HW 5
 MATH 4567 Applied Fourier Analysis Spring 2019
 University of Minnesota, Twin Cities

Nasser M. Abbasi

Contents

1 Section 34, Problem 3 2
2 Section 37, Problem 1 5
3 Section 37, Problem 3 7
3.1 Part (a) . 7
3.2 Part (b) . 7
3.3 Part (c) . 7
3.4 Part (d) . 8

4 Section 37, Problem 5	9

5 Section 39, Problem 2 11

6	Section 39, Problem 4	12

1 Section 34, Problem 3

3. Verify that each of the functions

$$
u_{0}=y, \quad u_{n}=\sinh n y \cos n x \quad(n=1,2, \ldots)
$$

satisfies Laplace's equation (Sec. 23)

$$
u_{x x}(x, y)+u_{y y}(x, y)=0 \quad(0<x<\pi, 0<y<2)
$$

and the boundary conditions

$$
u_{x}(0, y)=u_{x}(\pi, y)=0, \quad u(x, 0)=0
$$

Then use the superposition principle in Sec. 33 to show formally, without considering questions of convergence, differentiability, or continuity, that the series

$$
u(x, y)=A_{0} y+\sum_{n=1}^{\infty} A_{n} \sinh n y \cos n x
$$

satisfies the same differential equation and boundary conditions.

Figure 1: Problem statement

Solution

The boundary conditions are

Figure 2: Boundary conditions

Let

$$
u(x, y)=X(x) Y(y)
$$

Substitution in the PDE $u_{x x}+y_{y y}=0$ leads to

$$
\begin{aligned}
X^{\prime \prime} Y+Y^{\prime \prime} Y & =0 \\
\frac{X^{\prime \prime}}{X} & =-\frac{Y^{\prime \prime}}{Y}=-\lambda
\end{aligned}
$$

Where λ is the separation constant. We obtain two ODE's

$$
\begin{align*}
X^{\prime \prime}+\lambda X & =0 \tag{1}\\
Y^{\prime \prime}-\lambda Y & =0 \tag{2}
\end{align*}
$$

We use the $X(x)$ ODE (1) to determine the eigenvalues, since that ODE has both boundary conditions specified:

$$
\begin{aligned}
X^{\prime \prime}+\lambda X & =0 \\
X^{\prime}(0) & =0 \\
X^{\prime}(\pi) & =0
\end{aligned}
$$

Case $\lambda<0$

Solution is

$$
\begin{aligned}
X(x) & =A \cosh (\sqrt{-\lambda} x)+B \sinh (\sqrt{-\lambda} x) \\
X^{\prime}(x) & =A \sqrt{-\lambda} \sinh (\sqrt{-\lambda} x)+B \sqrt{-\lambda} \cosh (\sqrt{-\lambda} x)
\end{aligned}
$$

At $x=0$ the above gives

$$
\begin{aligned}
0 & =B \sqrt{-\lambda} \cosh (0) \\
& =B \sqrt{-\lambda}
\end{aligned}
$$

Hence $B=0$ and the solution (3) reduces to

$$
\begin{aligned}
X(x) & =A \cosh (\sqrt{-\lambda} x) \\
X^{\prime}(x) & =A \sqrt{-\lambda} \sinh (\sqrt{-\lambda} x)
\end{aligned}
$$

At $x=\pi$ the above becomes

$$
0=A \sqrt{-\lambda} \sinh (\sqrt{-\lambda} \pi)
$$

For non-trivial solution we want $\sinh (\sqrt{-\lambda} \pi)=0$, but \sinh is only zero when its argument is zero, which is not possible here, since $\lambda \neq 0$. Therefore $\lambda<0$ is not possible.

Case $\lambda=0$

Solution becomes $X=A x+B$. Hence $X^{\prime}=A$. At $x=0$ this leads to $A=0$. Therefore the solution now becomes $X=B$. Hence $X^{\prime}=0$. Therefore the second boundary conditions at $x=\pi$ is automatically satisfied. Hence the solution is $X(x)=B$, a constant. We pick $X(x)=1$. Therefore $\lambda=0$ is eigenvalue with associated eigenfunction $X_{0}(x)=1$.

