinh �√−𝜆𝜋� = 0 but this is not possible since sinh is zero only when
its argument is zero and this is not the case here. Hence 𝜆 < 0 is not eigenvalue.

Case 𝜆 = 0 The solution is

𝑋 = 𝐴𝑥 + 𝐵
𝑋′ = 𝐴

At 𝑥 = 0 the above becomes

0 = 𝐴
Hence the solution becomes

𝑋 = 𝐵
𝑋′ = 0

At 𝑥 = 𝜋 the above gives

0 = 0
Therefore 𝜆 = 0 is eigenvalue with 𝑋0 (𝑥) = 1.
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Case 𝜆 > 0 The solution is

𝑋 = 𝐴 cos �√𝜆𝑥� + 𝐵 sin �√𝜆𝑥�

𝑋′ = −𝐴√𝜆 sin �√𝜆𝑥� + 𝐵√𝜆 cos �√𝜆𝑥�

At 𝑥 = 0 the above becomes

0 = 𝐵√𝜆
Hence 𝐵 = 0 and the solution becomes

𝑋 = 𝐴 cos �√𝜆𝑥�

𝑋′ = −𝐴√𝜆 sin �√𝜆𝑥�

At 𝑥 = 𝜋 the above gives

0 = −𝐴√𝜆 sin �√𝜆𝜋�

For nontrivial solution

sin �√𝜆𝜋� = 0

√𝜆𝜋 = 𝑛𝜋 𝑛 = 1, 2, 3,⋯
𝜆𝑛 = 𝑛2

And the corresponding eigenfunctions 𝑋𝑛 (𝑥) = cos (𝑛𝑥). Therefore in summary we have

eigenvalue eigenfunction

𝜆0 = 0 1
𝜆𝑛 = 𝑛2 𝑛 = 1, 2, 3,⋯ cos (𝑛𝑥)

Hence the 𝑌 �𝑦� ode becomes

𝑌′′ − 𝜆𝑛𝑌 = 0
𝑌′′ − 𝑛2𝑌 = 0

The solution to the above is, when 𝑛 = 0
𝑌0 = 𝐴0𝑦 + 𝐵0

When 𝑦 = 0 the above gives 0 = 𝐵0. Hence 𝑌0 = 𝐴0𝑦.

When 𝑛 > 0

𝑌𝑛 �𝑦� = 𝐵𝑛 cosh �𝑛𝑦� + 𝐴𝑛 sinh �𝑛𝑦�
When 𝑦 = 0 the above gives 0 = 𝐵𝑛, Hence

𝑌𝑛 �𝑦� = 𝐴𝑛 sinh �𝑛𝑦�
Hence the fundamental solution is

𝑢 �𝑥, 𝑦� = 𝑋𝑛𝑌𝑛
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And the general solution is the superposition of these solutions

𝑢 �𝑥, 𝑦� = 𝐴0𝑋0𝑌0 +
∞
�
𝑛=1

𝐴𝑛𝑌𝑛𝑋𝑛

Therefore

𝑢 �𝑥, 𝑦� = 𝐴0𝑦 +
∞
�
𝑛=1

𝐴𝑛 sinh �𝑛𝑦� cos (𝑛𝑥) (A)

What is left is to determine 𝐴0 and 𝐴𝑛. At 𝑦 = 𝜋 the above gives

𝑓 (𝑥) = 𝐴0𝜋 +
∞
�
𝑛=1

𝐴𝑛 sinh (𝑛𝜋) cos (𝑛𝑥)

Multiplying both sides by cos (𝑚𝑥) and integrating gives

�
𝜋

0
𝑓 (𝑥) cos (𝑚𝑥) 𝑑𝑥 = �

𝜋

0
𝐴0𝜋 cos (𝑚𝑥) 𝑑𝑥 +�

𝜋

0

∞
�
𝑛=1

𝐴𝑛 sinh (𝑛𝜋) cos (𝑛𝑥) cos (𝑚𝑥) 𝑑𝑥 (1)

