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1 Problem 4, section 1.4

Find general solutions (implicit if necessary, explicit if convenient) of the differential equa-
tions in Problems 1 through 18. Primes denote derivatives with respect to 𝑥.

(1 + 𝑥)
𝑑𝑦
𝑑𝑥

= 4𝑦

Solution

This is separable as it can be written as

𝑑𝑦
𝑑𝑥

= 𝐹(𝑥)𝐺�𝑦�

Where in this case 𝐺�𝑦� = 𝑦 and 𝐹(𝑥) = 4
1+𝑥 . Assuming 𝑥 ≠ 1. Therefore we can now separate

and write

𝑑𝑦
𝑑𝑥

1
𝐺�𝑦�

= 𝐹(𝑥)

𝑑𝑦
𝐺�𝑦�

= 𝐹(𝑥)𝑑𝑥

Integrating both sides gives

�
𝑑𝑦
𝐺�𝑦�

= �𝐹(𝑥)𝑑𝑥

Replacing 𝐺�𝑦� = 𝑦 and 𝐹(𝑥) = 4
1+𝑥 , the above becomes

�
𝑑𝑦
𝑦

= �
4

1 + 𝑥
𝑑𝑥

ln�𝑦� = ln�(1 + 𝑥)4� + 𝑐

Taking the exponential of both sides

�𝑦� = 𝑒ln�(1+𝑥)
4�+𝑐

= 𝑒𝑐𝑒ln�(1+𝑥)
4�

Let 𝑒𝑐 = 𝑐1 and since (1 + 𝑥)4 can not be negative, therefore the above simplifies to

�𝑦� = 𝑐1𝑒ln(1+𝑥)
4

= 𝑐1(1 + 𝑥)4

Let the sign ± be absorbed into the constant of integration. The above simplifies to

𝑦(𝑥) = 𝑐1(1 + 𝑥)4 𝑥 ≠ 1
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2 Problem 17, section 1.4

Find general solutions (implicit if necessary, explicit if convenient) of the differential equa-
tions in Problems 1 through 18. Primes denote derivatives with respect to 𝑥.

𝑑𝑦
𝑑𝑥

= 1 + 𝑥 + 𝑦 + 𝑥𝑦

Solution

Writing the above as
𝑑𝑦
𝑑𝑥

= (1 + 𝑥)�1 + 𝑦�

This is separable. It can be written as

𝑑𝑦
𝑑𝑥

= 𝐹(𝑥)𝐺�𝑦�

Where in this case 𝐺�𝑦� = �1 + 𝑦� and 𝐹(𝑥) = (1 + 𝑥). Therefore we can now separate and
write

𝑑𝑦
𝑑𝑥

1
𝐺�𝑦�

= 𝐹(𝑥)

𝑑𝑦
𝐺�𝑦�

= 𝐹(𝑥)𝑑𝑥

Integrating both sides gives

�
𝑑𝑦
𝐺�𝑦�

= �𝐹(𝑥)𝑑𝑥

Replacing 𝐺�𝑦� = �1 + 𝑦� and 𝐹(𝑥) = (1 + 𝑥), the above becomes

�
𝑑𝑦

�1 + 𝑦�
= �(1 + 𝑥)𝑑𝑥

ln�1 + 𝑦� = 𝑥 +
𝑥2

2
+ 𝑐

Taking the exponential of both sides

�1 + 𝑦� = 𝑒𝑥+
𝑥2
2 +𝑐

= 𝑒𝑐𝑒𝑥+
𝑥2
2

Let 𝑒𝑐 = 𝑐1 the above becomes

�1 + 𝑦� = 𝑐1𝑒
𝑥+ 𝑥2

2

Let the sign ± be absorbed into the constant of integration. The above simplifies to

1 + 𝑦 = 𝑐1𝑒
𝑥+ 𝑥2

2

𝑦 = 𝑐1𝑒
𝑥+ 𝑥2

2 − 1
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3 Problem 19, section 1.4

Find explicit particular solutions of the initial value problems in Problems 19 through 28.

