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1 Section 20, Problem 1

Figure 1: Problem statement

The function 𝑓 (𝑥) is

In[ ]:= f[x_] := Piecewise[{{0, -Pi < x < 0}, {Sin[x], 0 < x < Pi}}]

Plot[f[x], {x, -Pi, Pi}, PlotStyle → Red, GridLines → Automatic, GridLinesStyle → LightGray,

Ticks → {Range[-Pi, Pi, 1/ 2 Pi], Automatic}]
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Figure 2: Plot of 𝑓(𝑥)

The function 𝑓 (𝑥) is continuous on −𝜋 ≤ 𝑥 ≤ 𝜋. Also 𝑓 (−𝜋) = 𝑓 (𝜋) = 0. We now need to
show that 𝑓′ (𝑥) is piecewise continuous. But

𝑓′ (𝑥) =
⎧⎪⎨
⎪⎩

0 −𝜋 ≤ 𝑥 ≤ 0
cos 𝑥 0 < 𝑥 ≤ 𝜋

(1)

Therefore 𝑓′ (𝑥) exist and is piecewise continuous on −𝜋 < 𝑥 < 𝜋. From the above, we see
that 𝑓 (𝑥) meets the 3 conditions in theorem of section 17, hence we know that the Fourier
series of 𝑓 (𝑥) is absolutely and uniformly convergent. (Here we need to use the M test to
confirm this).

The Fourier series of 𝑓 (𝑥) is
𝑎0
2
+
1
2

sin 𝑥 −
2
𝜋

∞
�
𝑛=1

cos (2𝑛𝑥)
4𝑛2 − 1

Now, to apply the M test, consider the two series

∞
�
𝑛=1

𝑓𝑛
�����������cos (2𝑛𝑥)
4𝑛2 − 1

,
∞
�
𝑛=1

𝑀𝑛

���������1
4𝑛2 − 1

To show Fourier series is uniformly convergent to 𝑓 (𝑥), using the M test, then we need to
show that �𝑓𝑛� ≤ 𝑀𝑛 for each 𝑛. The series 𝑀𝑛 qualifies to use for the Weierstrass series,
since each term in it is positive constant and it is convergent series. To show that 𝑀𝑛
is convergent, we can compare it to ∑∞

𝑛=1
1
𝑛2 . Since each term

1
4𝑛2−1 <

1
𝑛2 and ∑∞

𝑛=1
1
𝑛2 is

convergent since any ∑∞
𝑛=1

1
𝑛𝑠 for 𝑠 > 1 is convergent (we can show this if needed using the
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integral test). Hence we can go ahead and use 𝑀𝑛 series. Now we just need to show that

�
cos (2𝑛𝑥)
4𝑛2 − 1

� ≤
1

4𝑛2 − 1
For each 𝑛. But cos (2𝑛𝑥) ≤ 1 for each 𝑛. Hence the above is true for each 𝑛 and it follows
that the above Fourier series is indeed uniformly convergent to 𝑓 (𝑥).

From (1), At 𝑥 = 0 we have

𝑓′+ (0) = lim
𝑥→0+

𝑓 (𝑥) − 𝑓 (0)
𝑥

= lim
𝑥→0+

sin (𝑥)
𝑥

= 1

And

𝑓′− (0) = lim
𝑥→0−

𝑓 (𝑥) − 𝑓 (0)
𝑥

= lim
𝑥→0+

0
𝑥
= 0

Since 𝑓′+ (0) ≠ 𝑓′− (0) then 𝑓 (𝑥) is not di�erentiable at 𝑥 = 0. This is plot of 𝑓′ (𝑥) and we
see graphically that due to jump discontinuity, that 𝑓′ (𝑥) is not di�erentiable at 𝑥 = 0

In[ ]:= f[x_] := Piecewise[{{0, -Pi < x < 0}, {Cos[x], 0 < x < Pi}}]

Plot[f[x], {x, -Pi, Pi}, PlotStyle → Red, GridLines → Automatic, GridLinesStyle → LightGray,

Ticks → {Range[-Pi, Pi, 1/ 2 Pi], Automatic}]

Out[ ]=
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Figure 3: Plot of 𝑓′(𝑥) shown for one period

In[ ]:= Clear[f];

f[x_ /; -Pi < x < Pi] := Piecewise[{{0, -Pi < x < 0}, {Cos[x], 0 < x < Pi}}]

f[x_ /; x > Pi] := f[x - 2 Pi];

f[x_ /; x < -Pi] := f[x + 2 Pi];