Case $\lambda>0$

The solution becomes

$$
\begin{aligned}
X(x) & =A \cos (\sqrt{\lambda} x)+B \sin (\sqrt{\lambda} x) \\
X^{\prime}(x) & =-A \sqrt{\lambda} \sin (\sqrt{\lambda} x)+B \sqrt{\lambda} \cos (\sqrt{\lambda} x)
\end{aligned}
$$

At $x=0$ the above becomes

$$
0=B \sqrt{\lambda}
$$

Hence $B=0$ and the solution reduces to

$$
\begin{aligned}
X(x) & =A \cos (\sqrt{\lambda} x) \\
X^{\prime}(x) & =-A \sqrt{\lambda} \sin (\sqrt{\lambda} x)
\end{aligned}
$$

At $x=\pi$ the above gives

$$
\begin{aligned}
0 & =-A \sqrt{\lambda} \sin (\sqrt{\lambda} \pi) \\
\sin (\sqrt{\lambda} \pi) & =0
\end{aligned}
$$

Therefore $\sqrt{\lambda} \pi=n \pi$ for $n=1,2,3, \cdots$. Hence

$$
\lambda_{n}=n^{2} \quad n=1,2,3, \cdots
$$

And the solution (corresponding eigenfunctions) is

$$
\begin{aligned}
X_{n}(x) & =\cos \left(\sqrt{\lambda_{n}} x\right) \\
& =\cos (n x)
\end{aligned}
$$

In summary, the solution to the X ODE resulted in

$$
\begin{align*}
& X_{0}(x)=1 \quad n=0 \tag{3}\\
& X_{n}(x)=\cos (n x) \quad n=1,2,3, \cdots
\end{align*}
$$

Now we solve for the Y ODE

$$
\begin{aligned}
Y^{\prime \prime}-\lambda Y & =0 \\
Y(0) & =0
\end{aligned}
$$

We are only given boundary conditions on bottom edge.
case $\lambda=0$

$$
Y=A y+B
$$

When $y=0$ the above leads to $0=B$. Hence the corresponding eigenfunction is $Y_{0}(y)=y$.
case $\lambda>0$
The solution becomes

$$
Y(y)=A \cosh (\sqrt{\lambda} y)+B \sinh (\sqrt{\lambda} y)
$$

At $y=0$ the above gives

$$
\begin{aligned}
0 & =A \cosh (0) \\
& =A
\end{aligned}
$$

Hence the solution reduces to

$$
Y(y)=B \sinh (\sqrt{\lambda} y)
$$

Therefore the eigenfunctions for $n=1,2,3, \cdots$ are $Y_{n}(y)=\sinh (n y)$ since $\lambda_{n}=n^{2}$ for $n=1,2,3, \cdots$.

In summary, the solution to the Y ODE resulted in

$$
\begin{align*}
& Y_{0}(y)=y \quad n=0 \tag{4}\\
& Y_{n}(x)=\sinh (n y) \quad n=1,2,3, \cdots
\end{align*}
$$

From $(3,4)$ we see that

$$
u_{n}(x, y)=X_{n}(x) Y_{n}(y)
$$

For $n=0$ the above becomes

$$
\begin{aligned}
u_{0}(x, y) & =(1)(y) \\
& =y
\end{aligned}
$$

And for $n=1,2,3, \cdots$

$$
\begin{aligned}
u_{n}(x, y) & =\sinh (n y) \\
& =\cos (n x) \sinh (n y)
\end{aligned}
$$

Using superposition, then

$$
\begin{aligned}
u(x, y) & =X(x) Y(y) \\
& =A_{0} u_{0}+\sum_{n=1}^{\infty} A_{n} u_{n} \\
& =A_{0} y+\sum_{n=1}^{\infty} A_{n} \cos (n x) \sinh (n y)
\end{aligned}
$$

QED.

