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1 Section 69, Problem 1

Figure 1: Problem statement

Solution

1.1 Part (a)

𝑋′ (𝑥) + 𝑥𝑋′′ (𝑥) +
𝜆
𝑥
𝑋 (𝑥) = 0

𝑥2𝑋′′ (𝑥) + 𝑥𝑋′ (𝑥) + 𝜆𝑋 (𝑥) = 0 (1)

To transform the above to 𝑋′′ (𝑠) + 𝜆𝑋 (𝑠) = 0 , let 𝑥 = 𝑒𝑠. Therefore 𝑑𝑥
𝑑𝑠 = 𝑒

𝑠 or
𝑑𝑠
𝑑𝑥 = 𝑒

−𝑠. Now

𝑑𝑋
𝑑𝑥

=
𝑑𝑋
𝑑𝑠
𝑑𝑠
𝑑𝑥

=
𝑑𝑋
𝑑𝑠
𝑒−𝑠 (2)
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And
𝑑2𝑋
𝑑𝑥2

=
𝑑
𝑑𝑥 �

𝑑𝑋
𝑑𝑥 �

=
𝑑
𝑑𝑥 �

𝑑𝑋
𝑑𝑠
𝑒−𝑠�

Hence, by product rule

𝑑2𝑋
𝑑𝑥2

=
𝑑2𝑋
𝑑𝑠2

𝑑𝑠
𝑑𝑥
𝑒−𝑠 +

𝑑𝑋
𝑑𝑠

𝑑
𝑑𝑥
(𝑒−𝑠)

=
𝑑2𝑋
𝑑𝑠2

𝑒−𝑠𝑒−𝑠 +
𝑑𝑋
𝑑𝑠

𝑑
𝑑𝑠
(𝑒−𝑠)

𝑑𝑠
𝑑𝑥

=
𝑑2𝑋
𝑑𝑠2

𝑒−2𝑠 +
𝑑𝑋
𝑑𝑠
(−𝑒−𝑠) (𝑒−𝑠)

= 𝑒−2𝑠
𝑑2𝑋
𝑑𝑠2

− 𝑒−2𝑠
𝑑𝑋
𝑑𝑠

(3)

Substituting (2,3) back into (1) gives

𝑥2 �𝑒−2𝑠
𝑑2𝑋
𝑑𝑠2

− 𝑒−2𝑠
𝑑𝑋
𝑑𝑠 �

+ 𝑥 �
𝑑𝑋
𝑑𝑠
𝑒−𝑠� + 𝜆𝑋 = 0

But 𝑥 = 𝑒𝑠 and the above simplifies to

𝑒2𝑠 �𝑒−2𝑠
𝑑2𝑋
𝑑𝑠2

− 𝑒−2𝑠
𝑑𝑋
𝑑𝑠 �

+ 𝑒𝑠 �
𝑑𝑋
𝑑𝑠
𝑒−𝑠� + 𝜆𝑋 = 0

𝑑2𝑋
𝑑𝑠2

−
𝑑𝑋
𝑑𝑠

+
𝑑𝑋
𝑑𝑠

+ 𝜆𝑋 = 0

𝑑2𝑋 (𝑠)
𝑑𝑠2

+ 𝜆𝑋 (𝑠) = 0

When 𝑋 (1) = 0, which means when 𝑥 = 1, and since 𝑥 = 𝑒𝑠, then when 𝑠 = 0. Hence
𝑋 (1) = 0 becomes 𝑋 (0) = 0. And when 𝑥 = 𝑏, then 𝑠 = ln (𝑏). Hence the second condition
becomes 𝑋 (ln (𝑏)) = 0. Therefore the new B.C. are

𝑋 (0) = 0
𝑋 (ln (𝑏)) = 0

By referring to problem (4) in section 35 we see that the eigenvalues are

𝜆𝑛 = �
𝑛𝜋
𝑐
�
2

Where here 𝑐 = ln (𝑏). Hence

𝜆𝑛 = �
𝑛𝜋

ln (𝑏)�
2

𝑛 = 1, 2, 3,⋯

= 𝛼2𝑛
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Where 𝛼𝑛 =
𝑛𝜋

ln(𝑏) . And the eigenfunctions are, per section 35

𝑋𝑛 (𝑠) = sin (𝛼𝑛𝑠)
In terms of 𝑥, the eigenfunctions become

𝑋𝑛 (𝑠) = sin (𝛼𝑛 ln 𝑥)

