HW 4 MATH 4567 Applied Fourier Analysis Spring 2019
 University of Minnesota, Twin Cities

[^0]
Contents

1 Section 27, Problem 8 2
$2 \quad$ Section 28, Problem 1 4
3 Section 28, Problem 5 7
4 Section 30, Problem 3 9
4.1 Part a 10
4.2 Part b 10
5 Section 30, Problem 4 12
6 Section 31, Problem 2 13
6.1 Part a 13
6.2 Part b 15
6.3 Part c 16
7 Section 31, Problem 3 18
7.1 Part a 20
7.2 Part b 20

1 Section 27, Problem 8

8. Suppose that temperatures u in a solid hemisphere $r \leq 1,0 \leq \theta \leq \pi / 2$ are independent of the spherical coordinate ϕ, so that $u=u(r, \theta)$, and that the base of the hemisphere is insulated (Fig. 23). Use transformation (13), Sec. 25, which relates spherical and cylindrical coordinates, to show that

$$
\frac{\partial u}{\partial \theta}=-\rho \frac{\partial u}{\partial z}+z \frac{\partial u}{\partial \rho}
$$

HGURE 23
Thus show that u must satisfy the boundary condition

$$
u_{\theta}\left(r, \frac{\pi}{2}\right)=0
$$

Figure 1: Problem statement

$\underline{\text { Solution }}$

The cylindrical and spherical coordinates are defined as given in the textbook figures shown below

FIGURE 16

Figure 2: Cylinderical coordinates

FIGURE 17

Figure 3: Spherical coordinates

The relation between these is given by (13) in the book

$$
\begin{align*}
z & =r \cos \theta \tag{1}\\
\rho & =r \sin \theta \tag{2}\\
\phi & =\phi \tag{3}
\end{align*}
$$

To obtain the required formula, we will use the chain rule. Since in spherical we have $u \equiv u(r, \theta)$ and in cylindrical we have $u \equiv u(\rho, z)$, then by chain rule

$$
\frac{\partial u}{\partial \theta}=\frac{\partial u}{\partial \rho} \frac{\partial \rho}{\partial \theta}+\frac{\partial u}{\partial z} \frac{\partial z}{\partial \theta}
$$

But from (2) $\frac{\partial \rho}{\partial \theta}=r \cos \theta$ and from (1) $\frac{\partial z}{\partial \theta}=-r \sin \theta$, hence the above becomes

$$
\frac{\partial u}{\partial \theta}=\frac{\partial u}{\partial \rho}(r \cos \theta)+\frac{\partial u}{\partial z}(-r \sin \theta)
$$

But $r \cos \theta=z$ and $-r \sin \theta=\rho$, hence the above simplifies to

$$
\begin{equation*}
\frac{\partial u}{\partial \theta}=z \frac{\partial u}{\partial \rho}-\rho \frac{\partial u}{\partial z} \tag{4}
\end{equation*}
$$

Which is the result required to show. Now we need to show that $\frac{\partial u}{\partial \theta}$ evaluated at boundary $r=1, \theta=\frac{\pi}{2}$ is zero. But $\theta=\frac{\pi}{2}$ implies that $z=0$, since $z=r \cos \theta$. Hence (4) now reduces to

$$
\begin{equation*}
\frac{\partial u}{\partial \theta}=-\rho \frac{\partial u}{\partial z} \tag{4}
\end{equation*}
$$

Since $\theta=\frac{\pi}{2}$, then $\frac{\partial u}{\partial z}$ is the directional derivative normal to the base surface. But we are told it is insulated. This implies that $\frac{\partial u}{\partial z}=0$, since by definition this is what insulated means. Therefore $\frac{\partial u}{\partial \theta}=0$ at $r=1, \theta=\frac{\pi}{2}$, which is what we are asked to show.

2 Section 28, Problem 1

1. A stretched string, with its ends fixed at the points 0 and $2 c$ on the x axis, hangs at rest under its own weight. The y axis is directed vertically upward. Point out how it follows from the nonhomogeneous wave equation (6), Sec. 28, that the static displacements $y(x)$ of points on the string must satisfy the differential equation

$$
a^{2} y^{\prime \prime}(x)=g \quad\left(a^{2}=\frac{H}{\delta}\right)
$$

on the interval $0<x<2 c$, in addition to the boundary conditions

$$
y(0)=0, \quad y(2 c)=0
$$

By solving this boundary value problem, show that the string hangs in the parabolic arc

$$
(x-c)^{2}=\frac{2 a^{2}}{g}\left(y+\frac{g c^{2}}{2 a^{2}}\right) \quad(0 \leq x \leq 2 c)
$$

and that the depth of the vertex of the arc varies directly with c^{2} and δ and inversely with H.