𝑑𝑦
𝑑𝑥

= 𝑦𝑒𝑥

𝑦(0) = 2𝑒

Solution

This is separable because it can be written as

𝑑𝑦
𝑑𝑥

= 𝐹(𝑥)𝐺�𝑦�

Where in this case 𝐺�𝑦� = 𝑦 and 𝐹(𝑥) = 𝑒𝑥. Therefore we can now separate and write

𝑑𝑦
𝑑𝑥

1
𝐺�𝑦�

= 𝐹(𝑥)

𝑑𝑦
𝐺�𝑦�

= 𝐹(𝑥)𝑑𝑥

Integrating both sides gives

�
𝑑𝑦
𝐺�𝑦�

= �𝐹(𝑥)𝑑𝑥

Replacing 𝐺�𝑦� = 𝑦 and 𝐹(𝑥) = 𝑒𝑥, the above becomes

�
𝑑𝑦
𝑦

= �𝑒𝑥𝑑𝑥

ln�𝑦� = 𝑒𝑥 + 𝑐

Taking the exponential of both sides

�𝑦� = 𝑒𝑒𝑥+𝑐

= 𝑒𝑐𝑒𝑒𝑥

Let 𝑒𝑐 = 𝑐1, therefore the above simplifies to

�𝑦� = 𝑐1𝑒𝑒
𝑥

Let the sign ± be absorbed into the constant of integration. The above simplifies to

𝑦(𝑥) = 𝑐1𝑒𝑒
𝑥

(1)

Now we apply initial conditions to find 𝑐1. Since 𝑦(0) = 2𝑒 then the above solution becomes

2𝑒 = 𝑐1𝑒
𝑐1 = 2

Hence the general solution (1) now becomes

𝑦(𝑥) = 2𝑒𝑒𝑥
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4 Problem 33, section 1.4

A certain city had a population of 25,000 in 1960 and a population of 30,000 in 1970. Assume
that its population will continue to grow exponentially at a constant rate. What population
can its city planners expect in the year 2000?

Solution

The differential equation model is
𝑑𝑃
𝑑𝑡

= 𝑘𝑃

Where 𝑃(𝑡) is the population at time 𝑡. The initial conditions are 𝑃(0) = 25000 where 𝑡 = 0
is taken as the year 1960. We are also given that 𝑃(10) = 30000. We are asked to determine
𝑃(40) which is the year 2000. First we solve the ode. This is both linear and separable. Using
the separable method, it can be written as

𝑑𝑃
𝑑𝑡

= 𝐹(𝑡)𝐺(𝑃)

Where in this case 𝐺(𝑃) = 𝑃 and 𝐹(𝑡) = 𝑘. Therefore we can now separate and write

𝑑𝑃
𝑑𝑡

1
𝐺(𝑃)

= 𝐹(𝑡)

𝑑𝑃
𝐺(𝑃)

= 𝐹(𝑡)𝑑𝑡

Integrating both sides gives

�
𝑑𝑃
𝐺(𝑃)

= �𝐹(𝑡)𝑑𝑡

Replacing 𝐺(𝑃) = 𝑃 and 𝐹(𝑡) = 𝑘, the above becomes

�
𝑑𝑃
𝑃

= �𝑘𝑑𝑡

ln𝑃 = 𝑘𝑡 + 𝑐

No need for absolute sign here, since 𝑃 can not be negative. Taking exponential of both
sides gives

𝑃(𝑡) = 𝑐𝑒𝑘𝑡 (1)

Applying initial conditions 𝑃(0) = 25000 the above gives

25000 = 𝑐

Hence (1) now becomes

𝑃(𝑡) = 25000𝑒𝑘𝑡 (2)
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Applying second condition 𝑃(10) = 30000 to the above gives

30000 = 25000𝑒10𝑘

30000
25000

= 𝑒10𝑘

6
5
= 𝑒10𝑘

Taking natural log of both sides

ln�
6
5�

= 10𝑘

𝑘 =
1
10

ln�
6
5�

Hence (2) becomes

𝑃(𝑡) = 25000𝑒
� 1
10 ln�

6
5 ��𝑡

At 𝑡 = 40

𝑃(40) = 25000𝑒
� 1
10 ln�

6
5 ��40

Using calculator it gives
𝑃(40) = 51840

Hence the population in year 2000 is 51840.
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5 Problem 43, section 1.4

Cooling. A pitcher of buttermilk initially at 25 C is to be cooled by setting it on the front
porch, where the temperature is 0 C. Suppose that the temperature of the buttermilk has
dropped to 15 C after 20 min. When will it be at 5 C?