2 Section 37, Problem 1

(1.) In Problem 3, Sec. 34, the functions

$$
u_{0}=y, \quad u_{n}=\sinh n y \cos n x \quad(n=1,2, \ldots)
$$

were shown to satisfy Laplace's equation

$$
u_{x x}(x, y)+u_{y y}(x, y)=0 \quad(0<x<\pi, 0<y<2)
$$

and the homogeneous boundary conditions

$$
u_{x}(0, y)=u_{x}(\pi, y)=0, \quad u(x, 0)=0
$$

After writing $u=X(x) Y(y)$ and separating variables, use the solutions of the Sturm Liouville problem (1) in Sec. 35 to show how the functions u_{0} and $u_{n}(n=1,2, \ldots)$ can be discovered. Then, by proceeding formally, derive the following solution of the boundary value problem that results when the nonhomogeneous condition $u(x, 2)=f(x)$ is
included: included:

$$
u(x, y)=A_{0} y+\sum_{n=1}^{\infty} A_{n} \sinh n y \cos n x
$$

where

$$
A_{0}=\frac{1}{2 \pi} \int_{0}^{\pi} f(x) d x, \quad A_{n}=\frac{2}{\pi \sinh 2 n} \int_{0}^{\pi} f(x) \cos n x d x \quad(n=1,2, \ldots)
$$

Figure 3: Problem statement

Solution

The boundary conditions now become as follows

Figure 4: Boundary conditions

From the above problem we know the general solution is

$$
\begin{equation*}
u(x, y)=A_{0} y+\sum_{n=1}^{\infty} A_{n} \cos (n x) \sinh (n y) \tag{1}
\end{equation*}
$$

Now we impose the remaining boundary condition $u(x, 2)=f(x)$. Therefore the above becomes

$$
f(x)=2 A_{0}+\sum_{n=1}^{\infty} A_{n} \cos (n x) \sinh (2 n)
$$

Multiplying both sides by $\cos (m x)$ integrating w.r.t. x from $x=0$ to $x=\pi$ results in

$$
\begin{aligned}
& \int_{0}^{\pi} f(x) \cos (m x) d x=\int_{0}^{\pi} 2 A_{0} \cos (m x) d x+\left[\int_{0}^{\pi} \sum_{n=1}^{\infty} A_{n} \cos (n x) \cos (m x) \sinh (2 n) d x\right] \\
& \int_{0}^{\pi} f(x) \cos (m x) d x=\int_{0}^{\pi} 2 A_{0} \cos (m x) d x+\left[\sum_{n=1}^{\infty} A_{n} \sinh (2 n)\left(\int_{0}^{\pi} \cos (n x) \cos (m x) d x\right)\right]
\end{aligned}
$$

case $m=0$

$$
\begin{align*}
\int_{0}^{\pi} f(x) d x & =\int_{0}^{\pi} 2 A_{0} d x \\
& =2 A_{0} \pi \\
A_{0} & =\frac{1}{2 \pi} \int_{0}^{\pi} f(x) d x \tag{2}
\end{align*}
$$

case $m=1,2, \cdots$

$$
\int_{0}^{\pi} f(x) \cos (m x) d x=\sum_{n=1}^{\infty} A_{n} \sinh (2 n)\left(\int_{0}^{\pi} \cos (n x) \cos (m x) d x\right)
$$

But $\int_{0}^{\pi} \cos (n x) \cos (m x) d x=0$ for all $m \neq n$ and $\frac{\pi}{2}$ when $m=n$. Hence the above simplifies to

$$
\begin{aligned}
\int_{0}^{\pi} f(x) \cos (m x) d x & =\frac{\pi}{2} A_{m} \sinh (2 m) \\
A_{m} & =\frac{2}{\pi \sinh (2 m)} \int_{0}^{\pi} f(x) \cos (m x) d x
\end{aligned}
$$