Figure 4: Problem statement

Eq (6) in section 28 is

$$
y_{t t}(x, t)=a^{2} y_{x x}(x, t)-g
$$

At static displacement, by definition, there is no time dependency, hence $y_{t t}=0$ and the above becomes

$$
0=a^{2} y_{x x}(x, t)-g
$$

Therefore now this becomes an ODE instead of a PDE since it does not depend on time, and we can write the above as

$$
\begin{equation*}
a^{2} y^{\prime \prime}(x)=g \tag{1}
\end{equation*}
$$

The boundary conditions $y(0, t)=0$ and $y(2 x, t)=0$ now become $y(0)=0, y(2 x)=0$. Now we need to solve (1) with these boundary conditions. This is an boundary value ODE.

$$
y^{\prime \prime}(x)=\frac{g}{a^{2}}
$$

The RHS is constant. The solution to the homogeneous ODE $y^{\prime \prime}=0$ is $y_{h}=A x+B$. Let the particular solution be $y_{p}=C_{3} x^{2}$, then $y_{p}^{\prime}=2 C_{3} x$ and $y_{p}^{\prime \prime}=2 C_{3}$. Substituting this in the above ODE gives

$$
\begin{aligned}
2 C_{3} & =\frac{g}{a^{2}} \\
C_{3} & =\frac{g}{2 a^{2}}
\end{aligned}
$$

Hence $y_{p}(x)=\frac{g}{2 a^{2}} x^{2}$. Therefore the general solution is

$$
\begin{align*}
y & =y_{h}+y_{p} \\
& =A x+B+\frac{g}{2 a^{2}} x^{2} \tag{2}
\end{align*}
$$

Now we will use the boundary conditions to find A, B above. At $x=0$, (2) becomes

$$
0=B
$$

Hence solution (2) reduces to

$$
\begin{equation*}
y(x)=A x+\frac{g}{2 a^{2}} x^{2} \tag{3}
\end{equation*}
$$

At $x=2 c$, the second boundary condition gives

$$
\begin{aligned}
0 & =2 c A+\frac{g}{2 a^{2}}\left(4 c^{2}\right) \\
A & =\frac{-g}{2 a^{2}} \frac{\left(4 c^{2}\right)}{2 c} \\
& =\frac{-g c}{a^{2}}
\end{aligned}
$$

Hence the solution (3) becomes

$$
\begin{align*}
& y=\frac{-g c}{a^{2}} x+\frac{g}{2 a^{2}} x^{2} \\
& y=\frac{g x^{2}-2 g c x}{2 a^{2}} \tag{4}
\end{align*}
$$

To get the result needed, we can manipulate this more as follows. From (4)

$$
\begin{aligned}
2 a^{2} y & =g x^{2}-2 g c x \\
& =g\left(x^{2}-2 c x\right) \\
& =g(x-c)^{2}-g c^{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
g(x-c)^{2} & =2 a^{2} y+g c^{2} \\
(x-c)^{2} & =\frac{2 a^{2} y}{g}+c^{2} \\
& =\frac{2 a^{2}}{g}\left(y+\frac{g c^{2}}{2 a^{2}}\right)
\end{aligned}
$$

Now since $a^{2}=\frac{H}{\delta}$ then the above becomes

$$
\begin{aligned}
\frac{g}{2 a^{2}}(x-c)^{2} & =y+\frac{g c^{2}}{2 a^{2}} \\
y & =\frac{1}{2 a^{2}}\left(g(x-c)^{2}-g c^{2}\right) \\
& =\frac{g}{2 \frac{H}{\delta}}\left((x-c)^{2}-c^{2}\right) \\
& =\frac{\delta}{H} \frac{g}{2}\left((x-c)^{2}-c^{2}\right)
\end{aligned}
$$

We see now that y is directly proportional to δ and c^{2} and inversely proportional to H.

3 Section 28, Problem 5

5. A strand of wire 1 ft long, stretched between the origin and the point 1 on the x axis, weighs $0.032 \mathrm{lb}\left(\delta g=0.032, g=32 \mathrm{ft} / \mathrm{s}^{2}\right)$ and $H=10 \mathrm{lb}$. At the instant $t=0$, the strand lies along the x axis but has a velocity of $1 \mathrm{ft} / \mathrm{s}$ in the direction of the y axis, perhaps because the supports were in motion and were brought to rest at that instant. Assuming that no external forces act along the wire, state why the displacements $y(x, t)$ should satisfy this boundary value problem:

$$
\begin{gathered}
y_{t t}(x, t)=10^{4} y_{x x}(x, t) \\
y(0, t)=y(1, t)=0, \quad y(x, 0)=0, \quad y_{t}(x, 0)=1
\end{gathered}
$$

Figure 5: Problem statement
solution
The wave PDE in 1D is given by

$$
\begin{equation*}
y_{t t}(x, t)=a^{2} y_{x x}(x, t) \tag{1}
\end{equation*}
$$