For 𝑚 = 0, (1) becomes

�
𝜋

0
𝑓 (𝑥) 𝑑𝑥 = �

𝜋

0
𝐴0𝜋𝑑𝑥

�
𝜋

0
𝑓 (𝑥) 𝑑𝑥 = 𝐴0𝜋2

𝐴0 =
1
𝜋2 �

𝜋

0
𝑓 (𝑥) 𝑑𝑥 (2)

For 𝑚 > 0, (1) becomes

�
𝜋

0
𝑓 (𝑥) cos (𝑚𝑥) 𝑑𝑥 = �

𝜋

0

∞
�
𝑛=1

𝐴𝑛 sinh (𝑛𝜋) cos (𝑛𝑥) cos (𝑚𝑥) 𝑑𝑥

�
𝜋

0
𝑓 (𝑥) cos (𝑚𝑥) 𝑑𝑥 = 𝐴𝑚 sinh (𝑚𝜋)�

𝜋

0
cos2 (𝑛𝑥) 𝑑𝑥

= 𝐴𝑚 sinh (𝑚𝜋)
𝜋
2

Hence

𝐴𝑛 =
2

𝜋 sinh (𝑛𝜋) �
𝜋

0
𝑓 (𝑥) cos (𝑛𝑥) 𝑑𝑥 (3)

When 𝑓 (𝑥) = 𝑢0 a constant, then (2) becomes

𝐴0 =
1
𝜋2 �

𝜋

0
𝑢0𝑑𝑥

=
𝑢0
𝜋
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And (3) becomes

𝐴𝑛 =
2

𝜋 sinh (𝑛𝜋) �
𝜋

0
𝑢0 cos (𝑛𝑥) 𝑑𝑥

=
2𝑢0

𝜋 sinh (𝑛𝜋) �
sin (𝑛𝑥)
𝑛 �

𝜋

0
= 0

Hence the solution (A) becomes

𝑢 �𝑥, 𝑦� = 𝑢0
𝑦
𝜋

This shows the final solution changes linearly in 𝑦. When 𝑦 = 0 then 𝑢 (𝑥, 0) = 0 and when
𝑦 = 𝜋, then 𝑢 (𝑥, 𝜋) = 𝑢0.
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8 Section 44, Problem 2

Figure 9: Problem statement

Solution

The PDE ∇ 2𝑢 �𝜌, 𝜙� = 0 in polar coordinates is

𝑢𝜌𝜌 +
1
𝜌
𝑢𝜌 +

1
𝜌2
𝑢𝜙𝜙 = 0

For 0 < 𝜌 < 𝑎 and 0 < 𝜙 < 𝛼. With boundary conditions

𝑢 �𝜌, 0� = 0

𝑢 �𝜌, 𝛼� = 0

𝑢 �𝑎, 𝜙� = 𝑓 �𝜙�

And since 𝑢 is bounded, then we have an extra condition 𝑢 �0, 𝜙� < ∞.
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Let 𝑢 �𝜌, 𝜙� = 𝑅 �𝜌�Φ �𝜙�. Substituting into the above PDE gives

𝑅′′Φ +
1
𝜌
𝑅′Φ +

1
𝜌2
Φ ′′𝑅 = 0

𝑅′′

𝑅
+
1
𝜌
𝑅′

𝑅
+
1
𝜌2
Φ ′′

Φ
= 0

Φ ′′

Φ
= − �𝜌2

𝑅′′

𝑅
+ 𝜌

𝑅′

𝑅 �
= −𝜆

Where 𝜆 is the separation constant. The above gives the boundary values problem to solve
for 𝜆

Φ ′′ + 𝜆Φ = 0 (1)

Φ (0) = 0
Φ (𝛼) = 0

And

𝜌2
𝑅′′

𝑅
+ 𝜌

𝑅′

𝑅
= 𝜆

𝜌2𝑅′′ + 𝜌𝑅′ − 𝜆𝑅 = 0 (2)

We start with (1) to find 𝜆 then use the result to solve (2). The ODE (1) we solved before,
it has the eigenvalues

𝜆𝑛 = �
𝑛𝜋
𝛼
�
2

𝑛 = 1, 2, 3,⋯

And corresponding eigenfunctions

Φ𝑛 �𝜙� = sin �
𝑛𝜋
𝛼
𝜙� (3)