Solution

Cooling of object is governed by the Newton’s law cooling

𝑑𝑇
𝑑𝑡

= 𝑘(𝑇𝑜𝑢𝑡 − 𝑇)

Where 𝑇𝑜𝑢𝑡 is the ambient temperature, which is 0 C in this problem and 𝑘 is positive constant.
Hence the above becomes

𝑑𝑇
𝑑𝑡

= −𝑘𝑇

This is separable (and also linear in 𝑇). Solving it as separable, it can be written as

𝑑𝑇
𝑑𝑡

= 𝐹(𝑡)𝐺(𝑇)

Where in this case 𝐺(𝑇) = 𝑇 and 𝐹(𝑡) = −𝑘. Therefore we can now separate and write

𝑑𝑇
𝑑𝑡

1
𝐺(𝑇)

= 𝐹(𝑡)

𝑑𝑇
𝐺(𝑇)

= 𝐹(𝑡)𝑑𝑡

Integrating both sides gives

�
𝑑𝑇
𝐺(𝑇)

= �𝐹(𝑡)𝑑𝑡

Replacing 𝐺(𝑇) = 𝑇 and 𝐹(𝑡) = −𝑘, the above becomes

�
𝑑𝑦
𝑇

= −𝑘�𝑑𝑡

ln|𝑇| = −𝑘𝑡 + 𝑐

Taking the exponential of both sides

|𝑇| = 𝑒−𝑘𝑡+𝑐

= 𝑒𝑐𝑒−𝑘𝑡

Let 𝑒𝑐 = 𝑐1, therefore the above simplifies to

|𝑇| = 𝑐1𝑒−𝑘𝑡

Let the sign ± be absorbed into the constant of integration. The above simplifies to

𝑇(𝑡) = 𝑐1𝑒−𝑘𝑡 (1)
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Now initial conditions are used to determine 𝑐1. At 𝑡 = 0, we are given 𝑇(0) = 25. The above
becomes

25 = 𝑐1
Therefore (1) becomes

𝑇(𝑡) = 25𝑒−𝑘𝑡 (2)

Now the second condition 𝑇(20) = 15 is used to determine 𝑘. The above becomes

15 = 25𝑒−20𝑘

15
25

= 𝑒−20𝑘

3
5
= 𝑒−20𝑘

Taking natural log of both sides gives (using property ln 𝑒𝑓(𝑥) = 𝑓(𝑥))

ln�
3
5�

= −20𝑘

𝑘 =
−1
20

ln�
3
5�

=
1
20

ln
5
3

Substituting the above value of 𝑘 back into (2) gives

𝑇(𝑡) = 25𝑒
�−120 ln

5
3 �𝑡

= 25𝑒
� 1
20 ln

3
5 �𝑡

To answer the final part, let 𝑇(𝑡) = 5 and we need to solve for 𝑡 from the above.

5 = 25𝑒
� 1
20 ln

3
5 �𝑡

1
5
= 𝑒

� 1
20 ln

3
5 �𝑡

Taking natural log of both sides gives

ln�
1
5�

= �
1
20

ln
3
5�
𝑡

𝑡 =
ln�15�

ln�35�
1
20

Using the calculator gives
𝑡 = 63.013 min
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6 Problem 3, section 1.5

Find general solutions of the differential equations in Problems 1 through 25. If an initial
condition is given, find the corresponding particular solution. Throughout, primes denote
derivatives with respect to 𝑥.

𝑦′ + 3𝑦 = 2𝑥𝑒−3𝑥 (1)

Solution

This is of the form 𝑦′ + 𝑝(𝑥)𝑦 = 𝑞(𝑥). Hence it is linear in 𝑦. Where

𝑝(𝑥) = 3
𝑞(𝑥) = 2𝑥𝑒−3𝑥

The integrating factor is

𝜌 = 𝑒∫𝑝𝑑𝑥

= 𝑒∫3𝑑𝑥

= 𝑒3𝑥

Multiplying both sides of (1) by the integration factor gives

𝑑
𝑑𝑥

�𝑦𝜌� = 𝜌�2𝑥𝑒−3𝑥�

𝑑
𝑑𝑥

�𝑒3𝑥𝑦� = 𝑒3𝑥�2𝑥𝑒−3𝑥�

𝑑
𝑑𝑥

�𝑒3𝑥𝑦� = 2𝑥

Integrating gives

�𝑑�𝑒3𝑥𝑦� = �2𝑥𝑑𝑥

𝑒3𝑥𝑦 = 𝑥2 + 𝑐

𝑦(𝑥) = 𝑒−3𝑥�𝑥2 + 𝑐�

The above is the general solution.
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7 Problem 17, section 1.5

Find general solutions of the differential equations in Problems 1 through 25. If an initial
condition is given, find the corresponding particular solution. Throughout, primes denote
derivatives with respect to 𝑥.