Where

$$
a^{2}=\frac{H}{\delta}
$$

Where H is the tension in the strand and δ is the mass per unit length of the strand. But weight $=($ mass $) g$. hence $\delta=\frac{\text { weight }}{g}$. We are given that weight $=0.032 \mathrm{lb}$, and that $g=32$ $\mathrm{ft} / \mathrm{s}^{2}$. This implies that

$$
\delta=\frac{0.032}{32}=\frac{1}{1000}
$$

Hence

$$
a^{2}=\frac{10}{\frac{1}{1000}}=10^{4}
$$

Therefore (1) becomes

$$
\begin{equation*}
y_{t t}(x, t)=10^{4} y_{x x}(x, t) \tag{2}
\end{equation*}
$$

Since at $t=0$ we are told that strand lies along the x-axis, then $y(x, 0)=0$ and problem says $y_{t}(x, 0)=1$. For boundary conditions, since strand fixed at $x=0$ and $x=1$, then this
implies $y(0, t)=0$ and $y(1, t)=0$. Therefore the PDE is

$$
\begin{aligned}
y_{t t}(x, t) & =10^{4} y_{x x}(x, t) \quad 0<x<1, t>0 \\
y(x, 0) & =0 \\
y_{t}(x, 0) & =1 \\
y(0, t) & =0 \\
y(1, t) & =0
\end{aligned}
$$

4 Section 30, Problem 3

3. Let $y(x, t)$ represent transverse displacements in a long stretched string one end of which is attached to a ring that can slide along the y axis. The other end is so far out on the positive x axis that it may be considered to be infinitely far from the origin. The ring is initially at the origin and is then moved along the y axis (Fig. 27) so that $y=f(l)$ when $x=0$ and $t \geq 0$, where f is a prescribed continuous function and $f(0)=0$. We assume that the string is initially at rest on the x axis; thus $y(x, t) \rightarrow 0$ as $x \rightarrow \infty$. The
boundary value problem for $y(x, t)$ is

$$
\begin{array}{rr}
y_{t t}(x, t)=a^{2} y_{x x}(x, t) & (x>0, t>0) \\
y(x, 0)=0, \quad y_{t}(x, 0)=0 & (x \geq 0) \\
y(0, t)=f(t) & (t \geq 0)
\end{array}
$$

IIGURE 27
(a) Apply the first two of these boundary conditions to the general solution (Sec. 30)

$$
y(x, t)=\phi(x+a t)+\psi(x-a t)
$$

of the one-dimensional wave equation to show that there is a constant C such that

$$
\phi(x)=C \quad \text { and } \quad \psi(x)=-C \quad(x \geq 0)
$$

Then apply the third boundary condition $y(0, t)=f(t)$ to show that

$$
\psi(-x)=f\left(\frac{x}{a}\right)-C \quad(x \geq 0)
$$

where C is the same constant.
(b) With the aid of the results in part (a), derive the solution

$$
y(x, t)= \begin{cases}0 & \text { when } x \geq a t \\ f\left(t-\frac{x}{a}\right) & \text { when } x<a t\end{cases}
$$

Note that the part of the string to the right of the point $x=a t$ on the x axis is unaffected by the movement of the ring prior to time t, as shown in Fig. 27.

Figure 6: Problem statement

4.1 Part a

Applying the first initial conditions $y(x, 0)=0$ to the solution

$$
\begin{equation*}
y(x, t)=\phi(x+a t)+\psi(x-a t) \tag{1}
\end{equation*}
$$

Gives

$$
\begin{equation*}
0=\phi(x)+\psi(x) \tag{2}
\end{equation*}
$$

But $y_{t}=a \phi^{\prime}-a \psi^{\prime}$. Hence the second initial conditions at $t=0$ gives

$$
\begin{equation*}
0=a \phi^{\prime}(x)-a \psi^{\prime}(x) \tag{3}
\end{equation*}
$$

Taking derivative of (2) and multiplying the resulting equation by a gives

$$
\begin{equation*}
0=a \phi^{\prime}(x)+a \psi^{\prime}(x) \tag{2A}
\end{equation*}
$$

Adding (3,2A) gives

$$
\begin{aligned}
2 a \phi^{\prime}(x) & =0 \\
\phi^{\prime}(x) & =0
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\phi(x)=C \tag{4}
\end{equation*}
$$

Where C is an arbitrary constant. Substituting the above result back in (2) gives

$$
\begin{align*}
0 & =C+\psi(x) \\
\psi(x) & =-C \tag{5}
\end{align*}
$$

From $(4,5)$ we see that

$$
\begin{aligned}
& \phi(x)=C \\
& \psi(x)=-C
\end{aligned}
$$

Now applying boundary condition $y(0, t)=f(t)$ to (1) gives

$$
f(t)=\phi(a t)+\psi(-a t)
$$

But a is the speed of the wave given by $a=\frac{x}{t}$ or $t=\frac{x}{a}$. Hence the above becomes

$$
\begin{aligned}
f\left(\frac{x}{a}\right) & =\phi(x)+\psi(-x) \\
\psi(-x) & =f\left(\frac{x}{a}\right)-\phi(x)
\end{aligned}
$$

