HW 10
 MATH 4567 Applied Fourier Analysis Spring 2019
 University of Minnesota, Twin Cities

[^0]
Contents

1 Section 69, Problem 1 2
1.1 Part (a) . 2
1.2 Part (b) . 4

2 Section 72, Problem 3 5
3 Section 72, Problem 6 7
4 Section 72, Problem 9 9

1 Section 69, Problem 1

1. (a) After writing the differential equation in the regular Sturm-Liouville problem

$$
\begin{array}{ll}
{\left[x X^{\prime}(x)\right]^{\prime}+\frac{\lambda}{x} X(x)=0} & (1<x<b), \\
X(1)=0, \quad X(b)=0
\end{array}
$$

in Cauchy-Euler form (see Problem 1, Sec. 44), use the substitution $x=\exp s$ to transform the problem into one consisting of the differential equation

$$
\frac{d^{2} X}{d s^{2}}+\lambda X=0 \quad(0<s<\ln b)
$$

and the boundary conditions

$$
X=0 \quad \text { when } \quad s=0 \quad \text { and } \quad X=0 \text { when } s=\ln b
$$

Then, by simply referring to the solutions of the Sturm-Liouville problem (4) in Sec. 35 , show that the eigenvalues and eigenfunctions of the original problem here are

$$
\lambda_{n}=\alpha_{n}^{2}, \quad X_{n}(x)=\sin \left(\alpha_{n} \ln x\right) \quad(n=1,2, \ldots),
$$

where $\alpha_{n}=n \pi / \ln b$.
(b) By making the substitution

$$
s=\pi \frac{\ln x}{\ln b}
$$

in the integral involved and then referring to Problem 9, Sec. 5, give a direct verification that the set of eigenfunctions $X_{n}(x)$ obtained in part (a) is orthogonal on the interval $1<x<b$ with weight function $p(x)=1 / x$, as ensured by Theorem 1 in Sec. 69.

Figure 1: Problem statement

Solution

1.1 Part (a)

$$
\begin{align*}
X^{\prime}(x)+x X^{\prime \prime}(x)+\frac{\lambda}{x} X(x) & =0 \\
x^{2} X^{\prime \prime}(x)+x X^{\prime}(x)+\lambda X(x) & =0 \tag{1}
\end{align*}
$$

To transform the above to $X^{\prime \prime}(s)+\lambda X(s)=0$, let $x=e^{s}$. Therefore $\frac{d x}{d s}=e^{s}$ or $\frac{d s}{d x}=e^{-s}$. Now

$$
\begin{align*}
\frac{d X}{d x} & =\frac{d X}{d s} \frac{d s}{d x} \\
& =\frac{d X}{d s} e^{-s} \tag{2}
\end{align*}
$$

And

$$
\begin{aligned}
\frac{d^{2} X}{d x^{2}} & =\frac{d}{d x}\left(\frac{d X}{d x}\right) \\
& =\frac{d}{d x}\left(\frac{d X}{d s} e^{-s}\right)
\end{aligned}
$$

Hence, by product rule

$$
\begin{align*}
\frac{d^{2} X}{d x^{2}} & =\frac{d^{2} X}{d s^{2}} \frac{d s}{d x} e^{-s}+\frac{d X}{d s} \frac{d}{d x}\left(e^{-s}\right) \\
& =\frac{d^{2} X}{d s^{2}} e^{-s} e^{-s}+\frac{d X}{d s} \frac{d}{d s}\left(e^{-s}\right) \frac{d s}{d x} \\
& =\frac{d^{2} X}{d s^{2}} e^{-2 s}+\frac{d X}{d s}\left(-e^{-s}\right)\left(e^{-s}\right) \\
& =e^{-2 s} \frac{d^{2} X}{d s^{2}}-e^{-2 s} \frac{d X}{d s} \tag{3}
\end{align*}
$$

Substituting (2,3) back into (1) gives

$$
x^{2}\left(e^{-2 s} \frac{d^{2} X}{d s^{2}}-e^{-2 s} \frac{d X}{d s}\right)+x\left(\frac{d X}{d s} e^{-s}\right)+\lambda X=0
$$