Now (2) can be solved. This is a Euler ODE. Using 𝑅 �𝜌� = 𝜌𝑚 and substituting into (2)
gives

𝜌2𝑚 (𝑚 − 1) 𝜌𝑚−2 + 𝜌𝑚𝜌𝑚−1 − �
𝑛𝜋
𝛼
�
2
𝜌𝑚 = 0

𝑚 (𝑚 − 1) 𝜌𝑚 + 𝑚𝜌𝑚 − �
𝑛𝜋
𝛼
�
2
𝜌𝑚 = 0

𝑚 (𝑚 − 1) + 𝑚 − �
𝑛𝜋
𝛼
�
2
= 0

𝑚2 = �
𝑛𝜋
𝛼
�
2

Hence

𝑚 = ±
𝑛𝜋
𝛼

Therefore the solution to (2) is

𝑅𝑛 �𝜌� = 𝐴𝑛𝜌
𝑛𝜋
𝛼 + 𝐵𝑛𝜌

−𝑛𝜋
𝛼
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We immediately reject the solution 𝜌
−𝑛𝜋
𝛼 since this blows up at origin where 𝜌 → 0. Hence

the above becomes

𝑅𝑛 �𝜌� = 𝐴𝑛𝜌
𝑛𝜋
𝛼 (4)

Now that we found Φ𝑛 �𝜙� and 𝑅𝑛 �𝜌�, then we use superposition to obtain the general
solution

𝑢 �𝜌, 𝜙� =
∞
�
𝑛=1

𝑅𝑛 �𝜌�Φ𝑛 �𝜙�

=
∞
�
𝑛=1

𝐴𝑛𝜌
𝑛𝜋
𝛼 sin �

𝑛𝜋
𝛼
𝜙� (5)

At 𝜌 = 𝑎, 𝑢 �𝑎, 𝜙� = 𝑓 �𝜙�, hence the above becomes

𝑓 �𝜙� =
∞
�
𝑛=1

𝐴𝑛𝑎
𝑛𝜋
𝛼 sin �

𝑛𝜋
𝛼
𝜙�

By orthogonality we obtain

�
𝛼

0
𝑓 �𝜙� sin �

𝑚𝜋
𝛼
𝜙� 𝑑𝜙 = �

𝛼

0

∞
�
𝑛=1

𝐴𝑛𝑎
𝑛𝜋
𝛼 sin �

𝑛𝜋
𝛼
𝜙� sin �

𝑚𝜋
𝛼
𝜙� 𝑑𝜙

= 𝐴𝑚𝑎
𝑚𝜋
𝛼 �

𝛼

0
sin2 �

𝑚𝜋
𝛼
𝜙� 𝑑𝜙

= 𝐴𝑚𝑎
𝑚𝜋
𝛼
𝛼
2

Solving for 𝐴𝑛 from the above gives

𝐴𝑛 =
2
𝛼
𝑎
−𝑛𝜋
𝛼 �

𝛼

0
𝑓 �𝜙� sin �

𝑛𝜋
𝛼
𝜙� 𝑑𝜙

Substituting the above in (5) gives the final solution

𝑢 �𝜌, 𝜙� =
∞
�
𝑛=1

�
2
𝛼
𝑎
−𝑛𝜋
𝛼 �

𝛼

0
𝑓 �𝜓� sin �

𝑛𝜋
𝛼
𝜓� 𝑑𝜓� 𝜌

𝑛𝜋
𝛼 sin �

𝑛𝜋
𝛼
𝜙�

=
2
𝛼

∞
�
𝑛=1

�
𝜌
𝑎
�
𝑛𝜋
𝛼

sin �
𝑛𝜋
𝛼
𝜙� ��

𝛼

0
𝑓 �𝜓� sin �

𝑛𝜋
𝛼
𝜓� 𝑑𝜓�
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9 Section 49, Problem 2

Figure 10: Problem statement

Solution

𝑢𝑡 = 𝑘𝑢𝑥𝑥
With −𝜋 < 𝑥 < 𝜋, 𝑡 > 0 and periodic boundary conditions

𝑢 (−𝜋, 𝑡) = 𝑢 (𝜋, 𝑡)
𝑢𝑥 (−𝜋, 𝑡) = 𝑢𝑥 (𝜋, 𝑡)

And initial conditions

𝑢 (𝑥, 0) = 𝑓 (𝑥)
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Normal process of separation of variables leads to eigenvalue problem

𝑋′′ + 𝜆𝑋 = 0 (1)

𝑋 (−𝜋) = 𝑋 (𝜋)
𝑋′ (−𝜋) = 𝑋′ (𝜋)

And the time ODE

𝑇′ + 𝑘𝜆𝑇 = 0 (2)

We start by solving (1) to find the eigenvalues and eigenfunctions.