(1 + 𝑥)𝑦′ + 𝑦 = cos 𝑥 (1)

𝑦(0) = 1

Solution

Dividing both sides of (1) by (1 + 𝑥) where 𝑥 ≠ −1 gives

𝑦′ +
1

1 + 𝑥
𝑦 =

cos 𝑥
1 + 𝑥

(2)

This is now in the form 𝑦′ + 𝑝(𝑥)𝑦 = 𝑞(𝑥). Hence it is linear in 𝑦. Where

𝑝(𝑥) =
1

1 + 𝑥
𝑞(𝑥) =

cos 𝑥
1 + 𝑥

The integrating factor is

𝜌 = 𝑒∫𝑝𝑑𝑥

= 𝑒∫
1

1+𝑥𝑑𝑥

= 𝑒ln(1+𝑥)

= 1 + 𝑥

Multiplying both sides of (2) by the above integration factor gives

𝑑
𝑑𝑥

�𝑦𝜌� = 𝜌�
cos 𝑥
1 + 𝑥

�

𝑑
𝑑𝑥

�(1 + 𝑥)𝑦� = (1 + 𝑥)�
cos 𝑥
1 + 𝑥

�

𝑑
𝑑𝑥

�(1 + 𝑥)𝑦� = cos 𝑥

Integrating gives

�𝑑�(1 + 𝑥)𝑦� = � cos 𝑥𝑑𝑥

(1 + 𝑥)𝑦 = sin 𝑥 + 𝑐

𝑦(𝑥) =
1

1 + 𝑥
(sin 𝑥 + 𝑐) 𝑥 ≠ −1 (3)
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The above is the general solution. Now we use initial conditions to determine 𝑐. Since we
are given that 𝑦(0) = 1 then (3) becomes

1 = (sin 0 + 𝑐)
𝑐 = 1

Therefore (3) becomes

𝑦(𝑥) =
1

1 + 𝑥
(1 + sin 𝑥) 𝑥 ≠ −1
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8 Problem 37, section 1.5

A 400-gal tank initially contains 100 gal of brine containing 50 lb of salt. Brine containing
1 lb of salt per gallon enters the tank at the rate of 5 gal/s, and the well-mixed brine in the
tank flows out at the rate of 3 gal/s. How much salt will the tank contain when it is full of
brine?

Solution

Let 𝑥(𝑡) be mass of salt in lb at time 𝑡 in the tank. The differential equation that describes
how the mass of salt changes in time is therefore

𝑑𝑥
𝑑𝑡

= (5)(1) − (3)
𝑥

𝑉(𝑡)
(1)

But

𝑉(𝑡) = 100 + (5𝑡 − 3𝑡)
= 100 + 2𝑡

Therefore (1) becomes

𝑑𝑥
𝑑𝑡

= 5 − 3
𝑥

100 + 2𝑡
𝑑𝑥
𝑑𝑡

+
3

100 + 2𝑡
𝑥 = 5 (2)

This is now in the form 𝑥′ + 𝑝(𝑡)𝑥 = 𝑞(𝑡). Hence it is linear in 𝑥. Where

𝑝(𝑡) =
3

100 + 2𝑡
𝑞(𝑡) = 5

The integrating factor is

𝜌 = 𝑒∫𝑝𝑑𝑡

= 𝑒3∫
1

100+2𝑡𝑑𝑡

Let 100 + 2𝑡 = 𝑢. Hence 𝑑𝑢
𝑑𝑡 = 2. The integral becomes ∫ 1

100+2𝑡𝑑𝑡 becomes ∫ 1
𝑢
𝑑𝑢
2 = 1

2 ln(𝑢) =
1
2 ln(100 + 2𝑡). The above becomes

𝜌 = 𝑒
3
2 ln(100+2𝑡)

= (100 + 2𝑡)
3
2

Multiplying both sides of (2) by the above integration factor gives

𝑑
𝑑𝑡
�𝑥𝜌� = 5𝜌

𝑑
𝑑𝑡
�(100 + 2𝑡)

3
2𝑥� = 5(100 + 2𝑡)

3
2
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Integrating gives

(100 + 2𝑡)
3
2𝑥 = 5�(100 + 2𝑡)

3
2𝑑𝑡

Let 100 + 2𝑡 = 𝑢 hence 𝑑𝑢
𝑑𝑡 = 2 and the integral on the right becomes ∫ 𝑢

3
2

2 𝑑𝑢 = 1
2
𝑢
5
2
5
2

= 1
5𝑢

5
2 .