Plot[f[x], {x, -4 Pi, 4 Pi}, PlotStyle → {Thick, Red}, Mesh → None,

GridLines → Automatic, GridLinesStyle → LightGray,

Ticks → {Range[-4 Pi, 4 Pi, Pi], Automatic},

Exclusions → {x ⩵ -3 Pi, x ⩵ -2 Pi, x ⩵ -Pi, x ⩵ 0, x ⩵ Pi, x ⩵ 2 Pi, x ⩵ 3 Pi},

Mesh → None, ExclusionsStyle → Dashed]

Out[ ]=

-4 π -3 π -2 π -π π 2 π 3 π 4 π

-1.0

-0.5

0.5

1.0

Figure 4: Plot of 𝑓′(𝑥) for all 𝑥, shown for 3 periods
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2 Section 20, Problem 2

Figure 5: Problem statement

Solution

After doing an even extension of 𝑓 (𝑥) = 𝑥 on 0 < 𝑥 < 𝜋 to −𝜋 ≤ 𝑥 ≤ 𝜋, we see that 𝑓 (𝑥)
satisfies the conditions of Theorem section 20 for di�erentiating the Fourier series term
by term. Since

1. 𝑓 (𝑥) is continuous on the interval −𝜋 ≤ 𝑥 ≤ 𝜋

2. 𝑓 (−𝜋) = 𝑓 (𝜋)

3. 𝑓′ (𝑥) is piecewise continuous on −𝜋 < 𝑥 < 𝜋

The only point that 𝑓 (𝑥) is not di�erentiable is 𝑥 = 0 which implies 𝑓′ (𝑥) is piecewise
continuous. But that is OK. It is 𝑓 (𝑥) which must be continuous. Hence di�erentiating the
series term by term to obtain representation of 𝑓 (𝑥) on 0 < 𝑥 < 𝜋 is reliable.
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3 Section 20, Problem 5

Figure 6: Problem statement

3.1 Part 1

𝑆 = 2
∞
�
𝑛=1

(−1)𝑛+1

𝑛
sin (𝑛𝑠)

The above is the Fourier sine series for 𝑓 (𝑥) = 𝑥, on 0 < 𝑥 < 𝜋. Integrating gives

�
𝑥

0

⎛
⎜⎜⎜⎝2

∞
�
𝑛=1

(−1)𝑛+1

𝑛
sin (𝑛𝑠)

⎞
⎟⎟⎟⎠ 𝑑𝑠 = 2

∞
�
𝑛=1

�
𝑥

0

(−1)𝑛+1

𝑛
sin (𝑛𝑠) 𝑑𝑠

We did integration term by term, since that is always allowed (not like with di�erentiation
term by term, where we have to check). Hence the above becomes

2
∞
�
𝑛=1

�
𝑥

0

(−1)𝑛+1

𝑛
sin (𝑛𝑠) 𝑑𝑠 = 2

∞
�
𝑛=1

(−1)𝑛+1

𝑛 ��
𝑥

0
sin (𝑛𝑠) 𝑑𝑠�

= 2
∞
�
𝑛=1

(−1)𝑛+1

𝑛
�−

cos 𝑛𝑠
𝑛

�
𝑥

0

= 2
∞
�
𝑛=1

(−1)𝑛+2

𝑛2
(cos 𝑛𝑠)𝑥0

But (−1)𝑛+2 = (−1)𝑛 and the above becomes

2
∞
�
𝑛=1

�
𝑥

0

(−1)𝑛+1

𝑛
sin (𝑛𝑠) 𝑑𝑠 = 2

∞
�
𝑛=1

(−1)𝑛

𝑛2
(cos 𝑛𝑥 − 1)

But ∫
𝑥

0
𝑠𝑑𝑠 = 1

2𝑥
2. So the above is the Fourier series of

1
2𝑥

2. A plot of the above is
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f[x_] :=
1

2
x^2;

Plot[f[x], {x, 0, Pi}, PlotStyle → Red,

GridLines → Automatic,

GridLinesStyle → LightGray,

Ticks → {Range[0, Pi, 1/ 2 Pi], Automatic}]

Out[ ]=

π

2
π

1

2

3

4

5

Figure 7: The function represented by the above series 𝑓(𝑥) = 1
2𝑥

2

3.2 Part 2

𝑆 = 2
∞
�
𝑛=1

sin ((2𝑛 − 1) 𝑠)
2𝑛 − 1

The above is the Fourier sine series for 𝑓 (𝑥) = 𝜋
2 , on 0 < 𝑥 < 𝜋. Integrating gives

�
𝑥

0
�2

∞
�
𝑛=1

1
2𝑛 − 1

sin ((2𝑛 − 1) 𝑠)� 𝑑𝑠 = 2
∞
�
𝑛=1

�
𝑥

0

1
2𝑛 − 1

sin ((2𝑛 − 1) 𝑠) 𝑑𝑠

We did integration term by term, since that is always allowed (not like with di�erentiation
term by term, where we have to check). Hence the above becomes

