
Homework 12 – Solutions

These solutions demonstrate one way to approach each of the homework problems. In many
cases, there are other correct solutions. If you would like to discuss alternative solutions or
the grading of your assignment, please see me during office hours or send me an email.

Textbook Problems:

1.4.4 We separate variables and then integrate.

(1 + x)
dy

dx
= 4y

1

y
dy =

4

1 + x
dx∫

1

y
dy =

∫
4

1 + x
dx

ln y = 4 ln(1 + x) + C

Now we exponentiate both sides to solve for y.

y = e4 ln(1+x)+C

y = C1(1 + x)4

1.4.17 We can factor to write the differential equation as y′ = (1+x)(1+y). Now we separate
variables and integrate.

dy

dx
= (1 + x)(1 + y)

1

1 + y
dy = (1 + x) dx∫

1

1 + y
dy =

∫
(1 + x) dx

ln(1 + y) = x +
x2

2
+ C

We exponentiate to solve for y.

1 + y = ex+
1
2
x2+C

y = C1e
x+ 1

2
x2 − 1

In this case, solving for y gives us a bit of a mess, so it would be acceptable to leave it
in the implicit form found above.
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1.4.19 We separate variables and integrate.

dy

dx
= yex

1

y
dy = ex dx∫

1

y
dy =

∫
ex dx

ln y = ex + C

We have the initial condition y(0) = 2e, so we find the constant C.

ln(2e) = e0 + C

ln 2 + ln e = 1 + C

ln 2 = C

Now we exponentiate to solve for y.

y = ee
x+ln 2

y = 2ee
x

1.4.33 Our population is modeled by dP
dt

= kP , so that P (t) = Cekt. Let t be the years since
1960 and P (t) the population in thousands. Then our initial conditions are P (0) = 25
and P (10) = 30. This lets us solve for the constants C and k:

25 = Ce0k

25 = C

30 = 25e10k

6

5
= e10k

10k = ln(6/5)

k =
ln(6/5)

10
≈ 0.0182

So P (t) = 25e0.0182t and in 2000 we predict P (40) = 25ek·40 = 25(6/5)4 ≈ 51.8 thousand
residents.

1.4.43 The temperature is modeled by dT
dt

= k(0 − T ) = −kT so that T (t) = Ce−kt. Our
initial conditions are T (0) = 25 and T (20) = 15. We can solve for the constants now.

25 = Ce0 = C
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15 = 25e−20k

3

5
= e−20k

−20k = ln(3/5)

k = − ln(3/5)

20
≈ 0.0255

We want to know when T (t) = 5.

5 = 25e−kt

1

5
= e−kt

−kt = ln(1/5)

t = − ln(1/5)

k
= 20

ln(1/5)

ln(3/5)
≈ 63.01

So it will take about 63 minutes for the buttermilk to cool to 5◦.

1.5.3 We have y′+3y = 2xe−3x, so that P (x) = 3. Our integrating factor is exp(
∫

3 dx) = e3x.
After multiplying by e3x, we have

d

dx

[
ye3x

]
= 2x

ye3x = x2 + C

y = x2e−3x + Ce−3x

1.5.17 We have (1 + x)y′ + y = cosx, which after dividing by 1 + x is

y′ +
1

1 + x
y =

cosx

1 + x

So P (x) = 1
1+x

and our integrating factor is exp(
∫

1
1+x

dx) = exp(ln(1 + x)) = 1 + x.
After multiplication by 1 + x, we have

d

dx
[y(1 + x)] = cos x

y(1 + x) = sinx + C

y =
sinx + C

1 + x

We are given the initial condition that y(0) = 1, so we have

1 =
sin 0 + C

1
1 = C

So our solution is y = sinx+1
1+x
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1.5.37 After t seconds, the volume of liquid in the tank is V (t) = 100 + 5t − 3t = 100 + 2t.
The differential equation that describes the amount x(t) of salt in the tank at time t is

x′ = 5 · 1 − 3 · x

100 + 2t

We rewrite this slightly to allow us to find the integrating factor.

x′ +
3

100 + 2t
x = 5

So P (t) = 3
100+2t

and our integrating factor is exp(
∫

3
100+2t

dt) = exp(3
2

ln(100 + 2t)) =

(100 + 2t)3/2. After multiplying by the integrating factor, we have

d

dt

[
x(100 + 2t)3/2

]
= 5(100 + 2t)3/2

x(100 + 2t)3/2 = (100 + 2t)5/2 + C

x = (100 + 2t) +
C

(100 + 2t)3/2

Initially, we have x(0) = 50 pounds of salt. So we can solve for C.

50 = 100 +
C

1003/2

−50 · 1000 = C

So, we have

x(t) = 100 + 2t− 50, 000

(100 + 2t)3/2

We want the amount of salt when the tank is full. This happens when V (t) = 400, so
when t = 150. At that time, we have

x(150) = 400 − 50, 000

4003/2
= 393.75 pounds of salt

2.1.15 We are given that dP
dt

= aP − bP 2 = bP (a
b
− P ). We are given that the birth rate is

aP , which at t = 0 is B0 and the death rate is bP 2, which at t = 0 is D0. Since the
initial population is P (0) = P0, this tells us that aP0 = B0 and bP 2

0 = D0. So we have

a

b
=

B0/P0

D0/P 2
0

=
B0P0

D0

So we have written our differential equation in the form dP
dt

= kP (M − P ) where
k = b = D0

P 2
0

and M = a
b

= B0P0

D0
. Thus our limiting population is indeed B0P0

D0
.
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2.1.16 In this case we have P0 = 120, B0 = 8, and D0 = 6. So our differential equation can
be written as

dP

dt
=

6

1202
P

(
8 · 120

6
− P

)
=

1

2400
P (160 − P )

Knowing k, M , and P0, we can use the formula for the general solution of a logistic
equation to get

P (t) =
160 · 120

120 + (160 − 120)e−
1

2400
·160t

=
480

3 + e−t/15

We wish to know when P (t) = 0.95 ·M = 152. We solve:

152 =
480

3 + e−t/15

456 + 152e−t/15 = 480

152e−t/15 = 24

−t

15
= ln(3/19)

t = −15 ln(3/19) ≈ 27.7

So it will take nearly 28 months for the population to reach 95% of the limiting popu-
lation.