1.2 Part (b)

⟨𝑋𝑛 (𝑥) , 𝑋𝑚 (𝑥)⟩ = �
𝑏

1
sin (𝛼𝑛 ln 𝑥) sin (𝛼𝑚 ln 𝑥) 𝑝 (𝑥) 𝑑𝑥

But from (𝑥𝑋′ (𝑥))′ + 𝜆
𝑥𝑋 (𝑥) = 0 and comparing this to (𝑟𝑋′)′ + �𝜆𝑝 + 𝑞�𝑋 = 0, we see that

𝑟 (𝑥) = 𝑥 and 𝑞 = 0 and 𝑝 = 1
𝑥 . Hence the above integral becomes

⟨𝑋𝑛 (𝑥) , 𝑋𝑚 (𝑥)⟩ = �
𝑏

1

1
𝑥

sin (𝛼𝑛 ln 𝑥) sin (𝛼𝑚 ln 𝑥) 𝑑𝑥

Let 𝑠 = ln 𝑥
ln 𝑏𝜋. Then

𝑑𝑠
𝑑𝑥 =

1
𝑥

𝜋
ln 𝑏 or 𝑑𝑥 = 𝑥

𝜋 ln (𝑏) 𝑑𝑠. When 𝑥 = 1 then 𝑠 = 0 and when 𝑥 = 𝑏
then 𝑠 = 𝜋. Hence the above integral becomes

⟨𝑋𝑛 (𝑥) , 𝑋𝑚 (𝑥)⟩ = �
𝑠=𝜋

𝑠=0

1
𝑥

sin �𝛼𝑛
𝑠 ln 𝑏
𝜋 � sin �𝛼𝑚

𝑠 ln 𝑏
𝜋 � �

𝑥
𝜋

ln (𝑏) 𝑑𝑠�

=
1
𝜋

ln (𝑏)�
𝜋

0
sin �𝛼𝑛

𝑠 ln 𝑏
𝜋 � sin �𝛼𝑚

𝑠 ln 𝑏
𝜋 � 𝑑𝑠

But 𝛼𝑛 =
𝑛𝜋

ln(𝑏) and 𝛼𝑚 =
𝑚𝜋
ln(𝑏) , therefore the above becomes

⟨𝑋𝑛 (𝑥) , 𝑋𝑚 (𝑥)⟩ =
1
𝜋

ln (𝑏)�
𝜋

0
sin �

𝑛𝜋
ln (𝑏)

𝑠 ln 𝑏
𝜋 � sin �

𝑚𝜋
ln (𝑏)

𝑠 ln 𝑏
𝜋 � 𝑑𝑠

=
1
𝜋

ln (𝑏)�
𝜋

0
sin (𝑛𝑠) sin (𝑚𝑠) 𝑑𝑠 (1)

Referring to Problem 9., section 5 which says that

�
𝜋

0
sin (𝑛𝑥) sin (𝑚𝑥) 𝑑𝑥 =

⎧⎪⎨
⎪⎩
0 𝑛 ≠ 𝑚
𝜋
2 𝑛 = 0

Applying this to (1) shows that

⟨𝑋𝑛 (𝑥) , 𝑋𝑚 (𝑥)⟩ =
⎧⎪⎨
⎪⎩
0 𝑛 ≠ 𝑚
𝜋
2 𝑛 = 0

Hence 𝑋𝑛 (𝑥) and 𝑋𝑚 (𝑥) are orthogonal, since this is the definition of orthogonality.
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2 Section 72, Problem 3

Figure 2: Problem statement

Solution

Solve for eigenvalues and normalized eigenfunctions.

