HW 5

Math 2243
Linear Algebra and Differential Equations

Fall 2020
University of Minnesota, Twin Cities

Nasser M. Abbasi

Contents

1 Problem 7 section 4.7 2
2 Problem 10 section 4.7 3
3 Problem 5 section 1.1 4
4 Problem 17 section 1.1 5
5 Problem 3 section 5.1 7
6 Problem 5 section 5.1 8
7 Problem 7 section 5.1 9
8 Problem 33 section 5.1 10
9 Problem 35 section 5.1 11
10 Problem 39 section 5.1 12
11 Additional problem 1 13
12 Additional problem 2 14

1 Problem 7 section 4.7

In Problems 5-8, determine whether or not each indicated set of functions is a subspace of the space F of all real-valued functions on \mathbb{R}.

The set of all f such that $f(0)=0$ and $f(1)=1$
Solution
Let f, g be two functions such that $f(0)=0, g(0)=0$ and $f(1)=1, g(1)=1$ in F. Let us check if it is closed under addition

$$
f(0)+g(0)=0+0=0
$$

OK.

$$
f(1)+g(1)=1+1=2 \neq 1
$$

Hence not closed under addition. Therefore not a subspace.

2 Problem 10 section 4.7

In Problems 9-12, a condition on the coefficients of a polynomial $a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$ is given. Determine whether or not the set of all such polynomials satisfying this condition is a subspace of the space P of all polynomials

$$
a_{0}=a_{1}=0
$$

Solution

Let

$$
\begin{aligned}
& p_{1}(x)=a_{2} x^{2}+a_{3} x^{3} \\
& p_{2}(x)=b_{2} x^{2}+b_{3} x^{3}
\end{aligned}
$$

Checking if closed under scalar multiplication. Let c be some scalar. Hence

$$
\begin{aligned}
c p_{1}(x) & =c\left(a_{2} x^{2}+a_{3} x^{3}\right) \\
& =\left(c a_{2}\right) x^{2}+\left(c a_{3}\right) x^{3} \\
& =A_{2} x^{2}+A_{3} x^{3}
\end{aligned}
$$

Therefore closed. Now checking if closed under addition.

$$
\begin{aligned}
p_{1}(x)+p_{2}(x) & =a_{2} x^{2}+a_{3} x^{3}+b_{2} x^{2}+b_{3} x^{3} \\
& =\left(a_{2}+b_{2}\right) x^{2}+\left(a_{3}+b_{3}\right) x^{3} \\
& =A_{2} x^{2}+A_{3} x^{3}
\end{aligned}
$$

Therefore Closed under addition. Also the zero polynomial in included when $a_{2}=a_{3}=0$.
Therefore this is a subspace.

3 Problem 5 section 1.1

In Problems 1 through 12, verify by substitution that each given function is a solution of the given differential equation. Throughout these problems, primes denote derivatives with respect to x.

$$
\begin{align*}
y^{\prime} & =y+2 e^{-x} \tag{A}\\
y & =e^{x}-e^{-x}
\end{align*}
$$

Solution
Using the solution given, we see that

$$
\begin{align*}
y^{\prime} & =e^{x}-\left(-e^{-x}\right) \\
& =e^{x}+e^{-x} \tag{1}
\end{align*}
$$

Substituting (1) into EQ. (A) gives

$$
\begin{aligned}
e^{x}+e^{-x} & =\left(e^{x}-e^{-x}\right)+2 e^{-x} \\
e^{x}+e^{-x} & =e^{x}+e^{-x} \\
0 & =0
\end{aligned}
$$

Hence the solution given satisfies the ODE.