2.1.17 In this case, we have P0 = 240, B0 = 9, and D0 = 12. So our differential equation can
be written as

dP

dt
=

12

2402
P

(
9 · 240

12
− P

)
=

1

4800
P (180 − P )

Knowing k, M , and P0, we can use the formula for the general solution of a logistic
equation to get

P (t) =
180 · 240

240 + (180 − 240)e−
1

4800
·180t

=
720

4 − e−3t/80

We wish to know when P (t) = 1.05 ·M = 189. We solve:

189 =
720

4 − e−3t/80

756 − 189e−3t/80 = 720

189e−3t/80 = 36

−3t

80
= ln(4/21)

t =
−80 ln(4/21)

3
≈ 44.2
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So it will take just more than 44 months for the population to fall to 105% of the
limiting population.

Additional Problems:

1. (a) y′+y = 0 has characteristic equation r+1 = 0 with root r = −1. So we have general
solution y = c1e

−x.

(b) Our particular solution has form yp = Aex since there is no repetition. We substitute
into the equation to find the value of A:

y′p + yp = Aex + Aex = ex

So A = 1
2

and we have particular solution yp = 1
2
ex.

(c) The general solution is y = yp + yc = 1
2
ex + c1e

−x.

(d) For y′ + y = ex we have P (x) = 1 and Q(x) = ex.

(e) Our integrating factor is

e
∫
P (x) dx = e

∫
1 dx

= ex

So we have

y′ex + yex = e2x

d

dx
[y · ex] = e2x

y · ex =

∫
e2x dx

y · ex =
1

2
e2x + C

y =
1

2
ex + Ce−x

(f) The solutions we wrote in (e) and (c) are identical, except for the name of the
constants.

2. (a) The initial value problem is

dP

dt
= kP (100 − P ) P (0) = 5

where P (t) is the number of people with Green’s disease (in thousands) on day t.
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(b) This differential equation is separable:

1

P (100 − P )
dP = k dt

After calculating a partial fraction decomposition, we can integrate both sides:

1

100

∫ (
1

P
+

1

100 − P

)
dP =

∫
k dt

1

100
(lnP − ln(100 − P )) = kt + C

ln

(
P

100 − P

)
= 100kt + C0

P

100 − P
= C1e

100kt

At this point, it seems prudent to solve for the constant C1. With P (0) = 5, we
compute

5

100 − 5
= C1e

0

C1 =
5

95

We will leave the symbol C1 in our calculation for the time being as we solve for P :

P

100 − P
= C1e

100kt

P = 100C1e
100kt − PC1e

100kt

P (1 + C1e
100kt) = 100C1e

100kt

P =
100C1e

100kt

1 + C1e100kt

P =
100 · 5

95
e100kt

1 + 5
95
e100kt

Multiplying the fraction by 95e−100kt in both numerator and denominator, we get a
cleaner expression

P (t) =
500

95e−100kt + 5

(c) We are given that P ′(0) = 0.5 and that P (0) = 5. We can put these values into the
differential equation to get

0.5 = k(5)(100 − 5)

k =
0.5

5 · 95
≈ 0.00105
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(d) We need to know when P (t) = 50. So, we solve for t in

500

95e−100kt + 5
= 50

500 = 50 · 95e−100kt + 5 · 50

500 − 5 · 50

50 · 95
= e−100kt

1

19
= e−100kt

−100kt = ln( 1
19

) ≈ −2.944

t ≈ −2.944

−100 · 0.00105
= 28.04

So it will take about 28 days for half the population to be infected.

(e) One way to view this kind of model is that it tells us what will happen if the
system is left to run without intervention. This model will only be accurate if
human behavior, the biology of the disease, and our treatment capability all stay
the same. Factors like mask wearing, social distancing, curfews, hand washing,
business closures, and holiday celebrations can all impact the level of transmission
between individuals. There may be changes to the transmissibility of the disease
itself, caused by mutations or by the weather. Medical intervention may allow us to
make infected individuals no longer contagious or make some people immune through
vaccines. There may also be further complicating factors such as travel to and from
other cities.

Another relevant saying here is “garbage in, garbage out.” This means that our
model is only as good as the data we feed into it. If the count of total infections or
daily infections is wrong due to inaccurate tests, insufficient testing, or incomplete
reporting, our model has no hope of predicting the true numbers.

With all of that said, what utility can we still get from this model? Well, it does
tell us about one possible scenario for how disease transmission could evolve. If
we adjust our assumptions slightly, we can get other possible scenarios. In reality,
most modeling of this kind gives a range of possible outcomes, rather than a single
prediction. This model is one such possible outcome and is probably most useful
when viewed in the context of other possible outcomes.

The predictions of this model also give us a benchmark to compare future data to. If
we introduce public health interventions like mask mandates, stay-at-home orders, or
messaging about hand washing, we can assess their effectiveness by comparing future
data to our predictions. If there are fewer infections than our model predicted, that
indicates that the public health interventions may be helping. If infection rates
rise above our predictions, we will need to explore possible causes such as disease
mutations, weather changes, or ”superspreader” events. Having this model helps
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us understand whether the new data we get each day is as expected, a cause for
concern, or a cause for celebration.
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