Hence the above now becomes

(100 + 2𝑡)
3
2𝑥 = 5�

1
5
𝑢

5
2 � + 𝑐

= 𝑢
5
2 + 𝑐

= (100 + 2𝑡)
5
2 + 𝑐

Solving for 𝑥(𝑡) gives

𝑥 = (100 + 2𝑡)
5
2−

3
2 + 𝑐(100 + 2𝑡)

−3
2

= (100 + 2𝑡) + 𝑐(100 + 2𝑡)
−3
2 (3)

Now we find 𝑐 from initial conditions. At 𝑡 = 0 we are told that 𝑥 = 50. Hence

50 = (100) + 𝑐(100)
−3
2

−50 =
𝑐

100
3
2

𝑐 = (−50)�100
3
2 �

= −50000

Therefore (3) becomes

𝑥(𝑡) = (100 + 2𝑡) −
50000

(100 + 2𝑡)
3
2

(4)

The above gives the mass of salt as function of time. We now to find the time when the tank
is full. From the volume function we know that 𝑉(𝑡) = 100 + 2𝑡. Since the tank size is 400 gal,
then we solve for 𝑡 from

400 = 100 + 2𝑡

𝑡 =
300
2

= 150 sec
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So the tank fills up after 150 seconds. Substituting this value of time in (4) gives

𝑥(𝑡) = (100 + 2(150)) −
50000

(100 + 2(150))
3
2

= (100 + 300) −
50000

(100 + 300)
3
2

= 400 −
50000

400
3
2

=
1575
4

= 393.75 lb
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9 Problem 15, section 2.1

Consider a population 𝑃(𝑡) satisfying the logistic equation 𝑑𝑃
𝑑𝑡 = 𝑎𝑃− 𝑏𝑃2, where 𝐵 = 𝑎𝑃 is the

time rate at which births occur and 𝐷 = 𝑏𝑃2 is the rate at which deaths occur. If the initial
population 𝑃(0) = 𝑃0, and 𝐵0 births per month and 𝐷0 deaths per month are occurring at
time 𝑡 = 0, show that the limiting population is 𝑀 = 𝐵0𝑃0

𝐷0

Solution

We are given the logistic equation in he form

𝑑𝑃
𝑑𝑡

= 𝑎𝑃 − 𝑏𝑃2

= 𝑎�𝑃 −
𝑏
𝑎
𝑃2�

= 𝑎𝑃�1 −
𝑏
𝑎
𝑃� (1)

Comparing (1) to the other standard form given in textbook which is

𝑑𝑃
𝑑𝑡

= 𝑘𝑃(𝑀 − 𝑃) (2)

Where in this form 𝑀 is the limiting population. Factoring 𝑀 out from (2) gives

𝑑𝑃
𝑑𝑡

= (𝑘𝑀)𝑃�1 −
𝑃
𝑀� (3)

Comparing (1) and (3) shows that, by inspection that

𝑎 = 𝑘𝑀

𝑀 =
𝑎
𝑏

(4)

But we are told that 𝑎 = 𝐵
𝑃 . At time 𝑡 = 0 this gives

𝑎 =
𝐵0
𝑃0

(5)

And we are told that 𝑏 = 𝐷
𝑃2 which at 𝑡 = 0 gives

𝑏 =
𝐷0

𝑃20
(6)

Substituting (5,6) back in (4) gives

𝑀 =
𝐵0
𝑃0
𝐷0
𝑃20

=
𝐵0𝑃20
𝑃0𝐷0



16

Or
𝑀 =

𝐵0𝑃0
𝐷0

Which is what we are asked to show.



17

10 Problem 16, section 2.1

Consider a rabbit population 𝑃(𝑡) satisfying the logistic equation as in Problem 15. If the
initial population is 120 rabbits and there are 8 births per month and 6 deaths per month
occurring at time 𝑡 = 0, how many months does it take for 𝑃(𝑡) to reach 95% of the limiting
population 𝑀 ?