𝑋′′ + 𝜆𝑋 = 0
𝑋′ (0) = 0
𝑋 (𝑐) = 0

Writing the boundary conditions in SL standard form

𝑎1𝑋 (0) + 𝑎2𝑋′ (0) = 0
𝑏1𝑋 (𝑐) + 𝑏2𝑋′ (𝑐) = 0

Shows that 𝑎1 = 0, 𝑎2 = 1 and 𝑏1 = 1, 𝑏2 = 0 . Therefore 𝑎1𝑎2 = 0 and 𝑏1𝑏2 = 0. But we know
that if 𝑎1𝑎2 ≥ 0 and 𝑏1𝑏2 ≥ 0, then 𝜆 > 0 is only possible eigenvalues. Let 𝜆𝑛 = 𝛼2𝑛. 𝛼 > 0.
Hence the solution to the ODE is

𝑋𝑛 (𝑥) = 𝐴 cos (𝛼𝑛𝑥) + 𝐵 sin (𝛼𝑛𝑥)
𝑋′
𝑛 (𝑥) = −𝐴𝛼𝑛 sin (𝛼𝑛𝑥) + 𝐵𝛼𝑛 cos (𝛼𝑛𝑥)

First B.C 𝑋′ (0) = 0 gives
0 = 𝐵𝛼𝑛

Which implies 𝐵 = 0. Hence the solution now becomes 𝑋𝑛 (𝑥) = 𝐴 cos (𝛼𝑛𝑥). For the second
BC

0 = 𝐴 cos (𝛼𝑛𝑐)
0 = cos (𝛼𝑛𝑐)

Which implies

𝛼𝑛𝑐 =
𝜋
2
, 3
𝜋
2
, 5
𝜋
2
,⋯

= (2𝑛 − 1)
𝜋
2

𝑛 = 1, 2, 3,⋯

Hence

𝛼𝑛 =
(2𝑛 − 1)

𝑐
𝜋
2

𝑛 = 1, 2, 3,⋯
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And the corresponding eigenfunctions are

𝑋𝑛 (𝑥) = cos (𝛼𝑛𝑥)

= cos �
(2𝑛 − 1)

𝑐
𝜋
2
𝑥�

To find the normalized 𝑋𝑛 (𝑥) which we call it 𝜙𝑛 (𝑥), then by definition

𝜙𝑛 (𝑥) =
𝑋𝑛 (𝑥)
‖𝑋𝑛 (𝑥)‖

But

‖𝑋𝑛 (𝑥)‖
2 = �

𝑐

0
𝑝 (𝑥)𝑋2

𝑛 (𝑥) 𝑑𝑥

Comparing the ODE 𝑋′′+𝜆𝑋 = 0 to (𝑟𝑋′)′+�𝜆𝑝 + 𝑞�𝑋 = 0, we see that 𝑟 (𝑥) = 1 and 𝑞 = 0
and 𝑝 = 1. Hence the above becomes

‖𝑋𝑛 (𝑥)‖
2 = �

𝑐

0
cos2 (𝛼𝑛𝑥) 𝑑𝑥

=
𝑐
2

Therefore ‖𝑋𝑛 (𝑥)‖ = �
𝑐
2 which shows that

𝜙𝑛 (𝑥) =
𝑋𝑛 (𝑥)

�
𝑐
2

=
�
2
𝑐

cos (𝛼𝑛𝑥)

where

𝛼𝑛 =
(2𝑛 − 1)

𝑐
𝜋
2

𝑛 = 1, 2, 3,⋯

Which is what required to show.
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3 Section 72, Problem 6

Figure 3: Problem statement

Solution

𝑋𝑛 (𝑥) = sin (𝛼𝑛 ln 𝑥)

𝛼𝑛 =
𝑛𝜋
ln 𝑏

𝑛 = 1, 2, 3,⋯

The normalized eigenfunction is given by

𝜙𝑛 (𝑥) =
𝑋𝑛 (𝑥)
‖𝑋𝑛 (𝑥)‖

But

‖𝑋𝑛 (𝑥)‖
2 = �

𝑏

1
𝑝 (𝑥)𝑋2

𝑛 (𝑥) 𝑑𝑥

Comparing the ODE (𝑥𝑋′)′ + 𝜆
𝑥𝑋 = 0 to (𝑟𝑋′)′ + �𝜆𝑝 + 𝑞�𝑋 = 0, we see that 𝑟 (𝑥) = 𝑥 and

𝑞 = 0 and 𝑝 = 1
𝑥 . Hence the above becomes

‖𝑋𝑛 (𝑥)‖
2 = �

𝑏

1

1
𝑥

sin2 (𝛼𝑛 ln 𝑥) 𝑑𝑥
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Let 𝑠 = ln 𝑥
ln 𝑏𝜋. Then

