Midterm 1 Practice Problems

1. Determine for what values of k the following system has (a) a unique solution, (b) no solution, (c) infinitely many solutions.

$$
\begin{aligned}
& \begin{array}{l}
\mathbf{3 x}+\mathbf{2 y}=\mathbf{1} \\
\mathbf{7} \mathbf{x}+\mathbf{5} \mathbf{y}=\mathbf{k} .
\end{array} \\
& {\left[\begin{array}{llll}
3 & 2 & \mid & 1 \\
7 & 5 & \mid & k
\end{array}\right] \Rightarrow\left[\begin{array}{cccc}
3 & 2 & \mid & 1 \\
1 & 1 & \mid & k-2
\end{array}\right] \Rightarrow\left[\begin{array}{cccc}
1 & 1 & \mid c & k-2 \\
3 & 2 & \mid & 1
\end{array}\right]} \\
& \\
& \Rightarrow\left[\begin{array}{cccc}
1 & 1 & \mid & k-2 \\
0 & -1 & \mid & 7-3 k
\end{array}\right] \Rightarrow\left[\begin{array}{cccc}
1 & 1 & \mid & k-2 \\
0 & 1 & \mid & 3 k-7
\end{array}\right] \\
& y=3 k-7 \text { and } x=-y+k-2=-(3 k-7)+k-2=5-2 k . \\
& \vec{v}=(5-2 k, 3 k-7)=k(-2,3)+(5,-7) .
\end{aligned}
$$

a) Unique solution for every value of k.
b) There are no values of k that will give no solution.
c) There are no values of k that will give infinitely many solution.
2. Consider the system:

$$
\begin{aligned}
& \mathbf{4} x_{1}+\mathbf{5} x_{2}+\mathbf{3} x_{3}=\mathbf{6} \\
& \mathbf{3} \mathbf{x}_{1}+\mathbf{6} x_{2}+\mathbf{5} x_{3}=\mathbf{1 2} \\
& \mathbf{2} \mathbf{x}_{1}+\mathbf{3} \mathbf{x}_{2}+\mathbf{2} \mathbf{x}_{3}=\mathbf{1 8}
\end{aligned}
$$

a) Write down the augmented coefficient matrix M of the system.

$$
\left[\begin{array}{ccccc}
4 & 5 & 3 & 1 & 6 \\
3 & 6 & 5 & 1 & 12 \\
2 & 3 & 2 & 1 & 18
\end{array}\right]
$$

b) Use the method of Gaussian elimination to transform the augmented coefficient matrix M to and echelon form matrix.

$$
\Rightarrow\left[\begin{array}{ccccc}
4 & 5 & 3 & 1 & 6 \\
1 & 3 & 3 & \mid & -6 \\
2 & 3 & 2 & 1 & 18
\end{array}\right] \Rightarrow\left[\begin{array}{ccccc}
1 & 3 & 3 & \mid & -6 \\
4 & 5 & 3 & \mid & 6 \\
2 & 3 & 2 & \mid & 18
\end{array}\right]
$$

$$
\begin{aligned}
& \Rightarrow\left[\begin{array}{ccccc}
1 & 3 & 3 & \mid & -6 \\
0 & -7 & -9 & \mid & 30 \\
0 & -3 & -4 & \mid & 30
\end{array}\right] \Rightarrow\left[\begin{array}{ccccc}
1 & 3 & 3 & \mid & -6 \\
0 & -1 & -1 & \mid & -30 \\
0 & -3 & -4 & \mid & 30
\end{array}\right] \Rightarrow\left[\begin{array}{ccccc}
1 & 3 & 3 & \mid & -6 \\
0 & -1 & -1 & \mid & -30 \\
0 & 0 & -1 & \mid & 120
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{ccccc}
1 & 3 & 3 & \mid & -6 \\
0 & 1 & 1 & \mid & 30 \\
0 & 0 & 1 & \mid & -120
\end{array}\right]
\end{aligned}
$$

c) Use the method Gauss Jordan elimination to transform the augmented coefficient matrix M to the reduced echelon matrix.

$$
\Rightarrow\left[\begin{array}{ccccc}
1 & 0 & 0 & \mid & -96 \\
0 & 1 & 0 & \mid & 150 \\
0 & 0 & 1 & \mid & -120
\end{array}\right]
$$

d) Use either b or c to solve the system.