Case 𝜆 < 0

Solution is

𝑋 (𝑥) = 𝐴 cosh �√−𝜆𝑥� + 𝐵 sinh �√−𝜆𝑥�

𝑋′ (𝑥) = 𝐴√−𝜆 sinh �√−𝜆𝑥� + 𝐵√−𝜆 cosh �√−𝜆𝑥�

The boundary conditions 𝑋 (−𝜋) = 𝑋 (𝜋) results in (using the fact that cosh is even and sinh
is odd)

𝐴 cosh �√−𝜆𝜋� + 𝐵 sinh �√−𝜆𝜋� = 𝐴 cosh �√−𝜆𝜋� − 𝐵 sinh �√−𝜆𝜋�

𝐵 sinh �√−𝜆𝜋� = −𝐵 sinh �√−𝜆𝜋�

𝐵 sinh �√−𝜆𝜋� = 0 (3)

The boundary conditions 𝑋′ (−𝜋) = 𝑋′ (𝜋) results in (using the fact that cosh is even and
sinh is odd)

𝐴√−𝜆 sinh �√−𝜆𝜋� + 𝐵√−𝜆 cosh �√−𝜆𝜋� = −𝐴√−𝜆 sinh �√−𝜆𝜋� + 𝐵√−𝜆 cosh �√−𝜆𝜋�

𝐴√−𝜆 sinh �√−𝜆𝜋� = −𝐴√−𝜆 sinh �√−𝜆𝜋�

𝐴 sinh �√−𝜆𝜋� = 0 (4)

So we obtain (3,4) equations, here they are again

𝐵 sinh �√−𝜆𝜋� = 0

𝐴 sinh �√−𝜆𝜋� = 0

There are two possibility, either sinh �√−𝜆𝜋� = 0 or sinh �√−𝜆𝜋� ≠ 0. If sinh �√−𝜆𝜋� ≠ 0
then this leads to trivial solution, as it implies that both 𝐴 = 0 and 𝐵 = 0. On the other
hand, if sinh �√−𝜆𝜋� = 0 then this implies that √−𝜆𝜋 = 0 since sinh is only zero when its
argument is zero which is not the case here. This implies that 𝜆 < 0 is not possible.

Case 𝜆 = 0
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The solution now becomes 𝑋 (𝑥) = 𝐴𝑥+𝐵. Satisfying the boundary conditions 𝑋 (−𝜋) = 𝑋 (𝜋)
gives

𝐴𝜋 + 𝐵 = −𝐴𝜋 + 𝐵
2𝐴𝜋 = 0
𝐴 = 0

Hence the solution becomes

𝑋 (𝑥) = 𝐵
𝑋′ = 0

Satisfying the boundary conditions 𝑋′ (−𝜋) = 𝑋′ (𝜋) gives 0 = 0. Hence 𝜆 = 0 is possible
eigenvalue, with corresponding eigenfunction as constant, say 1.

Case 𝜆 > 0

Solution is

𝑋 (𝑥) = 𝐴 cos �√𝜆𝑥� + 𝐵 sin �√𝜆𝑥�

𝑋′ (𝑥) = −𝐴√𝜆 sin �√𝜆𝑥� + 𝐵√𝜆 cos �√𝜆𝑥�

The boundary conditions 𝑋 (−𝜋) = 𝑋 (𝜋) results in (using the fact that cos is even and sin
is odd)