Since $\phi(x)=C$ from equation (4), then the final result is obtained

$$
\begin{equation*}
\psi(-x)=f\left(\frac{x}{a}\right)-C \quad x \geq 0 \tag{6}
\end{equation*}
$$

4.2 Part b

Since the part to the right of $x=a t$ is unaffected by the movement of the right, then

$$
\begin{equation*}
y(x, t)=0 \quad x \geq a t \tag{1}
\end{equation*}
$$

So now we need to find the solution for $x<a t$ and $x \geq 0$. From

$$
y(x, t)=\phi(x+a t)+\psi(x-a t)
$$

And using (6) in part (a), we see that $\psi(x-a t)=f\left(\frac{-(x-a t)}{a}\right)-C$. Therefore the above becomes

$$
y(x, t)=\phi(x+a t)+f\left(\frac{-(x-a t)}{a}\right)-C
$$

But also from part (a) $\phi(x+a t)=C$. Hence the above simplifies to

$$
\begin{align*}
y(x, t) & =c+f\left(\frac{-(x-a t)}{a}\right)-C \\
& =f\left(\frac{-x+a t}{a}\right) \\
& =f\left(t-\frac{x}{a}\right) \quad x<a t \tag{2}
\end{align*}
$$

Combining (1) and (2) shows that

$$
y(x, t)=\left\{\begin{array}{cc}
0 & x \geq a t \\
f\left(t-\frac{x}{a}\right) & x<a t
\end{array}\right.
$$

5 Section 30, Problem 4

4. Use the solution obtained in Problem 3 to show that if the ring at the left-hand end of the string in that problem is moved according to the function

$$
f(t)= \begin{cases}\sin \pi t & \text { when } 0 \leq t \leq 1 \\ 0 & \text { when } t>1\end{cases}
$$

then

$$
y(x, t)= \begin{cases}0 & \text { when } x \leq a(t-1) \text { or } x \geq a t \\ \sin \left[\pi\left(t-\frac{x}{a}\right)\right] & \text { when } a(t-1)<x<a t\end{cases}
$$

Observe that the ring is lifted up 1 unit and then returned to the origin, where it remains after time $t=1$. The expression for $y(x, t)$ here shows that when $t>1$, the string coincides with the x axis except on an interval of length a, where it forms one arch of a sine curve (Fig. 28). Furthermore, as t increases, the arch moves to the right with speed a.

FIGURE 28

Figure 7: Problem statement

This requires just substitution of the function $f(t)$ given into the solution found above which is

$$
y(x, t)=\left\{\begin{array}{cc}
0 & x \geq a t \tag{1}\\
f\left(t-\frac{x}{a}\right) & x<a t
\end{array}\right.
$$

But

$$
f(t)=\left\{\begin{array}{cc}
\sin \pi t & 0 \leq t \leq 1 \tag{2}\\
0 & t>1
\end{array}\right.
$$

Substituting (2) into (1) gives, after replacing each t in (2) by $t-\frac{x}{a}$ the result needed

$$
y(x, t)=\left\{\begin{array}{cc}
0 & x \geq a t \\
\sin \left(\pi\left(t-\frac{x}{a}\right)\right) & a(t-1)<x<a t
\end{array}\right.
$$

6 Section 31, Problem 2

2. Consider the partial differential equation

$$
A y_{x x}+B y_{x t}+C y_{t t}=0 \quad(A \neq 0, C \neq 0)
$$

where A, B, and C are constants, and assume that it is hyperbolic, so that $B^{2}-4 A C>0$. (a) Use the transformation

$$
u=x+\alpha t, \quad v=x+\beta t \quad(\alpha \neq \beta)
$$

to obtain the new differential equation

$$
\left(A+B \alpha+C \alpha^{2}\right) y_{u u}+[2 A+B(\alpha+\beta)+2 C \alpha \beta] y_{w v}+\left(A+B \beta+C \beta^{2}\right) y_{v v}=0
$$

(b) Show that when α and β have the values

$$
\alpha_{0}=\frac{-B+\sqrt{B^{2}-4 A C}}{2 C} \quad \text { and } \quad \beta_{0}=\frac{-B-\sqrt{B^{2}-4 A C}}{2 C} \text {, }
$$

respectively, the differential equation in part (a) reduces to $y_{u v}=0$.
(c) Conclude from the result in part (b) that the general solution of the original dif ferential equation is

$$
y=\phi\left(x+\alpha_{0} t\right)+\psi\left(x+\beta_{0} t\right)
$$

where ϕ and ψ are arbitrary functions that are twice differentiable. Then show how the general solution (7), Sec. 30, of the wave equation

$$
-a^{2} y_{x x}+y_{t t}=0
$$

follows as a special case.