$$
x_{3}=-120, \quad x_{2}=150, \quad x_{1}=-96
$$

3. List all possible reduced row echelon forms of a $\mathbf{3 \times 3}$ matrix.

$$
\begin{aligned}
& {\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & * \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right],} \\
& {\left[\begin{array}{lll}
1 & * & * \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
1 & * & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & * \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

4. Consider the system:

$$
\begin{aligned}
& x_{1}+2 x_{2}+4 x_{3}=1 \\
& x_{1}+3 x_{2}+9 x_{3}=2 \\
& x_{1}+4 x_{2}+16 x_{3}=3
\end{aligned}
$$

a) Write down the coefficient matrix A of the system and the corresponding matrix equation $A x=b$.

$$
\left[\begin{array}{ccc}
1 & 2 & 4 \\
1 & 3 & 9 \\
1 & 4 & 16
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] .
$$

b) Use the algorithm explained in the class (see p181 of the textbook) to find the inverse of A.

$$
\begin{aligned}
& {\left[\begin{array}{lllllll}
1 & 2 & 4 & \mid & 1 & 0 & 0 \\
1 & 3 & 9 & \mid & 0 & 1 & 0 \\
1 & 4 & 16 & \mid & 0 & 0 & 1
\end{array}\right] \Rightarrow\left[\begin{array}{ccccccc}
1 & 2 & 4 & \mid & 1 & 0 & 0 \\
0 & 1 & 5 & \mid & -1 & 1 & 0 \\
0 & 2 & 12 & \mid & -1 & 0 & 1
\end{array}\right]} \\
& \\
& \Rightarrow\left[\begin{array}{ccccccc}
1 & 2 & 4 & \mid & 1 & 0 & 0 \\
0 & 1 & 5 & \mid & -1 & 1 & 0 \\
0 & 0 & 2 & \mid & 1 & -2 & 1
\end{array}\right] \Rightarrow\left[\begin{array}{ccccccc}
1 & 0 & -6 & \mid & 3 & -2 & 0 \\
0 & 1 & 5 & \mid & -1 & 1 & 0 \\
0 & 0 & 2 & \mid & 1 & -2 & 1
\end{array}\right] \Rightarrow\left[\begin{array}{ccccccc}
1 & 0 & 0 & \mid & 6 & -8 & 3 \\
0 & 1 & 5 & \mid & -1 & 1 & 0 \\
0 & 0 & 2 & \mid & 1 & -2 & 1
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{ccccccc}
1 & 0 & 0 & \mid & 6 & -8 & 3 \\
0 & 1 & 5 & \mid & -1 & 1 & 0 \\
0 & 0 & 1 & \mid & \frac{1}{2} & -1 & \frac{1}{2}
\end{array}\right] \Rightarrow\left[\begin{array}{ccccccc}
1 & 0 & 0 & \mid & 6 & -8 & 3 \\
0 & 1 & 0 & \mid & -\frac{7}{2} & 6 & -\frac{5}{2} \\
0 & 0 & 1 & \mid & \frac{1}{2} & -1 & \frac{1}{2}
\end{array}\right], \quad A^{-1}=\left[\begin{array}{ccc}
6 & -8 & 3 \\
-\frac{7}{2} & 6 & -\frac{5}{2} \\
\frac{1}{2} & -1 & \frac{1}{2}
\end{array}\right] .
\end{aligned}
$$

c) Compute the determinant $\operatorname{det}(A)$ and the cofactor matrix $\left[A_{i j}\right]$ of A, and use the formula of the inverse for matrices to find A^{-1}.

$$
\begin{aligned}
& \operatorname{det}(A)=\left|\begin{array}{ccc}
1 & 2 & 4 \\
1 & 3 & 9 \\
1 & 4 & 16
\end{array}\right|=\left|\begin{array}{lll}
1 & 2 & 4 \\
0 & 1 & 5 \\
0 & 2 & 12
\end{array}\right|=\left|\begin{array}{lll}
1 & 2 & 4 \\
0 & 1 & 5 \\
0 & 0 & 2
\end{array}\right|=2 . \\
& {\left[A_{i j}\right]=\left[\begin{array}{ccc}
12 & -7 & 1 \\
-16 & 12 & -2 \\
6 & -5 & 1
\end{array}\right], \quad\left[A_{i j}\right]^{T}=\left[\begin{array}{ccc}
12 & -16 & 6 \\
-7 & 12 & -5 \\
1 & -2 & 1
\end{array}\right]} \\
& A^{-1}=\frac{1}{2}\left[\begin{array}{ccc}
12 & -16 & 6 \\
-7 & 12 & -5 \\
1 & -2 & 1
\end{array}\right] .
\end{aligned}
$$