4 Problem 17 section 1.1

In Problems 17 through 26, first verify that $y(x)$ satisfies the given differential equation. Then determine a value of the constant C so that $y(x)$ satisfies the given initial condition. Use a computer or graphing calculator (if desired) to sketch several typical solutions of the given differential equation, and highlight the one that satisfies the given initial condition.

$$
\begin{align*}
y^{\prime}+y & =0 \tag{A}\\
y(x) & =C e^{-x} \\
y(0) & =2
\end{align*}
$$

Solution

Using the solution given, we see that

$$
\begin{equation*}
y^{\prime}=-C e^{-x} \tag{1}
\end{equation*}
$$

Substituting (1) into EQ. (A) gives

$$
\begin{aligned}
-C e^{-x}+C e^{-x} & =0 \\
0 & =0
\end{aligned}
$$

Hence the solution gives satisfies the ODE.
When $x=0$ the solution becomes

$$
\begin{aligned}
2 & =C e^{-(0)} \\
& =C
\end{aligned}
$$

Hence $C=2$ and the particular solution becomes

$$
y(x)=2 e^{-x}
$$

The following are some solutions plots for different C

Figure 1: Plot of serveral solution with different c. Red solution is one given in problem.

```
restart;
f:=(x, c) ->c*exp(-x)
p1:=plot(f(x,2),x=-5..5,gridlines=true,view=[-6..6, -6..6],color=red):
p2:=plot(f(x,4),x=-5..5,gridlines=true,view=[-6..6, -6..6],color=blue):
p3:=plot(f(x,-2),x=-5..5,gridlines=true,view=[-6..6, -6..6],color=green):
p4:=plot(f(x,-4),x=-5..5,gridlines=true,view=[-6..6, -6..6],color=black):
T:=plots:-textplot([[.5,2,"(0,2)"]], font=[times,16],tickmarks=NULL):
plots:-display([p1,p2,p3,p4,T]);
```


5 Problem 3 section 5.1

A homogeneous second-order linear differential equation, two functions y_{1} and y_{2}, and a pair of initial conditions are given. First verify that y_{1} and y_{2} are solutions of the differential equation. Then find a particular solution of the form $y=c_{1} y_{1}+c_{2} y_{2}$ that satisfies the given initial conditions. Primes denote derivatives with respect to x.

$$
\begin{align*}
y^{\prime \prime}+4 y & =0 \tag{1}\\
y_{1} & =\cos 2 x \\
y_{2} & =\sin 2 x \\
y(0) & =3 \\
y^{\prime}(0) & =8
\end{align*}
$$

Solution

Checking if $y_{1}(x)$ is a solution. Since

$$
\begin{align*}
& y_{1}^{\prime}=-2 \sin 2 x \tag{2}\\
& y_{1}^{\prime \prime}=-4 \cos 2 x \tag{3}
\end{align*}
$$

Substituting the above equations back into (1) gives

$$
\begin{aligned}
(-4 \cos 2 x)+4 \cos 2 x & =0 \\
0 & =0
\end{aligned}
$$

Hence y_{1} is a solution. We do the same for y_{2}

$$
\begin{align*}
& y_{2}^{\prime}=2 \cos 2 x \tag{4}\\
& y_{2}^{\prime \prime}=-4 \sin 2 x \tag{5}
\end{align*}
$$

Substituting $(4,5)$ back into (1) gives

$$
\begin{aligned}
(-4 \sin 2 x)+4(\sin 2 x) & =0 \\
0 & =0
\end{aligned}
$$

Hence y_{2} is a solution. Let general solution be

$$
\begin{align*}
y(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} \cos 2 x+c_{2} \sin 2 x \tag{6}
\end{align*}
$$

Applying the first initial conditions $y(0)=3$ in (6) gives

$$
3=c_{1}
$$

Hence (6) now becomes

$$
\begin{equation*}
y(x)=3 \cos 2 x+c_{2} \sin 2 x \tag{7}
\end{equation*}
$$

Taking derivative of the above gives

$$
y^{\prime}(x)=-6 \sin 2 x+2 c_{2} \cos 2 x
$$

Applying the second initial conditions $y^{\prime}(0)=8$ in the above gives

$$
\begin{aligned}
8 & =2 c_{2} \\
c_{2} & =4
\end{aligned}
$$

Therefore the general solution (6) becomes

$$
\begin{equation*}
y(x)=3 \cos 2 x+4 \sin 2 x \tag{8}
\end{equation*}
$$

6 Problem 5 section 5.1

A homogeneous second-order linear differential equation, two functions y_{1} and y_{2}, and a pair of initial conditions are given. First verify that y_{1} and y_{2} are solutions of the differential equation. Then find a particular solution of the form $y=c_{1} y_{1}+c_{2} y_{2}$ that satisfies the given initial conditions. Primes denote derivatives with respect to x.