𝐴 cos �√𝜆𝜋� + 𝐵 sin �√𝜆𝜋� = 𝐴 cos �√𝜆𝜋� − 𝐵 sin �√𝜆𝜋�

𝐵 sin �√𝜆𝜋� = −𝐵 sin �√𝜆𝜋�

𝐵 sin �√𝜆𝜋� = 0 (5)

The boundary conditions 𝑋′ (−𝜋) = 𝑋′ (𝜋) results in (using the fact that cosh is even and
sinh is odd)

−𝐴√𝜆 sin �√𝜆𝜋� + 𝐵√𝜆 cos �√𝜆𝜋� = 𝐴√𝜆 sin �√𝜆𝜋� + 𝐵√𝜆 cos �√𝜆𝜋�

−𝐴√𝜆 sin �√𝜆𝜋� = 𝐴√𝜆 sin �√𝜆𝜋�

𝐴 sin �√𝜆𝜋� = 0 (6)

So we obtain (5,6) equations, here they are again

𝐵 sin �√𝜆𝜋� = 0

𝐴 sin �√𝜆𝜋� = 0

There are two possibility, either sin �√𝜆𝜋� = 0 or sin �√𝜆𝜋� ≠ 0. If sin �√𝜆𝜋� ≠ 0 then this

leads to trivial solution, as it implies that both 𝐴 = 0 and 𝐵 = 0. If sin �√𝜆𝜋� = 0 then this

implies that √𝜆𝜋 = 𝑛𝜋 where 𝑛 = 1, 2, 3,⋯. Hence 𝜆 > 0 is possible with eigenvalues and
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corresponding eigenfunctions given by

𝜆𝑛 = 𝑛2 𝑛 = 1, 2, 3,⋯
𝑋𝑛 (𝑥) = 𝐴𝑛 cos (𝑛𝑥) + 𝐵𝑛 sin (𝑛𝑥)

Now that we solved the eigenvalue problem (1), we use the eigenvalues found to solve the
time ODE (2)

𝑇′ + 𝑘𝜆𝑛𝑇 = 0
When 𝜆 = 0, this becomes 𝑇′ = 0 or 𝑇0 (𝑡) is constant. When 𝜆 > 0 the solution is

𝑇𝑛 (𝑡) = 𝑒−𝑘𝜆𝑛𝑡

= 𝑒−𝑘𝑛2𝑡

Hence the fundamental solution is

𝑢𝑛 (𝑥, 𝑡) = 𝑋𝑛 (𝑥) 𝑇𝑛 (𝑡)
And by superposition, the general solution is

𝑢 (𝑥, 𝑡) = 𝐴0𝑋0 (𝑥) 𝑇0 (𝑡) +
∞
�
𝑛=1

(𝐴𝑛 cos (𝑛𝑥) + 𝐵𝑛 sin (𝑛𝑥)) 𝑒−𝑘𝑛2𝑡

But 𝑋0 (𝑥) = 1 and 𝑇0 (𝑡) is constant. Hence the above simplifies to

𝑢 (𝑥, 𝑡) = 𝐴0 +
∞
�
𝑛=1

(𝐴𝑛 cos (𝑛𝑥) + 𝐵𝑛 sin (𝑛𝑥)) 𝑒−𝑘𝑛2𝑡

What is left is to find 𝐴0, 𝐴𝑛, 𝐵𝑛. At 𝑡 = 0 the above gives

𝑓 (𝑥) = 𝐴0 +
∞
�
𝑛=1

𝐴𝑛 cos (𝑛𝑥) + 𝐵𝑛 sin (𝑛𝑥) (7)

For 𝑛 = 0, by orthogonality we obtain

�
𝜋

−𝜋
𝑓 (𝑥) 𝑑𝑥 = �

𝜋

−𝜋
𝐴0𝑑𝑥

�
𝜋

−𝜋
𝑓 (𝑥) 𝑑𝑥 = 𝐴0 (2𝜋)

𝐴0 =
1
2𝜋 �

𝜋

−𝜋
𝑓 (𝑥) 𝑑𝑥

For 𝑛 > 0. We start by multiplying both sides of (7) by cos (𝑚𝑥) and integrating both sides.
This gives