Figure 8: Problem Statement

6.1 Part a

We want to do the transformation from $y(x, t)$ to $y(u, v)$. Therefore

$$
\frac{\partial y}{\partial x}=\frac{\partial y}{\partial u} \frac{\partial u}{\partial x}+\frac{\partial y}{\partial v} \frac{\partial v}{\partial x}
$$

But $\frac{\partial u}{\partial x}=1$ and $\frac{\partial v}{\partial x}=1$, hence the above becomes

$$
\frac{\partial y}{\partial x}=\frac{\partial y}{\partial u}+\frac{\partial y}{\partial v}
$$

And

$$
\begin{aligned}
\frac{\partial^{2} y}{\partial x^{2}} & =\frac{\partial}{\partial x}\left(\frac{\partial y}{\partial x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{\partial y}{\partial u}+\frac{\partial y}{\partial v}\right) \\
& =\frac{\partial}{\partial x} \frac{\partial y}{\partial u}+\frac{\partial}{\partial x} \frac{\partial y}{\partial v} \\
& =\left(\frac{\partial^{2} y}{\partial u^{2}} \frac{\partial u}{\partial x}+\frac{\partial^{2} y}{\partial u v} \frac{\partial v}{\partial x}\right)+\left(\frac{\partial^{2} y}{\partial v^{2}} \frac{\partial v}{\partial x}+\frac{\partial^{2} y}{\partial v u} \frac{\partial u}{\partial x}\right)
\end{aligned}
$$

But $\frac{\partial u}{\partial x}=1, \frac{\partial v}{\partial x}=1$, hence the above becomes

$$
\begin{align*}
\frac{\partial^{2} y}{\partial x^{2}} & =\frac{\partial^{2} y}{\partial u^{2}}+2 \frac{\partial^{2} y}{\partial u v}+\frac{\partial^{2} y}{\partial v^{2}} \\
y_{x x} & =y_{u u}+y_{v v}+2 y_{u v} \tag{1}
\end{align*}
$$

Similarly,

$$
\frac{\partial y}{\partial t}=\frac{\partial y}{\partial u} \frac{\partial u}{\partial t}+\frac{\partial y}{\partial v} \frac{\partial v}{\partial t}
$$

But $\frac{\partial u}{\partial t}=\alpha$ and $\frac{\partial v}{\partial t}=\beta$, hence the above becomes

$$
\frac{\partial y}{\partial t}=\alpha \frac{\partial y}{\partial u}+\beta \frac{\partial y}{\partial v}
$$

And

$$
\begin{aligned}
\frac{\partial^{2} y}{\partial t^{2}} & =\frac{\partial}{\partial t}\left(\frac{\partial y}{\partial t}\right) \\
& =\frac{\partial}{\partial t}\left(\alpha \frac{\partial y}{\partial u}+\beta \frac{\partial y}{\partial v}\right) \\
& =\alpha \frac{\partial}{\partial t}\left(\frac{\partial y}{\partial u}\right)+\beta \frac{\partial}{\partial t}\left(\frac{\partial y}{\partial v}\right) \\
& =\alpha\left(\frac{\partial^{2} y}{\partial u^{2}} \frac{\partial u}{\partial t}+\frac{\partial^{2} y}{\partial u v} \frac{\partial v}{\partial t}\right)+\beta\left(\frac{\partial^{2} y}{\partial v^{2}} \frac{\partial v}{\partial t}+\frac{\partial^{2} y}{\partial u v} \frac{\partial u}{\partial t}\right)
\end{aligned}
$$

But $\frac{\partial u}{\partial t}=\alpha$ and $\frac{\partial v}{\partial t}=\beta$, hence the above becomes

$$
\begin{align*}
\frac{\partial^{2} y}{\partial t^{2}} & =\alpha\left(\alpha \frac{\partial^{2} y}{\partial u^{2}}+\beta \frac{\partial^{2} y}{\partial u v}\right)+\beta\left(\beta \frac{\partial^{2} y}{\partial v^{2}}+\alpha \frac{\partial^{2} y}{\partial u v}\right) \\
& =\alpha^{2} \frac{\partial^{2} y}{\partial u^{2}}+\alpha \beta \frac{\partial^{2} y}{\partial u v}+\beta^{2} \frac{\partial^{2} y}{\partial v^{2}}+\alpha \beta \frac{\partial^{2} y}{\partial u v} \\
y_{t t} & =\alpha^{2} y_{u u}+\beta^{2} y_{v v}+2 \alpha \beta y_{u v} \tag{2}
\end{align*}
$$

And to obtain $y_{x t}$, then starting from above result obtained

$$
\frac{\partial y}{\partial t}=\alpha \frac{\partial y}{\partial u}+\beta \frac{\partial y}{\partial v}
$$

Now taking partial derivative w.r.t. x gives

$$
\begin{aligned}
\frac{\partial}{\partial x}\left(\frac{\partial y}{\partial t}\right) & =\frac{\partial}{\partial x}\left(\alpha \frac{\partial y}{\partial u}+\beta \frac{\partial y}{\partial v}\right) \\
& =\alpha \frac{\partial}{\partial x}\left(\frac{\partial y}{\partial u}\right)+\beta \frac{\partial}{\partial x}\left(\frac{\partial y}{\partial v}\right) \\
& =\alpha\left(\frac{\partial^{2} y}{\partial u^{2}} \frac{\partial u}{\partial x}+\frac{\partial^{2} y}{\partial u v} \frac{\partial v}{\partial x}\right)+\beta\left(\frac{\partial^{2} y}{\partial v^{2}} \frac{\partial v}{\partial x}+\frac{\partial^{2} y}{\partial u v} \frac{\partial u}{\partial x}\right)
\end{aligned}
$$