𝑑𝑠
𝑑𝑥 =

1
𝑥

𝜋
ln 𝑏 or 𝑑𝑥 = 𝑥

𝜋 ln (𝑏) 𝑑𝑠. When 𝑥 = 1 then 𝑠 = 0 and when 𝑥 = 𝑏
then 𝑠 = 𝜋. Hence the above integral becomes

‖𝑋𝑛 (𝑥)‖
2 = �

𝑠=𝜋

𝑠=0

1
𝑥

sin2 �𝛼𝑛
𝑠 ln 𝑏
𝜋 � �

𝑥
𝜋

ln (𝑏) 𝑑𝑠�

=
1
𝜋

ln (𝑏)�
𝜋

0
sin2 �𝛼𝑛

𝑠 ln 𝑏
𝜋 � 𝑑𝑠

But 𝛼𝑛 =
𝑛𝜋

ln(𝑏) therefore the above becomes

‖𝑋𝑛 (𝑥)‖
2 =

1
𝜋

ln (𝑏)�
𝜋

0
sin2 �

𝑛𝜋
ln (𝑏)

𝑠 ln 𝑏
𝜋 � 𝑑𝑠

=
1
𝜋

ln (𝑏)�
𝜋

0
sin2 (𝑛𝑠) 𝑑𝑠

=
1
𝜋

ln (𝑏)�
𝜋

0

1
2
−
1
2

cos (2𝑛𝑠) 𝑑𝑠

=
1
𝜋

ln (𝑏)
⎛
⎜⎜⎜⎜⎝
𝜋
2
−
1
2

sin �
2𝑛𝑠
2𝑛 �

𝜋

0

⎞
⎟⎟⎟⎟⎠

=
1
𝜋

ln (𝑏) �
𝜋
2
−
1
2

sin (𝑠)𝜋0 �

=
1
2

ln (𝑏)

Hence

𝜙𝑛 (𝑥) =
sin (𝛼𝑛 ln 𝑥)

�
1
2 ln (𝑏)

=
�

2
ln (𝑏)

sin (𝛼𝑛 ln 𝑥)

Which is what required to show.
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4 Section 72, Problem 9

Figure 4: Problem description

solution

From problem section 69 problem 1, we know that (𝑥𝑋′ (𝑥))′+ 𝜆
𝑥𝑋 (𝑥) = 0 can be transformed

to 𝑋′′ (𝑠) + 𝜆𝑋 (𝑠) = 0 using 𝑥 = 𝑒𝑠. With boundary conditions in 𝑠 found as follows. When
𝑥 = 1 then 𝑠 = 0 and when 𝑥 = 𝑏 then 𝑠 = ln 𝑏. Hence we obtain the SL problem

𝑋′′ (𝑠) + 𝜆𝑋 (𝑠) = 0 (1)

𝑋′ (0) = 0
𝑋 (ln 𝑏) = 0

But problem 3 is

𝑋′′ + 𝜆𝑋 = 0 (2)

𝑋′ (0) = 0
𝑋 (𝑐) = 0

And it had the solution

𝜙𝑛 (𝑥) = �
2
𝑐

cos (𝛼𝑛𝑥)

where

𝛼𝑛 =
(2𝑛 − 1)

𝑐
𝜋
2

𝑛 = 1, 2, 3,⋯

By comparing (2) and (1) we see it is the same problem, except 𝑐 → ln 𝑏. Hence the solution
to (2) is the same as the solution in (1) but with 𝑐 replaced by ln 𝑏. Hence the solution is

𝜙𝑛 (𝑠) = �
2

ln 𝑏
cos (𝛼𝑛𝑠)

𝛼𝑛 =
(2𝑛 − 1)

ln 𝑏
𝜋
2

𝑛 = 1, 2, 3,⋯
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But 𝑠 = ln 𝑥, hence the above becomes

𝜙𝑛 (𝑥) = �
2

ln 𝑏
cos (𝛼𝑛 ln 𝑥)

𝛼𝑛 =
(2𝑛 − 1)

ln 𝑏
𝜋
2

𝑛 = 1, 2, 3,⋯

Which is what required to show.
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