d) Use the formula $x=A^{-1} b$ to solve the system.
$x=A^{-1} b=\frac{1}{2}\left[\begin{array}{ccc}12 & -16 & 6 \\ -7 & 12 & -5 \\ 1 & -2 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]=\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]$
e) Use Cramer's rule to solve the system.
$x_{1}=\frac{\left|B_{1}\right|}{|A|}=\frac{1}{2}\left|\begin{array}{lll}1 & 2 & 4 \\ 2 & 3 & 9 \\ 3 & 4 & 16\end{array}\right|=\frac{1}{2}\left|\begin{array}{ccc}1 & 2 & 4 \\ 0 & -1 & 1 \\ 0 & -2 & 4\end{array}\right|=\frac{1}{2}\left|\begin{array}{ccc}1 & 2 & 4 \\ 0 & -1 & 1 \\ 0 & 0 & 2\end{array}\right|=-1$,

$$
\begin{aligned}
& x_{2}=\frac{\left|B_{2}\right|}{|A|}=\frac{1}{2}\left|\begin{array}{lll}
1 & 1 & 4 \\
1 & 2 & 9 \\
1 & 3 & 16
\end{array}\right|=\frac{1}{2}\left|\begin{array}{ccc}
1 & 1 & 4 \\
0 & 1 & 5 \\
0 & 2 & 12
\end{array}\right|=\frac{1}{2}\left|\begin{array}{lll}
1 & 1 & 4 \\
0 & 1 & 5 \\
0 & 0 & 2
\end{array}\right|=1, \\
& x_{3}=\frac{\left|B_{3}\right|}{|A|}=\frac{1}{2}\left|\begin{array}{lll}
1 & 2 & 1 \\
1 & 3 & 2 \\
1 & 4 & 3
\end{array}\right|=\frac{1}{2}\left|\begin{array}{lll}
1 & 2 & 1 \\
0 & 1 & 1 \\
0 & 2 & 2
\end{array}\right|=\frac{1}{2}\left|\begin{array}{lll}
1 & 2 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right|=0, \\
& x=\left(x_{1}, x_{2}, x_{3}\right)=(-1,1,0) .
\end{aligned}
$$

5. Consider the following 3 vectors in R^{4} :

$$
\mathbf{v}_{1}=(1,1,2,1), \mathbf{v}_{2}=(1,0,3,4), \mathbf{v}_{3}=(2,2,4,8) .
$$

If they are linearly independent, show this. Otherwise, find real numbers c_{1}, c_{2}, c_{3} not all zero such that $c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=0$.

Observe that:
$c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=\left[\begin{array}{lll}v_{1} & v_{2} & v_{3}\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right]=\left[\begin{array}{lll}1 & 1 & 2 \\ 1 & 0 & 2 \\ 2 & 3 & 4 \\ 1 & 4 & 8\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right]=\overrightarrow{0}$.
Gaussian Elimination:
$\left[\begin{array}{lll}1 & 1 & 2 \\ 1 & 0 & 2 \\ 2 & 3 & 4 \\ 1 & 4 & 8\end{array}\right] \Rightarrow\left[\begin{array}{ccc}1 & 1 & 2 \\ 0 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 6\end{array}\right] \Rightarrow\left[\begin{array}{lll}1 & 1 & 2 \\ 0 & 1 & 0 \\ 0 & 3 & 6\end{array}\right] \Rightarrow\left[\begin{array}{lll}1 & 1 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \Rightarrow\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.
They are linearly independent.
6. Consider the following 4 vectors in R^{3} :

$$
\mathbf{v}_{1}=(1,1,2), \mathbf{v}_{2}=(1,3,4), \mathbf{v}_{3}=(2,2,4), \mathbf{v}_{4}=(0,0,1)
$$

If they are linearly independent, show this. Otherwise, find real numbers $c_{1}, c_{2}, c_{3}, c_{4}$, not all zero such that $c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}+c_{4} v_{4}=0$.
$c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}+c_{4} v_{4}=\left[\begin{array}{lll}v_{1} & v_{2} & v_{3}\end{array} v_{4}\right]\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3} \\ c_{4}\end{array}\right]=\left[\begin{array}{llll}1 & 1 & 2 & 0 \\ 1 & 3 & 2 & 0 \\ 2 & 4 & 4 & 1\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3} \\ c_{4}\end{array}\right]=\overrightarrow{0}$.