2
∞
�
𝑛=1

�
𝑥

0

1
2𝑛 − 1

sin ((2𝑛 − 1) 𝑠) 𝑑𝑠 = 2
∞
�
𝑛=1

1
2𝑛 − 1 �

𝑥

0
sin ((2𝑛 − 1) 𝑠) 𝑑𝑠

= 2
∞
�
𝑛=1

1
2𝑛 − 1 �

− cos (2𝑛 − 1) 𝑠
(2𝑛 − 1) �

𝑥

0

= 2
∞
�
𝑛=1

−
(cos ((2𝑛 − 1) 𝑥) − 1)

(2𝑛 − 1)2

Since ∫
𝑥

0
𝜋
2 𝑑𝑠 =

𝜋
2 𝑥, then the above is the representation of this function. Here is a plot

to confirm this, showing the above series expansion as more terms are added, showing it
converges to

𝜋
2 𝑥

Out[ ]=
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Figure 8: The function represented by the above series 𝑓(𝑥) = 𝜋
2 𝑥 against its Fourier series
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fApprox[x_, nTerms_] := 2 Sum-
Cos[(2 n - 1) x] - 1

(2 n - 1)2
, {n, 1, nTerms};

Clear[f];

f[x_ /; 0 < x < Pi] := x* Pi/ 2;

Grid[Partition[Table[Plot[{f[x], fApprox[x, n]}, {x, 0, Pi},

PlotStyle → {Blue, Red},

PlotLabel → Style[Row[{"Using ", n, " terms"}], Bold],

ImageSize → 250],

{n, 1, 10, 2}], 2], Frame → All, FrameStyle → Gray]

Figure 9: Code used to plot the above
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4 Section 27, Problem 1

Figure 10: Problem statement

The heat PDE is 𝑢𝑡 = 𝑢𝑥𝑥. At steady state, 𝑢𝑡 = 0 leading to 𝑢𝑥𝑥 = 0. So at steady state, the
solution depends on 𝑥 only. This has the solution

𝑢 (𝑥) = 𝐴𝑥 + 𝐵 (1)

With boundary conditions

𝑢 (0) = 0
𝑢 (𝑐) = 𝑢0

When 𝑥 = 0 then 0 = 𝐵. Hence the solution becomes 𝑢 (𝑥) = 𝐴𝑥. To find 𝐴, we apply the
second boundary conditions. At 𝑥 = 𝑐 this gives 𝑢0 = 𝑐𝐴 or 𝐴 = 𝑢0

𝑐 . Hence the solution
(1) now becomes

𝑢 (𝑥) =
𝑢0
𝑐
𝑥

Now the flux is defined as Φ0 = 𝐾𝑑𝑢
𝑑𝑥 at each edge surface. But

𝑑𝑢
𝑑𝑥 = 𝑢0

𝑐 from above.
Therefore

Φ0 = 𝐾
𝑢0
𝑐
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5 Section 27, Problem 2

Figure 11: Problem statement

note: When looking for solution, assume it is a function of 𝑥 only.

The heat PDE is 𝑢𝑡 = 𝑢𝑥𝑥. At steady state, 𝑢𝑡 = 0 leading to 𝑢𝑥𝑥 = 0. So at steady state, the
solution depends on 𝑥 only. This has the solution

𝑢 (𝑥) = 𝐴𝑥 + 𝐵 (1)

Since there is constant flux at 𝑥 = 0, then this means 𝐾 𝑑𝑢
𝑑𝑥 �𝑥=0

= −Φ0. The reason for the

minus sign, is that flux is always pointing to the outside of the surface. Hence on the left
surface, it will be in the negative 𝑥 direction and on the right side, it will be on the positive
𝑥 direction.

Using this, the boundary conditions can be written as

𝑑𝑢
𝑑𝑥
�
𝑥=0

= −𝐾Φ0

𝑢 (𝑐) = 0
Applying the left boundary condition gives

𝐴 = −𝐾Φ0

Hence the solution becomes 𝑢 (𝑥) = −𝐾Φ0𝑥 + 𝐵.