But $x=e^{s}$ and the above simplifies to

$$
\begin{array}{r}
e^{2 s}\left(e^{-2 s} \frac{d^{2} X}{d s^{2}}-e^{-2 s} \frac{d X}{d s}\right)+e^{s}\left(\frac{d X}{d s} e^{-s}\right)+\lambda X=0 \\
\frac{d^{2} X}{d s^{2}}-\frac{d X}{d s}+\frac{d X}{d s}+\lambda X=0 \\
\frac{d^{2} X(s)}{d s^{2}}+\lambda X(s)=0
\end{array}
$$

When $X(1)=0$, which means when $x=1$, and since $x=e^{s}$, then when $s=0$. Hence $X(1)=0$ becomes $X(0)=0$. And when $x=b$, then $s=\ln (b)$. Hence the second condition becomes $X(\ln (b))=0$. Therefore the new B.C. are

$$
\begin{aligned}
X(0) & =0 \\
X(\ln (b)) & =0
\end{aligned}
$$

By referring to problem (4) in section 35 we see that the eigenvalues are

$$
\lambda_{n}=\left(\frac{n \pi}{c}\right)^{2}
$$

Where here $c=\ln (b)$. Hence

$$
\begin{aligned}
\lambda_{n} & =\left(\frac{n \pi}{\ln (b)}\right)^{2} \quad n=1,2,3, \cdots \\
& =\alpha_{n}^{2}
\end{aligned}
$$

Where $\alpha_{n}=\frac{n \pi}{\ln (b)}$. And the eigenfunctions are, per section 35

$$
X_{n}(s)=\sin \left(\alpha_{n} s\right)
$$

In terms of x, the eigenfunctions become

$$
X_{n}(s)=\sin \left(\alpha_{n} \ln x\right)
$$

1.2 Part (b)

$$
\left\langle X_{n}(x), X_{m}(x)\right\rangle=\int_{1}^{b} \sin \left(\alpha_{n} \ln x\right) \sin \left(\alpha_{m} \ln x\right) p(x) d x
$$

But from $\left(x X^{\prime}(x)\right)^{\prime}+\frac{\lambda}{x} X(x)=0$ and comparing this to $\left(r X^{\prime}\right)^{\prime}+(\lambda p+q) X=0$, we see that $r(x)=x$ and $q=0$ and $p=\frac{1}{x}$. Hence the above integral becomes

$$
\left\langle X_{n}(x), X_{m}(x)\right\rangle=\int_{1}^{b} \frac{1}{x} \sin \left(\alpha_{n} \ln x\right) \sin \left(\alpha_{m} \ln x\right) d x
$$

Let $s=\frac{\ln x}{\ln b} \pi$. Then $\frac{d s}{d x}=\frac{1}{x} \frac{\pi}{\ln b}$ or $d x=\frac{x}{\pi} \ln (b) d s$. When $x=1$ then $s=0$ and when $x=b$ then $s=\pi$. Hence the above integral becomes

$$
\begin{aligned}
\left\langle X_{n}(x), X_{m}(x)\right\rangle & =\int_{s=0}^{s=\pi} \frac{1}{x} \sin \left(\alpha_{n} \frac{s \ln b}{\pi}\right) \sin \left(\alpha_{m} \frac{s \ln b}{\pi}\right)\left(\frac{x}{\pi} \ln (b) d s\right) \\
& =\frac{1}{\pi} \ln (b) \int_{0}^{\pi} \sin \left(\alpha_{n} \frac{s \ln b}{\pi}\right) \sin \left(\alpha_{m} \frac{s \ln b}{\pi}\right) d s
\end{aligned}
$$

But $\alpha_{n}=\frac{n \pi}{\ln (b)}$ and $\alpha_{m}=\frac{m \pi}{\ln (b)}$, therefore the above becomes

$$
\begin{align*}
\left\langle X_{n}(x), X_{m}(x)\right\rangle & =\frac{1}{\pi} \ln (b) \int_{0}^{\pi} \sin \left(\frac{n \pi}{\ln (b)} \frac{s \ln b}{\pi}\right) \sin \left(\frac{m \pi}{\ln (b)} \frac{s \ln b}{\pi}\right) d s \\
& =\frac{1}{\pi} \ln (b) \int_{0}^{\pi} \sin (n s) \sin (m s) d s \tag{1}
\end{align*}
$$