�
𝜋

−𝜋
𝑓 (𝑥) cos (𝑚𝑥) 𝑑𝑥 = �

𝜋

−𝜋
�
∞
�
𝑛=1

𝐴𝑛 cos (𝑛𝑥) cos (𝑚𝑥) + 𝐵𝑛 sin (𝑛𝑥) cos (𝑚𝑥)� 𝑑𝑥

=
∞
�
𝑛=1

𝐴𝑛�
𝜋

−𝜋
cos (𝑛𝑥) cos (𝑚𝑥) 𝑑𝑥 +

∞
�
𝑛=1

𝐵𝑛�
𝜋

−𝜋
sin (𝑛𝑥) cos (𝑚𝑥) 𝑑𝑥

But ∫
𝜋

−𝜋
sin (𝑛𝑥) cos (𝑚𝑥) 𝑑𝑥 = 0 for all 𝑛,𝑚. And ∫

𝜋

−𝜋
cos (𝑛𝑥) cos (𝑚𝑥) 𝑑𝑥 = ∫𝜋

−𝜋
cos2 (𝑚𝑥) 𝑑𝑥
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and zero for all other 𝑛 ≠ 𝑚. Hence the above simplifies to

�
𝜋

−𝜋
𝑓 (𝑥) cos (𝑚𝑥) 𝑑𝑥 = 𝐴𝑚�

𝜋

−𝜋
cos2 (𝑚𝑥) 𝑑𝑥

= 𝐴𝑚𝜋
Therefore

𝐴𝑛 =
1
𝜋 �

𝜋

−𝜋
𝑓 (𝑥) cos (𝑛𝑥) 𝑑𝑥

To find 𝐵𝑛 we do the same, but now we multiply both sides of (7) by sin (𝑚𝑥) and this leads
to

�
𝜋

−𝜋
𝑓 (𝑥) sin (𝑚𝑥) 𝑑𝑥 = �

𝜋

−𝜋
�
∞
�
𝑛=1

𝐴𝑛 cos (𝑛𝑥) sin (𝑚𝑥) + 𝐵𝑛 sin (𝑛𝑥) sin (𝑚𝑥)� 𝑑𝑥

=
∞
�
𝑛=1

𝐴𝑛�
𝜋

−𝜋
cos (𝑛𝑥) sin (𝑚𝑥) 𝑑𝑥 +

∞
�
𝑛=1

𝐵𝑛�
𝜋

−𝜋
sin (𝑛𝑥) sin (𝑚𝑥) 𝑑𝑥

But ∫
𝜋

−𝜋
cos (𝑛𝑥) sin (𝑚𝑥) 𝑑𝑥 = 0 for all 𝑛,𝑚. And ∫

𝜋

−𝜋
sin (𝑛𝑥) sin (𝑚𝑥) 𝑑𝑥 = ∫

𝜋

−𝜋
sin2 (𝑚𝑥) 𝑑𝑥 and

zero for all other 𝑛 ≠ 𝑚. Hence the above simplifies to

�
𝜋

−𝜋
𝑓 (𝑥) sin (𝑚𝑥) 𝑑𝑥 = 𝐵𝑚�

𝜋

−𝜋
sin2 (𝑚𝑥) 𝑑𝑥

= 𝐵𝑚𝜋
Therefore

𝐵𝑛 =
1
𝜋 �

𝜋

−𝜋
𝑓 (𝑥) sin (𝑛𝑥) 𝑑𝑥

This completes the solution. The final solution is

𝑢 (𝑥, 𝑡) = 𝐴0 +
∞
�
𝑛=1

(𝐴𝑛 cos (𝑛𝑥) + 𝐵𝑛 sin (𝑛𝑥)) 𝑒−𝑘𝑛2𝑡

=
1
2𝜋 �

𝜋

−𝜋
𝑓 (𝑥) 𝑑𝑥 +

∞
�
𝑛=1

𝑒−𝑘𝑛2𝑡 ��
1
𝜋 �

𝜋

−𝜋
𝑓 (𝑥) cos (𝑛𝑥) 𝑑𝑥� cos (𝑛𝑥) + �

1
𝜋 �

𝜋

−𝜋
𝑓 (𝑥) sin (𝑛𝑥) 𝑑𝑥� sin (𝑛𝑥)�
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