Solution

We have 𝑃(0) = 120 and 𝐵 = 𝑎𝑃 = 8 per month and 𝐷 = 𝑏𝑃2 = 6 per month. Hence

𝑎 =
𝐵
𝑃
=

8
𝑃(0)

=
8
120

=
1
15

The limiting population is

𝑀 =
𝐵0𝑃0
𝐷0

=
(8)(120)

6
= 160

Therefore, we need to find the time the population reaches 95% of the above value, or
95
100

(160) = 152 rabbits. The solution to the logistic equation is given in equation (7) page 77
as

𝑃(𝑡) =
𝑀𝑃0

𝑃0 + (𝑀 − 𝑃0)𝑒−𝑘𝑀𝑡

This was derived from the form 𝑑𝑃
𝑑𝑡 = 𝑘𝑝(𝑀 − 𝑃). But as we found in the last problem, 𝑘 = 𝑎

𝑀
and 𝑎 = 1

15 in this problem. Hence 𝑘 = 1
15𝑀 . The above solution now becomes

𝑃(𝑡) =
𝑀𝑃0

𝑃0 + (𝑀 − 𝑃0)𝑒
− 1
15 𝑡

But 𝑀 = 160 and 𝑃0 = 120. The above becomes

𝑃(𝑡) =
(160)(120)

120 + (160 − 120)𝑒−
1
15 𝑡

=
19200

120 + 40𝑒−
1
15 𝑡

We want to find 𝑡 when 𝑃(𝑡) = 152. Hence

152 =
19200

120 + 40𝑒−
1
15 𝑡
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We need to solve the above for 𝑡.

152�120 + 40𝑒−
1
15 𝑡� = 19200

6080𝑒
−1
15 𝑡 + 18240 = 19200

𝑒
−1
15 𝑡 =

19200 − 18240
6080

=
3
19

Taking natural log gives

−1
15

𝑡 = ln�
3
19�

𝑡 = −15 ln�
3
19�

Using the calculator the above gives

𝑡 = 27.687 months
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11 Problem 17, section 2.1

Consider a rabbit population 𝑃(𝑡)satisfying the logistic equation as in Problem 15. If the
initial population is 240 rabbits and there are 9 births per month and 12 deaths per month
occurring at time 𝑡 = 0. How many months does it take for 𝑃(𝑡) to reach 105% of the limiting
population 𝑀 ?

Solution

This is similar to the above problem. We have 𝑃(0) = 240 and 𝐵 = 𝑎𝑃 = 9 per month and
𝐷 = 𝑏𝑃2 = 12 per month. Hence

𝑎 =
𝐵
𝑃
=

9
𝑃(0)

=
9
240

=
3
80

The limiting population is

𝑀 =
𝐵0𝑃0
𝐷0

=
(9)(240)

12
= 180

Therefore, we need to find the time the population reaches 105% of the above value, or
105
100

(180) = 189 rabbits. The solution to the logistic equation is given in equation (7) page 77
as

𝑃(𝑡) =
𝑀𝑃0

𝑃0 + (𝑀 − 𝑃0)𝑒−𝑘𝑀𝑡

This was derived from the form 𝑑𝑃
𝑑𝑡 = 𝑘𝑝(𝑀 − 𝑃). But as we found in the last problem, 𝑘 = 𝑎

𝑀
and 𝑎 = 3

80 in this problem. Hence 𝑘 = 3
80𝑀 . The above solution now becomes

𝑃(𝑡) =
𝑀𝑃0

𝑃0 + (𝑀 − 𝑃0)𝑒
− 3
80 𝑡

But 𝑀 = 180 and 𝑃0 = 240. The above becomes

𝑃(𝑡) =
(180)(240)

240 + (180 − 240)𝑒−
3
80 𝑡

=
43200

240 − 60𝑒−
3
80 𝑡

We want to find 𝑡 when 𝑃(𝑡) = 189. Hence

189 =
43 200

240 − 60𝑒−
9
140 𝑡
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We need to solve the above for 𝑡.

189�240 − 60𝑒−
3
80 𝑡� = 43200

45360 − 11 340𝑒−
3
80 𝑡 = 43200

𝑒−
3
80 𝑡 = −

43200 − 45360
11 340

=
4
21

Taking natural log gives

−
3
80

𝑡 = ln�
4
21�

𝑡 = −
80
3
ln�

4
21�

Using the calculator the above gives

𝑡 = 44.219 months
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12 Additional problem 1

Solution

12.1 Part a

𝑦′ + 𝑦 = 0

The characteristic equation is
𝑟 + 1 = 0

The root is 𝑟 = −1. Therefore the general solution is given by

𝑦ℎ(𝑥) = 𝐶𝑒𝑟𝑥

= 𝐶𝑒−𝑥

Where 𝐶 is arbitrary constant.