Gaussian Elimination:
$\left[\begin{array}{llll}1 & 1 & 2 & 0 \\ 1 & 3 & 2 & 0 \\ 2 & 4 & 4 & 1\end{array}\right] \Rightarrow\left[\begin{array}{llll}1 & 1 & 2 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 2 & 0 & 1\end{array}\right] \Rightarrow\left[\begin{array}{llll}1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$.
So: $c_{3}=t, \quad c_{1}=-2 t, \quad c_{2}=0, \quad c_{4}=0$.
And: $\vec{c}=\left(c_{1}, c_{2}, c_{3}, c_{4}\right)=(-2 t, 0, t, 0)=t(-2,0,1,0)$.
And observe that $c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}+c_{4} v_{4}=-2 v_{1}+0 v_{2}+v_{3}+0 v_{4}=0$.

7. Find a basis for the following vector spaces:

a) The set of all vectors of the form (a, b, c, d) for which $a+2 d=c+3 d=0$.

So vectors have the form: $(-2 d, b,-3 d, d)=b(0,1,0,0)+d(-2,0,-3,1)$.
From this, we discover the vectors $\{(0,1,0,0),(-2,0,-3,1)\}$ span the set of given vectors.
Now let's verify that they are linearly independent. Looking at the 3×3 submatrices, we calculate the sub determinants:
$\left|\begin{array}{lll}0 & 1 & 2 \\ 1 & 0 & 2 \\ 0 & 3 & 4\end{array}\right|=-1(4-6)=2 \neq 0 . \quad\left|\begin{array}{lll}1 & 0 & 2 \\ 0 & 3 & 4 \\ 1 & 4 & 8\end{array}\right|=1(24-16)+1(0-6)=2 \neq 0$.
So we see that these vectors are linearly independent. Therefore, we have a basis $\{(0,1,0,0),(-2,0,-3,1)\}$ for our subspace of vectors.

b) The solution space of the homogeneous linear system:

$$
\begin{aligned}
& x_{1}-3 x_{2}-10 x_{3}+5 x_{4}=0 \\
& x_{1}-4 x_{2}+11 x_{3}-2 x_{4}=0 \\
& x_{1}-3 x_{2}+8 x_{3}-x_{4}=0
\end{aligned}
$$

Putting things into a matrix, and performing Gaussian reduction:

$$
\left.\begin{array}{l}
{\left[\begin{array}{cccc}
1 & -3 & -10 & 5 \\
1 & -4 & 11 & -2 \\
1 & -3 & 8 & -1
\end{array}\right] \Rightarrow\left[\begin{array}{cccc}
1 & -3 & -10 & 5 \\
0 & -1 & 21 & -7 \\
0 & 0 & 18 & -6
\end{array}\right] \Rightarrow\left[\begin{array}{ccc}
1 & -3 & -10 \\
0 & 1 & -21 \\
7 \\
0 & 0 & 3
\end{array}\right]-1}
\end{array}\right]
$$

Applying an arbitrary parameter t to our free column x_{4}, gives us $x_{3}=\frac{1}{3} t, x_{2}=0$, and $x_{1}=-\frac{5}{3} t$.

Therefore, $\vec{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(-\frac{5}{3} t, 0, \frac{1}{3} t, t\right)=t\left(-\frac{5}{3}, 0, \frac{1}{3}, 1\right)$.
And finally, we see a basis for our solution subspace by setting t to any value. To make our basis look simple, I will choose to set $t=3$, so our basis becomes: $\{(-5,0,1,3)\}$.

8. Consider the following matrix:

$\mathbf{A}=\left[\begin{array}{cccc}1 & -1 & 2 & 2 \\ -3 & 4 & 1 & 2 \\ 0 & 1 & 7 & 4 \\ -5 & 7 & 4 & -2\end{array}\right]$
a) Find a basis of the row space of A.