But $\frac{\partial u}{\partial x}=1, \frac{\partial v}{\partial x}=1$, hence the above becomes

$$
\begin{align*}
\frac{\partial}{\partial x}\left(\frac{\partial y}{\partial t}\right) & =\alpha\left(\frac{\partial^{2} y}{\partial u^{2}}+\frac{\partial^{2} y}{\partial u v}\right)+\beta\left(\frac{\partial^{2} y}{\partial v^{2}}+\frac{\partial^{2} y}{\partial u v}\right) \\
y_{x t} & =\alpha y_{u u}+(\alpha+\beta) y_{v u}+\beta y_{v v} \tag{3}
\end{align*}
$$

Substituting $(1,2,3)$ into $A y_{x x}+B y_{x t}+C y_{t t}=0$ results in

$$
A\left(y_{u u}+y_{v v}+2 y_{u v}\right)+B\left(\alpha y_{u u}+(\alpha+\beta) y_{v u}+\beta y_{v v}\right)+C\left(\alpha^{2} y_{u u}+\beta^{2} y_{v v}+2 \alpha \beta y_{u v}\right)=0
$$

Or

$$
y_{u u}\left(A+B \alpha+C \alpha^{2}\right)+y_{u v}(2 A+B(\alpha+\beta)+2 C \alpha \beta)+y_{v v}\left(A+B \beta+C \beta^{2}\right)=0
$$

6.2 Part b

Looking at the term above for $y_{u u}$ we see it is $A+B \alpha+C \alpha^{2}$ which has the root

$$
\begin{aligned}
\alpha & =-\frac{b}{2 a} \pm \frac{1}{2 a} \sqrt{b^{2}-4 a c} \\
& =-\frac{B}{2 C} \pm \frac{1}{2 C} \sqrt{B^{2}-4 A C}
\end{aligned}
$$

Hence if we pick the root $\alpha=\alpha_{0}=-\frac{B}{2 C}+\frac{1}{2 C} \sqrt{B^{2}-4 A C}$ then the term $y_{u u}$ vanishes. Similarly for the term multiplied by $y_{v v}$ which is $A+B \beta+C \beta^{2}$. The root is

$$
\beta=-\frac{B}{2 C} \pm \frac{1}{2 C} \sqrt{B^{2}-4 A C}
$$

And if we pick $\beta=\beta_{0}=-\frac{B}{2 C}-\frac{1}{2 C} \sqrt{B^{2}-4 A C}$ then the term $y_{v v}$ vanishes also in the PDE obtained in part (a), and now the PDE becomes

$$
y_{u v}(2 A+B(\alpha+\beta)+2 C \alpha \beta)=0
$$

Substituting the above selected roots α_{0}, β_{0} into the above in place of α, β since these are the values we picked, then the above becomes

$$
\begin{aligned}
y_{u v}\left(2 A+B\left(-\frac{B}{2 C}+\frac{1}{2 C} \sqrt{B^{2}-4 A C}-\frac{B}{2 C}-\frac{1}{2 C} \sqrt{B^{2}-4 A C}\right)+2 C \alpha \beta\right) & =0 \\
y_{u v}\left(2 A-\frac{2 B^{2}}{2 C}+2 C \alpha \beta\right) & =0
\end{aligned}
$$

And again replacing $\alpha \beta$ above with α_{0}, β_{0} results in

$$
\begin{aligned}
y_{u v}\left(2 A-\frac{2 B^{2}}{2 C}+2 C\left(-\frac{B}{2 C}+\frac{1}{2 C} \sqrt{B^{2}-4 A C}\right)\left(-\frac{B}{2 C}-\frac{1}{2 C} \sqrt{B^{2}-4 A C}\right)\right) & =0 \\
y_{u v}\left(2 A-\frac{2 B^{2}}{2 C}+2 C\left(\frac{B^{2}}{4 C^{2}}+\frac{1}{4 C^{2}}\left(B^{2}-4 A C\right)\right)\right) & =0 \\
y_{u v}\left(2 A-\frac{2 B^{2}}{2 C}+\frac{B^{2}}{2 C}+\frac{1}{2 C}\left(B^{2}-4 A C\right)\right) & =0 \\
y_{u v}\left(2 A-\frac{2 B^{2}}{2 C}+\frac{B^{2}}{2 C}+\frac{B^{2}}{2 C}-2 A\right) & =0 \\
\frac{B^{2}}{2 C} y_{u v} & =0
\end{aligned}
$$