Since m is summation index, we can rename it to n and the above becomes

$$
\begin{equation*}
A_{n}=\frac{2}{\pi \sinh (2 n)} \int_{0}^{\pi} f(x) \cos (n x) d x \tag{3}
\end{equation*}
$$

Using $(2,3)$ in (1) gives the final solution

$$
u(x, y)=\left(\frac{1}{2 \pi} \int_{0}^{\pi} f(x) d x\right) y+\sum_{n=1}^{\infty}\left(\frac{2}{\pi \sinh (2 n)} \int_{0}^{\pi} f(x) \cos (n x) d x\right) \cos (n x) \sinh (n y)
$$

3 Section 37, Problem 3

(1)
possible to write $u=X(x) T(t)$ ations in $u=u(x, t)$, determine if it is ($)$ and separate variables to obtain ordinary differential
(a) $u_{x x}-x t u_{t t}=0$;
(b) $(x+t) u_{x x}-u_{t}=0$;
(c) $x u_{x x}+u_{x t}+t u_{t t}=0$;
(d) $u_{x x}-u_{t t}-u_{t}=0$.

Figure 5: Problem statement

3.1 Part (a)

$$
u_{x x}-x t u_{t t}=0
$$

Let $u=X(x) T(t)$. Substituting this into the above PDE gives

$$
X^{\prime \prime} T-x t T^{\prime \prime} X=0
$$

Dividing by $X T \neq 0$ gives

$$
\frac{X^{\prime \prime}}{X}-x t \frac{T^{\prime \prime}}{T}=0
$$

Diving by x gives

$$
\begin{aligned}
\frac{1}{x} \frac{X^{\prime \prime}}{X}-t \frac{T^{\prime \prime}}{T} & =0 \\
\frac{1}{x} \frac{X^{\prime \prime}}{X} & =t \frac{T^{\prime \prime}}{T}=-\lambda
\end{aligned}
$$

Hence it possible to separate them. The generated ODE's are

$$
\begin{aligned}
X^{\prime \prime}+\lambda x X & =0 \\
T^{\prime \prime}+\lambda \frac{T}{t} & =0
\end{aligned}
$$

3.2 Part (b)

$$
(x+t) u_{x x}-u_{t}=0
$$

Let $u=X(x) T(t)$. Substituting this into the above PDE gives

$$
(x+t) X^{\prime \prime} T-T^{\prime} X=0
$$

Dividing by $X T \neq 0$ gives

$$
x \frac{X^{\prime \prime}}{X}+t \frac{X^{\prime \prime}}{X}-\frac{T^{\prime}}{T}=0
$$

It is not possible to separate them.

3.3 Part (c)

$$
x u_{x x}+u_{x t}+t u_{t t}=0
$$

Let $u=X(x) T(t)$. Substituting this into the above PDE gives

$$
\begin{aligned}
x X^{\prime \prime} T-\frac{\partial}{\partial t}\left(X^{\prime} T\right)+t T^{\prime \prime} X & =0 \\
x X^{\prime \prime} T-X^{\prime} T^{\prime} X+t T^{\prime \prime} X & =0
\end{aligned}
$$

Dividing by $X T \neq 0$ gives

$$
x \frac{X^{\prime \prime}}{X}-X^{\prime} T^{\prime}+t \frac{T^{\prime \prime}}{T}=0
$$

It is not possible to separate them.