12.2 Part b

𝑦′ + 𝑦 = 𝑒𝑥 (1)

From part (a) we found that 𝑒−𝑥 is basis solution for the homogeneous ODE. The RHS in
this ode is 𝑒𝑥. No duplication. Therefore we let

𝑦𝑝 = 𝐴𝑒𝑥

Substituting this in (1) gives

𝐴𝑒𝑥 + 𝐴𝑒𝑥 = 𝑒𝑥

2𝐴 = 1

𝐴 =
1
2

Therefore
𝑦𝑝 =

1
2
𝑒𝑥

12.3 Part c

The general solution is the sum of the homogeneous solution (part a) and the particular
solution (part b). Therefore

𝑦 = 𝑦ℎ + 𝑦𝑝

= 𝐶𝑒−𝑥 +
1
2
𝑒𝑥
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12.4 Part d

The ODE

𝑦′ + 𝑦 = 𝑒𝑥 (1)

Has the form
𝑦′ + 𝑃(𝑥)𝑦 = 𝑄(𝑥)

Which implies that

𝑃(𝑥) = 1
𝑄(𝑥) = 𝑒𝑥

12.5 Part e

The integrating factor is therefore 𝜌 = 𝑒∫𝑃(𝑥)𝑑𝑥 = 𝑒∫𝑑𝑥 = 𝑒𝑥. Multiplying both sides of (1) by 𝜌
results in

𝑑
𝑑𝑥

�𝜌𝑦� = 𝜌𝑒𝑥

𝑑�𝜌𝑦� = �𝜌𝑒𝑥�𝑑𝑥

𝑑�𝑒𝑥𝑦� = 𝑒2𝑥𝑑𝑥

Integrating gives

𝑒𝑥𝑦 = �𝑒2𝑥𝑑𝑥

𝑒𝑥𝑦 =
1
2
𝑒2𝑥 + 𝐶

Therefore
𝑦 =

1
2
𝑒𝑥 + 𝐶𝑒−𝑥

12.6 Part f

Comparing the solution obtained in part (c) and (e) shows they are the same solution.
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13 Additional problem 2

Solution

13.1 Part (a)

𝑑𝑃
𝑑𝑡

= 𝑘𝑃(𝑀 − 𝑃) (1)

The solution 𝑃(𝑡), where 𝑃(𝑡) is number of positive cases at time 𝑡 should satisfy the above
ODE, with 𝑃(0) = 5000.

13.2 Part (b)

The ODE in part(a) is separable. It has the form

𝑑𝑃
𝑑𝑡

= 𝐹(𝑡)𝐺(𝑃)

Where

𝐹(𝑡) = 1
𝐺(𝑃) = 𝑘𝑃(𝑀 − 𝑃)

Therefore the ODE (1) can be written as

𝑑𝑃
𝐺(𝑃)

= 𝐹(𝑡)𝑑𝑡

𝑑𝑃
𝑘𝑃(𝑀 − 𝑃)

= 𝑑𝑡

�
𝑑𝑃

𝑘𝑃(𝑀 − 𝑃)
= �𝑑𝑡 (2)

To integrate the left side will use partial fractions. Let

1
𝑘𝑃(𝑀 − 𝑃)

=
𝐴
𝑘𝑃

+
𝐵

𝑀 − 𝑃

Therefore

𝐴 =
1

𝑀 − 𝑃
�
𝑃=0

=
1
𝑀

And

𝐵 =
1
𝑘𝑃

�
𝑃=𝑀

=
1
𝑘𝑀
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Hence (2) becomes

�
1
𝑀

1
𝑘𝑃

+
1
𝑘𝑀

1
𝑀 − 𝑃

𝑑𝑃 = 𝑡 + 𝐶

1
𝑘𝑀

ln|𝑃| −
1
𝑘𝑀

ln|𝑀 − 𝑃| = 𝑡 + 𝐶

1
𝑘𝑀

ln�
𝑃

𝑀 − 𝑃
� = 𝑡 + 𝐶

ln�
𝑃

𝑀 − 𝑃
� = 𝑘𝑀𝑡 + 𝐶2

Where 𝐶2 = 𝐶𝑘𝑀 a new constant. The above now can be written as

𝑃
𝑀 − 𝑃

= 𝐶3𝑒𝑘𝑀𝑡

Where the ± sign it taken care of by the constant 𝐶3. Hence

𝑃 = 𝐶3𝑒𝑘𝑀𝑡(𝑀 − 𝑃)
𝑃 = 𝐶3𝑀𝑒𝑘𝑀𝑡 − 𝐶3𝑃𝑒𝑘𝑀𝑡

𝑃 + 𝐶3𝑃𝑒𝑘𝑀𝑡 = 𝐶3𝑀𝑒𝑘𝑀𝑡

𝑃�1 + 𝐶3𝑒𝑘𝑀𝑡� = 𝐶3𝑀𝑒𝑘𝑀𝑡

𝑃(𝑡) =
𝐶3𝑀𝑒𝑘𝑀𝑡

1 + 𝐶3𝑒𝑘𝑀𝑡

=
𝐶3𝑀

𝑒−𝑘𝑀𝑡 + 𝐶3
(3)