$$
\begin{align*}
y^{\prime \prime}-3 y^{\prime}+2 y & =0 \tag{1}\\
y_{1} & =e^{x} \\
y_{2} & =e^{2 x} \\
y(0) & =1 \\
y^{\prime}(0) & =0
\end{align*}
$$

Solution

Checking if $y_{1}(x)$ is a solution. Since

$$
\begin{align*}
y_{1}^{\prime} & =e^{x} \tag{2}\\
y_{1}^{\prime \prime} & =e^{x} \tag{3}
\end{align*}
$$

Substituting the above equations back into (1) gives

$$
\begin{aligned}
e^{x}-3 e^{x}+2 e^{x} & =0 \\
0 & =0
\end{aligned}
$$

Hence y_{1} is a solution. We do the same for y_{2}

$$
\begin{align*}
y_{2}^{\prime} & =2 e^{2 x} \tag{4}\\
y_{2}^{\prime \prime} & =4 e^{2 x} \tag{5}
\end{align*}
$$

Substituting $(4,5)$ back into (1) gives

$$
\begin{aligned}
\left(4 e^{2 x}\right)-3\left(2 e^{2 x}\right)+2\left(e^{2 x}\right) & =0 \\
4 e^{2 x}-6 e^{2 x}+2 e^{2 x} & =0 \\
0 & =0
\end{aligned}
$$

Hence y_{2} is a solution. Let general solution be

$$
\begin{align*}
y(x) & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1} e^{x}+c_{2} e^{2 x} \tag{6}
\end{align*}
$$

Applying the first initial conditions $y(0)=1$ in (6) gives

$$
\begin{equation*}
1=c_{1}+c_{2} \tag{7}
\end{equation*}
$$

Taking derivative of Eq. (6) gives

$$
y^{\prime}(x)=c_{1} e^{x}+2 c_{2} e^{2 x}
$$

Applying the second initial conditions $y^{\prime}(0)=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+2 c_{2} \tag{8}
\end{equation*}
$$

We have two equations $(7,8)$ to solve for the 2 unknowns c_{1}, c_{2}. (7)-(8) gives

$$
c_{2}=-1
$$

Hence from (7) $c_{1}=1-c_{2}=1+1=2$. Therefore the solution (6) now becomes

$$
y(x)=2 e^{x}-e^{2 x}
$$

7 Problem 7 section 5.1

A homogeneous second-order linear differential equation, two functions y_{1} and y_{2}, and a pair of initial conditions are given. First verify that y_{1} and y_{2} are solutions of the differential equation. Then find a particular solution of the form $y=c_{1} y_{1}+c_{2} y_{2}$ that satisfies the given initial conditions. Primes denote derivatives with respect to x.

$$
\begin{align*}
y^{\prime \prime}+y^{\prime} & =0 \tag{1}\\
y_{1} & =1 \\
y_{2} & =e^{-x} \\
y(0) & =-2 \\
y^{\prime}(0) & =8
\end{align*}
$$

Solution

Checking if $y_{1}(x)$ is a solution. Since

$$
\begin{align*}
y_{1}^{\prime} & =0 \tag{2}\\
y_{1}^{\prime \prime} & =0 \tag{3}
\end{align*}
$$

Substituting the above equations back into (1) gives

$$
\begin{aligned}
0+0 & =0 \\
0 & =0
\end{aligned}
$$

Hence y_{1} is a solution. We do the same for y_{2}

$$
\begin{align*}
& y_{2}^{\prime}=-e^{-x} \tag{4}\\
& y_{2}^{\prime \prime}=e^{-x} \tag{5}
\end{align*}
$$

Substituting $(4,5)$ back into (1) gives

$$
\begin{aligned}
\left(e^{-x}\right)-e^{-x} & =0 \\
0 & =0
\end{aligned}
$$

Hence y_{2} is a solution. Let general solution be

$$
\begin{align*}
y(x) & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}+c_{2} e^{-x} \tag{6}
\end{align*}
$$