3.4 Part (d)

$$
u_{x x}-u_{t t}-u_{t}=0
$$

Let $u=X(x) T(t)$. Substituting this into the above PDE gives

$$
X^{\prime \prime} T-T^{\prime \prime} X-T^{\prime} X=0
$$

Dividing by $X T \neq 0$ gives

$$
\begin{aligned}
\frac{X^{\prime \prime}}{X}-\frac{T^{\prime \prime}}{T}-\frac{T^{\prime}}{T} & =0 \\
\frac{X^{\prime \prime}}{X} & =\frac{T^{\prime \prime}}{T}+\frac{T^{\prime}}{T}=-\lambda
\end{aligned}
$$

It is possible to separate them. The ODE's are

$$
\begin{aligned}
X^{\prime \prime}+\lambda X & =0 \\
T^{\prime \prime}+T^{\prime}+\lambda T & =0
\end{aligned}
$$

4 Section 37, Problem 5

Derive the eigenvalues and eigenfunctions, stated in Sec. 35, of the Sturm-Liouville problem

$$
X^{\prime \prime}(x)+\lambda X(x)=0, \quad X(0)=0, \quad X(c)=0
$$

Figure 6: Problem statement

Case $\lambda<0$
Solution is

$$
X(x)=A \cosh (\sqrt{-\lambda} x)+B \sinh (\sqrt{-\lambda} x)
$$

At $x=0$ the above gives

$$
0=A
$$

Hence the solution becomes

$$
X(x)=B \sinh (\sqrt{-\lambda} x)
$$

At $x=c$ the above becomes

$$
0=B \sinh (\sqrt{-\lambda} c)
$$

For non-trivial solution we want $\sinh (\sqrt{-\lambda} c)=0$. But sinh is zero only when its argument is zero. Which means $\sqrt{-\lambda} c=0$ which is not possible. Hence $\lambda<0$ is not possible.
Case $\lambda=0$
Solution is

$$
X(x)=A x+B
$$

At $x=0$ the above gives

$$
0=B
$$

Hence the solution becomes

$$
X(x)=B
$$

At $x=c$ the above becomes

$$
0=B
$$

Which gives trivial solution. Hence $\lambda=0$ is not possible.
Case $\lambda>0$
Solution is

$$
X(x)=A \cos (\sqrt{\lambda} x)+B \sin (\sqrt{\lambda} x)
$$

At $x=0$ the above gives

$$
0=A
$$

Hence the solution becomes

$$
X(x)=B \sin (\sqrt{\lambda} x)
$$

At $x=c$ the above becomes

$$
0=B \sin (\sqrt{\lambda} c)
$$

For non trivial solution we want $\sin (\sqrt{\lambda} c)=0$ which implies

$$
\begin{aligned}
\sqrt{\lambda} c & =n \pi \quad n=1,2,3, \cdots \\
\lambda_{n} & =\left(\frac{n \pi}{c}\right)^{2}
\end{aligned}
$$

Therefore the eigenvalues are $\lambda_{n}=\left(\frac{n \pi}{c}\right)^{2}$ for $n=1,2,3, \cdots$ and the eigenfunctions are $X_{n}(x)=\sin \left(\frac{n \pi}{c} x\right)$ for $n=1,2,3, \cdots$.

5 Section 39, Problem 2

```
center plane }x=\pi/2
Suppose that }f(x)=\operatorname{sin}x\mathrm{ in Example 1, Sec. 39. Find }u(x,t)\mathrm{ and verify the result fully.
    Suggestion: Use the integration formula obtained in Problem 9, Sec. 5.
    Answer:}u(x,t)=\mp@subsup{e}{}{-kt}\operatorname{sin}x\mathrm{ .
```

Figure 7: Problem statement

Solution

Example 1 is: Solve $u_{t}=k u_{x x}$ with $u(0, t)=0$ and $u(\pi, t)=0$. We now use initial conditions $u(x, 0)=\sin (x)$. The eigenvalues are $\lambda_{n}=n^{2}$ for $n=1,2,3, \cdots$ and eigenfunctions are $\sin (n x)$. The general solution for this example is given in the book as

$$
u(x, t)=\sum_{n=1}^{\infty} B_{n} e^{-k n^{2} t} \sin (n x)
$$

At $t=0$ the above becomes

$$
\begin{equation*}
\sin x=\sum_{n=1}^{\infty} B_{n} \sin (n x) \tag{1}
\end{equation*}
$$