Referring to Problem 9., section 5 which says that

$$
\int_{0}^{\pi} \sin (n x) \sin (m x) d x= \begin{cases}0 & n \neq m \\ \frac{\pi}{2} & n=0\end{cases}
$$

Applying this to (1) shows that

$$
\left\langle X_{n}(x), X_{m}(x)\right\rangle= \begin{cases}0 & n \neq m \\ \frac{\pi}{2} & n=0\end{cases}
$$

Hence $X_{n}(x)$ and $X_{m}(x)$ are orthogonal, since this is the definition of orthogonality.

2 Section 72, Problem 3

$$
\begin{aligned}
& \text { 3. } X^{\prime \prime}+\lambda X=0, \quad X^{\prime}(0)=0, \quad X(c)=0 \text {. } \\
& \qquad \text { Answer: } \quad \lambda_{n}=\alpha_{n}^{2}, \quad \phi_{n}(x)=\sqrt{\frac{2}{c}} \cos \alpha_{n} x \quad(n=1,2, \ldots) ; \quad \alpha_{n}=\frac{(2 n-1) \pi}{2 c} .
\end{aligned}
$$

Figure 2: Problem statement

Solution

Solve for eigenvalues and normalized eigenfunctions.

$$
\begin{aligned}
X^{\prime \prime}+\lambda X & =0 \\
X^{\prime}(0) & =0 \\
X(c) & =0
\end{aligned}
$$

Writing the boundary conditions in SL standard form

$$
\begin{aligned}
a_{1} X(0)+a_{2} X^{\prime}(0) & =0 \\
b_{1} X(c)+b_{2} X^{\prime}(c) & =0
\end{aligned}
$$

Shows that $a_{1}=0, a_{2}=1$ and $b_{1}=1, b_{2}=0$. Therefore $a_{1} a_{2}=0$ and $b_{1} b_{2}=0$. But we know that if $a_{1} a_{2} \geq 0$ and $b_{1} b_{2} \geq 0$, then $\lambda>0$ is only possible eigenvalues. Let $\lambda_{n}=\alpha_{n}^{2}$. $\alpha>0$. Hence the solution to the ODE is

$$
\begin{aligned}
& X_{n}(x)=A \cos \left(\alpha_{n} x\right)+B \sin \left(\alpha_{n} x\right) \\
& X_{n}^{\prime}(x)=-A \alpha_{n} \sin \left(\alpha_{n} x\right)+B \alpha_{n} \cos \left(\alpha_{n} x\right)
\end{aligned}
$$

First B.C $X^{\prime}(0)=0$ gives

$$
0=B \alpha_{n}
$$

Which implies $B=0$. Hence the solution now becomes $X_{n}(x)=A \cos \left(\alpha_{n} x\right)$. For the second BC

$$
\begin{aligned}
& 0=A \cos \left(\alpha_{n} c\right) \\
& 0=\cos \left(\alpha_{n} c\right)
\end{aligned}
$$

Which implies

$$
\begin{aligned}
\alpha_{n} c & =\frac{\pi}{2}, 3 \frac{\pi}{2}, 5 \frac{\pi}{2}, \cdots \\
& =(2 n-1) \frac{\pi}{2} \quad n=1,2,3, \cdots
\end{aligned}
$$

Hence

$$
\alpha_{n}=\frac{(2 n-1)}{c} \frac{\pi}{2} \quad n=1,2,3, \ldots
$$

And the corresponding eigenfunctions are

$$
\begin{aligned}
X_{n}(x) & =\cos \left(\alpha_{n} x\right) \\
& =\cos \left(\frac{(2 n-1)}{c} \frac{\pi}{2} x\right)
\end{aligned}
$$