Since $B \neq 0, C \neq 0$ then the above simplifies to

$$
y_{u v}=0
$$

6.3 Part c

Since

$$
y_{u v}=0
$$

Or

$$
\frac{\partial}{\partial v}\left(\frac{\partial y}{\partial u}\right)=0
$$

The implies that

$$
\frac{\partial y}{\partial u}=\Phi(u)
$$

Integrating w.r.t. u gives

$$
y(u, v)=\int \Phi(u) d u+\psi(v)
$$

Where $\psi(v)$ is the constant of integration which is a function.
Let $\int \Phi(u) d u=\phi(u)$ then the above can be written as

$$
y(u, v)=\phi(u)+\psi(v)
$$

Or in terms of x, t, since $u=x+\alpha t$ and $v=x+\beta t$ the above solution becomes

$$
y(x, t)=\phi(x+\alpha t)+\psi(x+\beta t)
$$

Where ϕ, ψ are arbitrary functions twice differentiable. When $\alpha=+a, \beta=-a$, then the above becomes

$$
y(x, t)=\phi(x+a t)+\psi(x-a t)
$$

Which is the general solution (7) in section (30). QED

7 Section 31, Problem 3

3. Show that under the transformation

$$
u=x, \quad v=\alpha x+\beta t \quad(\beta \neq 0)
$$

the given differential equation in Problem 2 becomes

$$
A y_{u u}+(2 A \alpha+B \beta) y_{u v}+\left(A \alpha^{2}+B \alpha \beta+C \beta^{2}\right) y_{v v}=0 .
$$

Then show that this new equation reduces to
(a) $y_{u u}+y_{v v}=0$ when the original equation is elliptic $\left(B^{2}-4 A C<0\right)$ and

$$
\alpha=\frac{-B}{\sqrt{4 A C-B^{2}}}, \quad \beta=\frac{2 A}{\sqrt{4 A C-B^{2}}}
$$

(b) $y_{u u}=0$ when the original equation is parabolic $\left(B^{2}-4 A C=0\right)$ and

$$
\alpha=-B, \quad \beta=2 A .
$$

Figure 9: Problem Statement

The differential equation in problem 2 is

$$
A y_{x x}+B y_{x t}+C y_{t t}=0
$$

We want to do the transformation from $y(x, t)$ to $y(u, v)$ with

$$
\begin{aligned}
& u=x \\
& v=\alpha x+\beta t
\end{aligned}
$$

Now

$$
\frac{\partial y}{\partial x}=\frac{\partial y}{\partial u} \frac{\partial u}{\partial x}+\frac{\partial y}{\partial v} \frac{\partial v}{\partial x}
$$

But $\frac{\partial u}{\partial x}=1$ and $\frac{\partial v}{\partial x}=\alpha$, hence the above becomes

$$
\frac{\partial y}{\partial x}=\frac{\partial y}{\partial u}+\alpha \frac{\partial y}{\partial v}
$$

And

$$
\frac{\partial y}{\partial t}=\frac{\partial y}{\partial u} \frac{\partial u}{\partial t}+\frac{\partial y}{\partial v} \frac{\partial v}{\partial t}
$$

But $\frac{\partial u}{\partial t}=0$ and $\frac{\partial v}{\partial t}=\beta$, hence the above becomes

$$
\frac{\partial y}{\partial t}=\beta \frac{\partial y}{\partial v}
$$

Therefore

$$
\begin{align*}
\frac{\partial^{2} y}{\partial x^{2}} & =\frac{\partial}{\partial x}\left(\frac{\partial y}{\partial x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{\partial y}{\partial u}+\alpha \frac{\partial y}{\partial v}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{\partial y}{\partial u}\right)+\alpha \frac{\partial}{\partial x}\left(\frac{\partial y}{\partial v}\right) \\
& =\left(\frac{\partial^{2} y}{\partial u^{2}} \frac{\partial u}{\partial x}+\frac{\partial^{2} y}{\partial u v} \frac{\partial v}{\partial x}\right)+\alpha\left(\frac{\partial^{2} y}{\partial v^{2}} \frac{\partial v}{\partial x}+\frac{\partial^{2} y}{\partial v u} \frac{\partial u}{\partial x}\right) \\
& =\left(\frac{\partial^{2} y}{\partial u^{2}}+\alpha \frac{\partial^{2} y}{\partial u v}\right)+\alpha\left(\alpha \frac{\partial^{2} y}{\partial v^{2}}+\frac{\partial^{2} y}{\partial v u}\right) \\
& =\frac{\partial^{2} y}{\partial u^{2}}+\alpha \frac{\partial^{2} y}{\partial u v}+\alpha^{2} \frac{\partial^{2} y}{\partial v^{2}}+\alpha \frac{\partial^{2} y}{\partial v u} \\
y_{x x} & =y_{u u}+\alpha^{2} y_{v v}+2 \alpha y_{u v} \tag{1}
\end{align*}
$$