By comparing sides, we see that only $n=1$ term exist. Hence $B_{1}=1$ and all other terms are zero. Hence the solution is, for $n=1$

$$
u(x, t)=e^{-k t} \sin (x)
$$

To verify this, we start with (1) and multiply both sides by $\sin (m x)$ and integrate which gives

$$
\begin{aligned}
\int_{0}^{\pi} \sin x \sin (m x) d x & =\int_{0}^{\pi} \sum_{n=1}^{\infty} B_{n} \sin (n x) \sin (m x) d x \\
& =\sum_{n=1}^{\infty} B_{n}\left(\int_{0}^{\pi} \sin (n x) \sin (m x) d x\right)
\end{aligned}
$$

But $\int_{0}^{\pi} \sin (n x) \sin (m x) d x=0$ for $m \neq n$ and $\frac{\pi}{2}$ for $n=m$. Hence the above gives

$$
\int_{0}^{\pi} \sin x \sin (m x) d x=B_{m} \frac{\pi}{2}
$$

Similarly, $\int_{0}^{\pi} \sin x \sin (m x) d x=0$ for $m \neq 1$ and $\frac{\pi}{2}$ when $m=1$, therefore the above becomes

$$
\begin{aligned}
\frac{\pi}{2} & =B_{1} \frac{\pi}{2} \\
B_{1} & =1
\end{aligned}
$$

And all other $B_{n}=0$. Which gives the same result obtain above, which is $u(x, t)=e^{-k t} \sin (x)$

6 Section 39, Problem 4

the conditions on the faces of the slab in Example 2, Sec. 39, are reversed, so tha

$$
u(0, t)=u_{0} \quad \text { and } \quad u(\pi, t)=0
$$

By replacing x with $\pi-x$ in solution (15) in that example, show that the solution of this new boundary value problem is

$$
u(x, t)=u_{0}\left[1-\frac{x}{\pi}-\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} e^{-n^{2} k t} \sin n x\right]
$$

Figure 8: Problem statement

Solution

We need to solve

$$
u_{t}=k u_{x x} \quad t>0,0<x<\pi
$$

With boundary conditions

$$
\begin{aligned}
& u(0, t)=u_{0} \\
& u(\pi, t)=0
\end{aligned}
$$

And initial conditions

$$
u(x, 0)=0
$$

Solution (15) is

$$
\begin{equation*}
u(x, t)=\frac{u_{0}}{\pi}\left[x+2 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} e^{-n^{2} k t} \sin (n x)\right] \tag{15}
\end{equation*}
$$

Replacing x by $\pi-x$ in (15) gives

$$
\begin{align*}
u(x, t) & =\frac{u_{0}}{\pi}\left[(\pi-x)+2 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} e^{-n^{2} k t} \sin (n(\pi-x))\right] \\
& =\frac{u_{0}}{\pi}(\pi-x)+2 \frac{u_{0}}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} e^{-n^{2} k t} \sin (n \pi-n x) \tag{2}
\end{align*}
$$

Using $\sin (A-B)=\sin A \cos B+\cos A \sin B$, then

$$
\sin (n \pi-n x)=\sin (n \pi) \cos (n x)+\cos (n \pi) \sin (n x)
$$

But $\sin (n \pi)=0$ since n is integer and $\cos (n \pi)=(-1)^{n}$, then $\sin (n \pi-n x)=(-1)^{n} \sin (n x)$. Substituting this in (2) gives

$$
\begin{aligned}
u(x, t) & =u_{0}-u_{0} \frac{x}{\pi}+2 \frac{u_{0}}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} e^{-n^{2} k t}(-1)^{n} \sin (n x) \\
& =u_{0}\left[1-\frac{x}{\pi}+\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{2 n}}{n} e^{-n^{2} k t} \sin (n x)\right] \\
& =u_{0}\left[1-\frac{x}{\pi}+\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} e^{-n^{2} k t} \sin (n x)\right]
\end{aligned}
$$

Which is the result required.