To find the normalized $X_{n}(x)$ which we call it $\phi_{n}(x)$, then by definition

$$
\phi_{n}(x)=\frac{X_{n}(x)}{\left\|X_{n}(x)\right\|}
$$

But

$$
\left\|X_{n}(x)\right\|^{2}=\int_{0}^{c} p(x) X_{n}^{2}(x) d x
$$

Comparing the ODE $X^{\prime \prime}+\lambda X=0$ to $\left(r X^{\prime}\right)^{\prime}+(\lambda p+q) X=0$, we see that $r(x)=1$ and $q=0$ and $p=1$. Hence the above becomes

$$
\begin{aligned}
\left\|X_{n}(x)\right\|^{2} & =\int_{0}^{c} \cos ^{2}\left(\alpha_{n} x\right) d x \\
& =\frac{c}{2}
\end{aligned}
$$

Therefore $\left\|X_{n}(x)\right\|=\sqrt{\frac{c}{2}}$ which shows that

$$
\begin{aligned}
\phi_{n}(x) & =\frac{X_{n}(x)}{\sqrt{\frac{c}{2}}} \\
& =\sqrt{\frac{2}{c}} \cos \left(\alpha_{n} x\right)
\end{aligned}
$$

where

$$
\alpha_{n}=\frac{(2 n-1)}{c} \frac{\pi}{2} \quad n=1,2,3, \cdots
$$

Which is what required to show.

3 Section 72, Problem 6

6. In Problem $1(a)$, Sec. 69, the eigenvalues and eigenfunctions of the Sturm-Liouville problem

$$
\left(x X^{\prime}\right)^{\prime}+\frac{\lambda}{x} X=0, \quad X(1)=0, \quad X(b)=0
$$

were found to be

$$
\lambda_{n}=\alpha_{n}^{2}, \quad X_{n}(x)=\sin \left(\alpha_{n} \ln x\right) \quad(n=1,2, \ldots)
$$

where $\alpha_{n}=n \pi / \ln b$. Show that the normalized eigenfunctions are

$$
\phi_{n}(x)=\sqrt{\frac{2}{\ln b}} \sin \left(\alpha_{n} \ln x\right) \quad(n=1,2, \ldots)
$$

Suggestion: The integral that arises can be evaluated by making the substitution

$$
s=\pi \frac{\ln x}{\ln b}
$$

and then referring to the integration formula established in Problem 9, Sec. 5.

Figure 3: Problem statement

Solution

$$
\begin{aligned}
X_{n}(x) & =\sin \left(\alpha_{n} \ln x\right) \\
\alpha_{n} & =\frac{n \pi}{\ln b} \quad n=1,2,3, \cdots
\end{aligned}
$$

The normalized eigenfunction is given by

$$
\phi_{n}(x)=\frac{X_{n}(x)}{\left\|X_{n}(x)\right\|}
$$

But

$$
\left\|X_{n}(x)\right\|^{2}=\int_{1}^{b} p(x) X_{n}^{2}(x) d x
$$

Comparing the ODE $\left(x X^{\prime}\right)^{\prime}+\frac{\lambda}{x} X=0$ to $\left(r X^{\prime}\right)^{\prime}+(\lambda p+q) X=0$, we see that $r(x)=x$ and $q=0$ and $p=\frac{1}{x}$. Hence the above becomes

$$
\left\|X_{n}(x)\right\|^{2}=\int_{1}^{b} \frac{1}{x} \sin ^{2}\left(\alpha_{n} \ln x\right) d x
$$

Let $s=\frac{\ln x}{\ln b} \pi$. Then $\frac{d s}{d x}=\frac{1}{x} \frac{\pi}{\ln b}$ or $d x=\frac{x}{\pi} \ln (b) d s$. When $x=1$ then $s=0$ and when $x=b$ then $s=\pi$. Hence the above integral becomes

$$
\begin{aligned}
\left\|X_{n}(x)\right\|^{2} & =\int_{s=0}^{s=\pi} \frac{1}{x} \sin ^{2}\left(\alpha_{n} \frac{s \ln b}{\pi}\right)\left(\frac{x}{\pi} \ln (b) d s\right) \\
& =\frac{1}{\pi} \ln (b) \int_{0}^{\pi} \sin ^{2}\left(\alpha_{n} \frac{s \ln b}{\pi}\right) d s
\end{aligned}
$$