Applying the first initial conditions $y(0)=-2$ in (6) gives

$$
\begin{equation*}
-2=c_{1}+c_{2} \tag{7}
\end{equation*}
$$

Taking derivative of Eq. (6) gives

$$
y^{\prime}(x)=-c_{2} e^{-x}
$$

Applying the second initial conditions $y^{\prime}(0)=8$ in the above gives

$$
\begin{align*}
8 & =-c_{2} \\
c_{2} & =-8 \tag{8}
\end{align*}
$$

Hence from (7)

$$
\begin{aligned}
-2 & =c_{1}+c_{2} \\
& =c_{1}-8 \\
c_{1} & =6
\end{aligned}
$$

Therefore the solution (6) now becomes

$$
\begin{aligned}
y(x) & =c_{1}+c_{2} e^{-x} \\
& =6-8 e^{-x}
\end{aligned}
$$

8 Problem 33 section 5.1

Apply Theorems 5 and 6 to find general solutions of the differential equations given in Problems 33 through 42. Primes denote derivatives with respect to x.

$$
y^{\prime \prime}-3 y^{\prime}+2 y=0
$$

Solution

The characteristic equation is

$$
\begin{aligned}
r^{2}-3 r+2 & =0 \\
(r-1)(r-2) & =0
\end{aligned}
$$

Hence the roots are $r_{1}=1, r_{2}=2$. Therefore the general solution is

$$
\begin{aligned}
y(x) & =A e^{r_{1} x}+B e^{r_{2} x} \\
& =A e^{x}+B e^{2 x}
\end{aligned}
$$

Where A, B are the constants of integrations which are found from initial conditions.

9 Problem 35 section 5.1

Apply Theorems 5 and 6 to find general solutions of the differential equations given in Problems 33 through 42. Primes denote derivatives with respect to x.

$$
y^{\prime \prime}+5 y^{\prime}=0
$$

Solution

The characteristic equation is

$$
\begin{aligned}
r^{2}+5 r & =0 \\
(r+5) r & =0
\end{aligned}
$$

Hence the roots are $r_{1}=0, r_{2}=-5$. Therefore the general solution is

$$
\begin{aligned}
y(x) & =A e^{r_{1} x}+B e^{r_{2} x} \\
& =A+B e^{-5 x}
\end{aligned}
$$

Where A, B are the constants of integrations which are found from initial conditions.

10 Problem 39 section 5.1

Apply Theorems 5 and 6 to find general solutions of the differential equations given in Problems 33 through 42. Primes denote derivatives with respect to x.

$$
4 y^{\prime \prime}+4 y^{\prime}+y=0
$$

Solution

The characteristic equation is

$$
\begin{aligned}
4 r^{2}+4 r+1 & =0 \\
r^{2}+r+\frac{1}{4} & =0 \\
\left(r+\frac{1}{2}\right)^{2} & =0
\end{aligned}
$$

Hence the root is $r=-\frac{1}{2}$. A double root. Therefore the general solution is

$$
\begin{aligned}
y(x) & =A e^{r x}+B x e^{r x} \\
& =A e^{-\frac{1}{2} x}+B x e^{-\frac{1}{2} x}
\end{aligned}
$$

Where A, B are the constants of integrations which are found from initial conditions.

11 Additional problem 1

Let P_{2} be subspace of polynomials of degree at most 2 . So elements of P_{2} look like $a_{0}+$ $a_{1} x+a_{2} x^{2}$. Show that $\left\{3+x, 1+x+x^{2}, x-2 x^{2}\right\}$ is basis for P_{2}
Solution
Assuming these are basis, then we can write

$$
a_{0}+a_{1} x+a_{2} x^{2}=c_{1}(3+x)+c_{2}\left(1+x+x^{2}\right)+c_{3}\left(x-2 x^{2}\right)
$$

For constants c_{1}, c_{2}, c_{3}. If we can find unique solution for the c_{i} then these are basis. The above becomes

$$
\begin{aligned}
a_{0}+a_{1} x+a_{2} x^{2} & =3 c_{1}+c_{2}+x c_{1}+x c_{2}+x c_{3}+x^{2} c_{2}-2 x^{2} c_{3} \\
& =\left(3 c_{1}+c_{2}\right)+x\left(c_{1}+c_{2}+c_{3}\right)+x^{2}\left(c_{2}-2 c_{3}\right)
\end{aligned}
$$