Doing our Gaussian reduction this:

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & -1 & 2 & 2 \\
-3 & 4 & 1 & 2 \\
0 & 1 & 7 & 4 \\
-5 & 7 & 4 & -2
\end{array}\right] \Rightarrow\left[\begin{array}{cccc}
1 & -1 & 2 & 2 \\
0 & 1 & 7 & 8 \\
0 & 1 & 7 & 4 \\
0 & 2 & 14 & 8
\end{array}\right] \Rightarrow\left[\begin{array}{cccc}
1 & -1 & 2 & 2 \\
0 & 1 & 7 & 8 \\
0 & 0 & 0 & -4 \\
0 & 0 & 0 & -8
\end{array}\right]} \\
& \Rightarrow\left[\begin{array}{cccc}
1 & -1 & 2 & 0 \\
0 & 1 & 7 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \Rightarrow\left[\begin{array}{llll}
1 & 0 & 9 & 0 \\
0 & 1 & 7 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]=\mathbb{E} .
\end{aligned}
$$

For the row space, we take at the nonzero rows of our reduced system:
Basis $=\left\{\left[\begin{array}{llll}1 & 0 & 9 & 0\end{array}\right],\left[\begin{array}{llll}0 & 1 & 7 & 0\end{array}\right],\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right]\right\}$

b) Find a basis of the column space of A.

For the column space, we look back at the original matrix A, and the basis consists of the columns in A corresponding to the pivot columns in \mathbb{E}. Note that the columns in \mathbb{E} that had the "leading ones" (the pivot columns) were columns $1,2,4$. So taking those columns from A, gives us:
Basis $=\left\{\left[\begin{array}{c}1 \\ -3 \\ 0 \\ -5\end{array}\right],\left[\begin{array}{c}-1 \\ 4 \\ 1 \\ 7\end{array}\right],\left[\begin{array}{c}2 \\ 2 \\ 4 \\ -2\end{array}\right]\right\}$.
9. Find a subset of the vectors $v_{1}=(1,-3,0,5), v_{2}=(-1,4,1,7), v_{3}=(2,1,7,4), v_{4}=(2,2,4,-2)$ that forms a basis for the subspace W of R^{4} spanned by these 4 vectors.

Placing the vectors into columns of a matrix, we see:

$$
\left|\begin{array}{cccc}
1 & -1 & 2 & 2 \\
-3 & 4 & 1 & 2 \\
0 & 1 & 7 & 4 \\
-5 & 7 & 4 & -2
\end{array}\right|=\left|\begin{array}{cccc}
1 & -1 & 2 & 2 \\
0 & 1 & 7 & 8 \\
0 & 1 & 7 & 4 \\
0 & 2 & 14 & 8
\end{array}\right|=\left|\begin{array}{ccc}
1 & 7 & 8 \\
1 & 7 & 4 \\
2 & 14 & 8
\end{array}\right|=\left|\begin{array}{ccc}
1 & 7 & 8 \\
0 & 0 & -4 \\
0 & 0 & 0
\end{array}\right|=0 .
$$

Therefore, the four vectors are not linearly independent. From the previous problem, we see that the 1 st , 2 nd , and 4 th columns are linearly independent. But only being 3 vectors, we conclude that $\left\{v_{1}, v_{2}, v_{4}\right\}$ form a basis for a three-dimensional subspace W of \mathbb{R}^{4}.

10. Consider the following matrices:

$$
\mathbf{A}=\left[\begin{array}{ccc}
-1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 0 & 4
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right], \quad \mathbf{C}=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right] .
$$

Calculate the following number of matrices: a) $\operatorname{det}\left(A^{-1}\right)$, b) $\left.\left.\left.A^{T}, \mathbf{c}\right) \mathbf{B C}, \mathbf{d}\right) \mathbf{C B}, \mathbf{e}\right) \mathbf{A B}$.
a) Recall that: $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$. So let's calculate: $\operatorname{det}(A)=\left|\begin{array}{ccc}-1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{array}\right|=-1 \cdot 1 \cdot 4=-4$. Therefore, $\operatorname{det}\left(A^{-1}\right)=-\frac{1}{4}$.
b) $A^{T}=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 4\end{array}\right]$
c) $\mathbf{B C}=\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right]\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]=\left[\begin{array}{ccc}1 & 2 & 3 \\ 3 & 6 & 9 \\ 5 & 10 & 15\end{array}\right]$
d) $\mathbf{C B}=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right]=22$
e) $\mathbf{A B}=\left[\begin{array}{ccc}-1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{array}\right]\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right]=\left[\begin{array}{l}20 \\ 13 \\ 20\end{array}\right]$