When 𝑡 = 0, 𝑃 = 𝑃0. Hence the above becomes

𝑃0 =
𝐶3𝑀
1 + 𝐶3

𝑃0 + 𝑃0𝐶3 = 𝐶3𝑀
𝐶3(𝑃0 −𝑀) = −𝑃0

𝐶3 =
𝑃0

𝑀− 𝑃0

Substituting this back in (3) gives

𝑃(𝑡) =
𝑃0

𝑀−𝑃0
𝑀

𝑒−𝑘𝑀𝑡 + 𝑃0
𝑀−𝑃0

=
𝑃0𝑀

𝑒−𝑘𝑀𝑡(𝑀 − 𝑃0) + 𝑃0

Or
𝑃(𝑡) =

𝑀𝑃0
𝑃0 + (𝑀 − 𝑃0)𝑒−𝑘𝑀𝑡
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Which is the solution given in the textbook. Now, using 𝑃0 = 5000 given in this problem
gives

𝑃(𝑡) =
5000𝑀

5000 + (𝑀 − 5000)𝑒−𝑘𝑀𝑡

But 𝑀 = 100000 which is the limiting capacity (total population). The above simplifies to

𝑃(𝑡) =
(5000)(100000)

5000 + (100000 − 5000)𝑒−100000𝑘𝑡

=
(5000)(100000)

5000 + (95 000)𝑒−100000𝑘𝑡

=
100000

1 + �95 000
5000

�𝑒−100000𝑘𝑡

=
100000

1 + 19𝑒−100000𝑘𝑡
(4)

The above is the solution we will use for the rest of the problem.

13.3 Part (c)

We are told there are 500 new cases on first day. This means 𝑃(1) = 5000 + 500 = 5500. Using
the solution found above we now solve for 𝑘. Let 𝑡 = 1, we obtain

5500 =
100000

1 + 19𝑒−100000𝑘
𝑒−100000𝑘 = 100000

=
100000 − 5500
(19)(5500)

=
189
209

Hence

−𝑘100000 = ln�
189
209�

𝑘 = −
1

100000
ln�

189
209�

= 1 × 10−6

13.4 Part (d)

We now need to find the time 𝑡 where 𝑃(𝑡) = 50000. Therefore, using (4)

𝑃(𝑡) =
100000

1 + 19𝑒−100000𝑘𝑡
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And replacing 𝑘 by value found in part(c) and 𝑃(𝑡) by 50000 gives

50000 =
100000

1 + 19𝑒−100000�1×10
−6�𝑡

50000 =
100000

1 + 19𝑒−
1
10 𝑡

50000�1 + 19𝑒−
1
10 𝑡� = 100000

1 + 19𝑒−
1
10 𝑡 =

100000
50000

1 + 19𝑒−
1
10 𝑡 = 2

𝑒−
1
10 𝑡 =

1
19

Therefore

−
1
10
𝑡 = ln�

1
19�

𝑡 = −10 ln�
1
19�

= 29.444

Therefore it will take about 29 days for the half the population to be infected.

13.5 Part (e)

The model

𝑑𝑃
𝑑𝑡

= 𝑘𝑃(𝑀 − 𝑃)

Says that the rate of infection depends on𝑀−𝑃 where 𝑃 is current size of infected population
and 𝑀 is limiting size of the population that could become infected, which is assumed to
be the total population, and this is assumed to remain constant all the time. Hence as more
population is infected, the value 𝑀−𝑃 becomes smaller and smaller, since 𝑃(𝑡) is increasing,
but 𝑀 is fixed. This means the rate at which people get infected becomes smaller as more
people are infected. This is a good model, assuming people who get infected remain infected
all the time, which is the case here, and assuming 𝑀 remain constant. This model does
not account for death or birth of the overall population and any migration from outside. A
more accurate model would account for this.

This model gives useful information for predicting how many of the population will become
infected in the future given initial conditions.
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