Comparing coefficients gives the equations

$$
\begin{aligned}
& a_{0}=3 c_{1}+c_{2} \\
& a_{1}=c_{1}+c_{2}+c_{3} \\
& a_{2}=c_{2}-2 c_{3}
\end{aligned}
$$

In Matrix form the above becomes

$$
\left[\begin{array}{ccc}
3 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & -2
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right]
$$

Augmented matrix is

$$
\left[\begin{array}{cccc}
3 & 1 & 0 & a_{0} \\
1 & 1 & 1 & a_{1} \\
0 & 1 & -2 & a_{2}
\end{array}\right]
$$

Replacing row 2 with row 1 gives

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & a_{1} \\
3 & 1 & 0 & a_{0} \\
0 & 1 & -2 & a_{2}
\end{array}\right]
$$

$R_{2} \rightarrow-3 R_{1}+R_{2}$ gives

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & a_{1} \\
0 & -2 & -3 & a_{0}-3 a_{1} \\
0 & 1 & -2 & a_{2}
\end{array}\right]
$$

$R_{3} \rightarrow R_{2}+2 R_{3}$ gives

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & a_{1} \\
0 & -2 & -3 & a_{0}-3 a_{1} \\
0 & 0 & -7 & a_{0}-3 a_{1}+2 a_{2}
\end{array}\right]
$$

The matrix is now in Echelon form. We see that there are no free variables. Only leading variables c_{1}, c_{2}, c_{3}. This implies we have unique solution. Which means we can solve for c_{1}, c_{2}, c_{3} in terms of a_{1}, a_{2}, a_{3}. We are not asked to complete the solution, only to say if these are basis. So we can stop here.
This shows that $\left\{3+x, 1+x+x^{2}, x-2 x^{2}\right\}$ are basis for P_{2}.

12 Additional problem 2

Find the general solution for $y^{\prime \prime}-25 y=0$. What is the particular solution for $y(0)=a, y^{\prime}(0)=$ b ?

Solution

The characteristic equation is

$$
\begin{aligned}
r^{2}-25 & =0 \\
r & = \pm 5
\end{aligned}
$$

Two distinct real roots $r_{1}=5, r_{2}=-5$. Therefore the general solution is

$$
\begin{align*}
y(x) & =c_{1} e^{r_{1} x}+c_{2} e^{r_{2} x} \\
& =c_{1} e^{5 x}+c_{2} e^{-5 x} \tag{1}
\end{align*}
$$

Now we apply the initial conditions. The first one $y(0)=a$ applied to the above gives

$$
\begin{equation*}
a=c_{1}+c_{2} \tag{2}
\end{equation*}
$$

Taking derivative of (1) gives

$$
y^{\prime}=5 c_{1} e^{5 x}-5 c_{2} e^{-5 x}
$$

Applying second initial conditions $y^{\prime}(0)=b$ to the above gives

$$
\begin{equation*}
b=5 c_{1}-5 c_{2} \tag{3}
\end{equation*}
$$

Multiplying (2) by 5 and adding the result to Eq (3) gives

$$
\begin{aligned}
& 5 a+b=\left(5 c_{1}+5 c_{2}\right)+\left(5 c_{1}-5 c_{2}\right) \\
& 5 a+b=10 c_{1}
\end{aligned}
$$

Hence

$$
c_{1}=\frac{5 a+b}{10}
$$

From (2) we now solve for c_{2}

$$
\begin{aligned}
a & =\frac{5 a+b}{10}+c_{2} \\
c_{2} & =a-\frac{5 a+b}{10} \\
& =\frac{a}{2}-\frac{b}{10}
\end{aligned}
$$

Now that we found both constants, the particular solution becomes

$$
\begin{aligned}
y(x) & =c_{1} e^{5 x}+c_{2} e^{-5 x} \\
& =\left(\frac{a}{2}+\frac{b}{10}\right) e^{5 x}+\left(\frac{a}{2}-\frac{b}{10}\right) e^{-5 x}
\end{aligned}
$$