But $\alpha_{n}=\frac{n \pi}{\ln (b)}$ therefore the above becomes

$$
\begin{aligned}
\left\|X_{n}(x)\right\|^{2} & =\frac{1}{\pi} \ln (b) \int_{0}^{\pi} \sin ^{2}\left(\frac{n \pi}{\ln (b)} \frac{s \ln b}{\pi}\right) d s \\
& =\frac{1}{\pi} \ln (b) \int_{0}^{\pi} \sin ^{2}(n s) d s \\
& =\frac{1}{\pi} \ln (b) \int_{0}^{\pi} \frac{1}{2}-\frac{1}{2} \cos (2 n s) d s \\
& =\frac{1}{\pi} \ln (b)\left(\frac{\pi}{2}-\frac{1}{2} \sin \left(\frac{2 n s}{2 n}\right)_{0}^{\pi}\right) \\
& =\frac{1}{\pi} \ln (b)\left(\frac{\pi}{2}-\frac{1}{2} \sin (s)_{0}^{\pi}\right) \\
& =\frac{1}{2} \ln (b)
\end{aligned}
$$

Hence

$$
\begin{aligned}
\phi_{n}(x) & =\frac{\sin \left(\alpha_{n} \ln x\right)}{\sqrt{\frac{1}{2} \ln (b)}} \\
& =\sqrt{\frac{2}{\ln (b)}} \sin \left(\alpha_{n} \ln x\right)
\end{aligned}
$$

Which is what required to show.

4 Section 72, Problem 9

9. Use the solutions obtained in Problem 3 to find the eigenvalues and normalized eigen functions of the Sturm-Liouville problem

$$
\left(x X^{\prime}\right)^{\prime}+\frac{\lambda}{x} X=0, \quad X^{\prime}(1)=0, \quad X(b)=0 .
$$

Answer:

$$
\lambda_{n}=\alpha_{n}^{2}, \quad \phi_{n}(x)=\sqrt{\frac{2}{\ln b}} \cos \left(\alpha_{n} \ln x\right) \quad(n=1,2, \ldots) ; \quad \alpha_{n}=\frac{(2 n-1) \pi}{2 \ln b} .
$$

Figure 4: Problem description
solution
From problem section 69 problem 1, we know that $\left(x X^{\prime}(x)\right)^{\prime}+\frac{\lambda}{x} X(x)=0$ can be transformed to $X^{\prime \prime}(s)+\lambda X(s)=0$ using $x=e^{s}$. With boundary conditions in s found as follows. When $x=1$ then $s=0$ and when $x=b$ then $s=\ln b$. Hence we obtain the SL problem

$$
\begin{align*}
X^{\prime \prime}(s)+\lambda X(s) & =0 \tag{1}\\
X^{\prime}(0) & =0 \\
X(\ln b) & =0
\end{align*}
$$

But problem 3 is

$$
\begin{align*}
X^{\prime \prime}+\lambda X & =0 \tag{2}\\
X^{\prime}(0) & =0 \\
X(c) & =0
\end{align*}
$$

And it had the solution

$$
\phi_{n}(x)=\sqrt{\frac{2}{c}} \cos \left(\alpha_{n} x\right)
$$

where

$$
\alpha_{n}=\frac{(2 n-1)}{c} \frac{\pi}{2} \quad n=1,2,3, \cdots
$$

By comparing (2) and (1) we see it is the same problem, except $c \rightarrow \ln b$. Hence the solution to (2) is the same as the solution in (1) but with c replaced by $\ln b$. Hence the solution is

$$
\begin{aligned}
\phi_{n}(s) & =\sqrt{\frac{2}{\ln b}} \cos \left(\alpha_{n} s\right) \\
\alpha_{n} & =\frac{(2 n-1)}{\ln b} \frac{\pi}{2} \quad n=1,2,3, \cdots
\end{aligned}
$$

But $s=\ln x$, hence the above becomes

$$
\begin{aligned}
\phi_{n}(x) & =\sqrt{\frac{2}{\ln b}} \cos \left(\alpha_{n} \ln x\right) \\
\alpha_{n} & =\frac{(2 n-1)}{\ln b} \frac{\pi}{2} \quad n=1,2,3, \cdots
\end{aligned}
$$

Which is what required to show.

[^0]: Nasser M. Abbasi