At 𝑥 = 𝑐 the second B.C. leads to 0 = −𝐾Φ0𝑐 + 𝐵 or

𝐵 = 𝐾Φ0𝑐
Hence the solution (1) becomes

𝑢 (𝑥) = −𝐾Φ0𝑥 + 𝐾Φ0𝑐
= 𝐾Φ0 (𝑐 − 𝑥)
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6 Section 27, Problem 3

Figure 12: Problem statement

We start with

Φ = 𝐻 (𝑇outside − 𝑢) (1)

Where 𝑇 is the temperature on the outside and 𝑢 is the temperature on the surface and Φ
is the flux at the surface and 𝐻 is surface conductance. Let us look at the left surface, at
𝑥 = 0. The flux there is negative, since it points to the negative 𝑥 direction. Therefore

Φ = −𝐾
𝑑𝑢
𝑑𝑥
�
𝑥=0

(2)

From (1,2) we obtain

−𝐾
𝑑𝑢
𝑑𝑥
�
𝑥=0

= 𝐻 (𝑇outside − 𝑢 (0))

But 𝑇outside = 0 outside the left surface and the above becomes

−𝐾
𝑑𝑢
𝑑𝑥
�
𝑥=0

= 𝐻 (0 − 𝑢 (0))

The minus signs cancel, giving

𝑑𝑢
𝑑𝑥
�
𝑥=0

=
𝐻
𝐾
𝑢 (0)

𝑢′ (0) = ℎ𝑢 (0) (3)

Now, let us look at the right side. There the flux is positive. Hence at 𝑥 = 𝑐 we have

𝐾
𝑑𝑢
𝑑𝑥
�
𝑥=𝑐

= 𝐻 (𝑇outside − 𝑢 (𝑐))

But 𝑇outside = 𝑇 on the right side. Hence the above reduces to

𝑑𝑢
𝑑𝑥
�
𝑥=𝑐

=
𝐻
𝐾
(𝑇 − 𝑢 (𝑐))

𝑢′ (𝑐) = ℎ (𝑇 − 𝑢 (𝑐)) (4)

Now that we found the boundary conditions, we look at the solution. As before, at steady
state we have

𝑢′′(𝑥) = 0
𝑢 (𝑥) = 𝐴𝑥 + 𝐵 (5)

Hence 𝑢′ (𝑥) = 𝐴. Therefore
𝑢′ (0) = 𝐴 = ℎ𝑢 (0) (6)

𝑢′ (𝑐) = 𝐴 = ℎ (𝑇 − 𝑢 (𝑐)) (7)
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But we also know that, from (5) that

𝑢 (0) = 𝐵 (8)

𝑢(𝑐) = 𝐴𝑐 + 𝐵 (9)

Substituting (8,9) into (6,7) in order to eliminate 𝑢 (0) , 𝑢 (𝑐) from (6,7) gives

𝐴 = ℎ𝐵 (6A)

𝐴 = ℎ (𝑇 − (𝐴𝑐 + 𝐵)) (7A)

Now from (6A,7A) we solve for 𝐴,𝐵. Substituting (7A) into (6A) gives

ℎ𝐵 = ℎ (𝑇 − (ℎ𝐵𝑐 + 𝐵))
ℎ𝐵 = ℎ𝑇 − ℎ2𝐵𝑐 − ℎ𝐵

2ℎ𝐵 + ℎ2𝐵𝑐 = ℎ𝑇

𝐵 =
ℎ𝑇

ℎ (2 + ℎ𝑐)

=
𝑇

2 + ℎ𝑐
Hence

𝐴 = ℎ𝐵

=
ℎ𝑇

2 + ℎ𝑐
Now that we found 𝐴,𝐵 then since 𝑢 (𝑥) = 𝐴𝑥 + 𝐵, then

𝑢 (𝑥) =
ℎ𝑇

2 + ℎ𝑐
𝑥 +

𝑇
2 + ℎ𝑐

=
ℎ𝑇𝑥 + 𝑇
2 + ℎ𝑐

=
𝑇

2 + ℎ𝑐
(1 + ℎ𝑥)

Which is the result we are asked to show.
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7 Section 27, Problem 7

Figure 13: Problem statement

𝑢𝑡 = 𝑘𝑢𝑥𝑥 − 𝑏𝑢 (1)

Let 𝑢 (𝑥, 𝑡) = 𝑒−𝑏𝑡𝑣 (𝑥, 𝑡) then
𝑢𝑡 = −𝑏𝑒−𝑏𝑡𝑣 + 𝑒−𝑏𝑡𝑣𝑡
𝑢𝑥 = 𝑒−𝑏𝑡𝑣𝑥
𝑢𝑥𝑥 = 𝑒−𝑏𝑡𝑣𝑥𝑥

Substituting the above back into (1) gives

−𝑏𝑒−𝑏𝑡𝑣 + 𝑒−𝑏𝑡𝑣𝑡 = 𝑘𝑒−𝑏𝑡𝑣𝑥𝑥 − 𝑏𝑒−𝑏𝑡𝑣
Since 𝑒−𝑏𝑡 ≠ 0 , then the above simplifies to

−𝑏𝑣 + 𝑣𝑡 = 𝑘𝑣𝑥𝑥 − 𝑏𝑣
𝑣𝑡 = 𝑘𝑣𝑥𝑥

QED.
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