Similarly,

$$
\begin{align*}
\frac{\partial^{2} y}{\partial t^{2}} & =\frac{\partial}{\partial x}\left(\frac{\partial y}{\partial t}\right) \\
& =\frac{\partial}{\partial x}\left(\beta \frac{\partial y}{\partial v}\right) \\
& =\beta\left(\frac{\partial^{2} y}{\partial v^{2}} \frac{\partial v}{\partial t}+\frac{\partial^{2} y}{\partial v u} \frac{\partial u}{\partial t}\right) \\
& =\beta\left(\beta \frac{\partial^{2} y}{\partial v^{2}}\right) \\
y_{t t} & =\beta^{2} y_{v v} \tag{2}
\end{align*}
$$

And to obtain $y_{x t}$, then starting from above result obtained

$$
\frac{\partial y}{\partial t}=\beta \frac{\partial y}{\partial v}
$$

Now taking partial derivative w.r.t. x gives

$$
\begin{align*}
\frac{\partial}{\partial x}\left(\frac{\partial y}{\partial t}\right) & =\frac{\partial}{\partial x}\left(\beta \frac{\partial y}{\partial v}\right) \\
& =\beta\left(\frac{\partial^{2} y}{\partial v^{2}} \frac{\partial v}{\partial x}+\frac{\partial^{2} y}{\partial v u} \frac{\partial u}{\partial x}\right) \\
& =\beta\left(\alpha \frac{\partial^{2} y}{\partial v^{2}}+\frac{\partial^{2} y}{\partial v u}\right) \\
y_{x t} & =\alpha \beta y_{v v}+\beta y_{v u} \tag{3}
\end{align*}
$$

Substituting $(1,2,3)$ into $A y_{x x}+B y_{x t}+C y_{t t}=0$ results in

$$
A\left(y_{u u}+\alpha^{2} y_{v v}+2 \alpha y_{u v}\right)+B\left(\alpha \beta y_{v v}+\beta y_{v u}\right)+C\left(\beta^{2} y_{v v}\right)=0
$$

Or

$$
\begin{equation*}
A y_{u u}+y_{u v}(2 A \alpha+B \beta)+y_{v v}\left(A \alpha^{2}+B \alpha \beta+C \beta^{2}\right)=0 \tag{4}
\end{equation*}
$$

Which is what asked to show.

7.1 Part a

Setting $\alpha=\frac{-B}{\sqrt{4 A C-B^{2}}}, \beta=\frac{2 A}{\sqrt{4 A C-B^{2}}}$ in (4) above results in

$$
\begin{array}{r}
A y_{u u}+y_{u v}\left(2 A\left(\frac{-B}{\sqrt{4 A C-B^{2}}}\right)+B\left(\frac{2 A}{\sqrt{4 A C-B^{2}}}\right)\right)+y_{v v}\left(A \alpha^{2}+B \alpha \beta+C \beta^{2}\right)=0 \\
A y_{u u}+y_{v v}\left(A \alpha^{2}+B \alpha \beta+C \beta^{2}\right)=0
\end{array}
$$

And the above now becomes

$$
\begin{aligned}
A y_{u u}+y_{v v}\left(A\left(\frac{-B}{\sqrt{4 A C-B^{2}}}\right)^{2}+B\left(\frac{-B}{\sqrt{4 A C-B^{2}}}\right)\left(\frac{2 A}{\sqrt{4 A C-B^{2}}}\right)+C\left(\frac{2 A}{\sqrt{4 A C-B^{2}}}\right)^{2}\right) & =0 \\
A y_{u u}+y_{v v}\left(\frac{A B^{2}}{4 A C-B^{2}}-\frac{2 B^{2} A}{4 A C-B^{2}}+\frac{4 C A^{2}}{4 A C-B^{2}}\right) & =0 \\
A y_{u u}+y_{v v}\left(\frac{A B^{2}-2 B^{2} A+4 C A^{2}}{4 A C-B^{2}}\right) & =0 \\
A y_{u u}+A y_{v v}\left(\frac{-B^{2}+4 C A}{4 A C-B^{2}}\right) & =0 \\
A y_{u u}+A y_{v v} & =0 \\
A\left(y_{u u}+y_{v v}\right) & =0
\end{aligned}
$$

Therefore, since $A \neq 0$ the above becomes

$$
y_{u u}+y_{v v}=0
$$

7.2 Part b

Setting $\alpha=-B, \beta=2 A$ in (4) above results in

$$
\begin{aligned}
A y_{u u}+y_{u v}(-2 A B+2 A B)+y_{v v}\left(A B^{2}-2 B^{2} A+4 C A^{2}\right) & =0 \\
A y_{u u}+y_{v v}\left(4 C A^{2}-B^{2} A\right) & =0 \\
A y_{u u}-A y_{v v}\left(B^{2}-4 C A\right) & =0
\end{aligned}
$$

But $B^{2}-4 C A=0$, therefore the above becomes

$$
y_{u u}=0
$$

[^0]: Nasser M. Abbasi

