This exam contains 6 problems. To receive full credit on a problem, you must show and explain your work.

1. Determine for what values of k the following system

$$3x + 2y = 1$$
$$6x + ky = 3$$

has

(a) (6 points) a unique solution

(b) (6 points) no solution

(c) (6 points) infinitely many solutions

2. Consider the system

$$4x_1 + 3x_2 + 2x_3 = 6$$

$$3x_1 + 5x_2 + 2x_3 = 10$$

$$5x_1 + 6x_2 + 3x_3 = 9$$

(a) (6 points) Write down the augmented coefficient matrix \mathbf{M} of the system

(b) (6 points) Use the method of Gauss-Jordan elimination to transform the augmented coefficient matrix \mathbf{M} to the reduced echelon form.

(c) (6 points) Use (b) to solve the system.

3. Consider the system

$$2x_1 + 3x_2 + 4x_3 = 2$$

$$4x_1 + 9x_2 + 16x_3 = 1$$

$$x_1 + x_2 + x_3 = 3$$

(a) (6 points) Write down the coefficient matrix \mathbf{A} of the system and the corresponding matrix equation $\mathbf{A}\mathbf{x} = \mathbf{b}$.

(b) (10 points) Compute the determinant det(**A**) and the cofactor matrix $[\mathbf{A}_{ij}]$ of **A**, and use the formula of the inverse for matrices to find \mathbf{A}^{-1} .

(c) (6 points) Use the formula $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$ to solve the system.

4. (12 points) Consider the following four vectors in \mathbf{R}^3 :

$$\mathbf{v}_1 = (2, 1, 3), \mathbf{v}_2 = (1, 3, 4), \mathbf{v}_3 = (2, 5, 4), \mathbf{v}_4 = (1, 1, 1)$$

If they are linearly independent, show this; otherwise find real numbers c_1, c_2, c_3, c_4 not all zero such that $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3 + c_4\mathbf{v}_4 = 0$.

5. (12 points) Find a basis of the solution space of the homogenous linear system

$$3x_1 + x_2 + 4x_3 + 18x_4 = 0$$

$$x_1 - 4x_2 - 3x_3 - 7x_4 = 0$$

$$2x_1 - x_2 + x_3 + 7x_4 = 0$$

6. Consider the following matrix

$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 2 & -2 \\ 1 & 0 & 3 & 4 \\ 3 & -2 & 7 & 0 \\ 3 & -1 & 8 & 6 \\ 0 & 1 & 1 & 7 \end{bmatrix}$$

(a) (6 points) Find a basis of the row space of \mathbf{A} and use it to find the rank of \mathbf{A} .

(b) (6 points) Find a basis of the column space of \mathbf{A}

(c) (6 points) Find a subset of the vectors $\mathbf{v}_1 = (1, 1, 3, 3, 0), \mathbf{v}_2 = (-1, 0, -2, -1, 1), \mathbf{v}_3 = (2, 3, 7, 8, 1), \mathbf{v}_4 = (-2, 4, 0, 6, 7)$ that forms a basis for the subspace \mathbf{W} of \mathbf{R}^5 spanned by these four vectors.

1)
$$\begin{pmatrix} 3 & 2 & 1 \\ 6 & k & 3 \end{pmatrix}$$

¹/₅ $\begin{pmatrix} 1 & 2\sqrt{3} & \sqrt{3} \\ 6 & k & 3 \end{pmatrix}$
¹/₅ $\begin{pmatrix} 1 & 2\sqrt{3} & \sqrt{3} \\ 6 & k & 3 \end{pmatrix}$
¹/₅ $\begin{pmatrix} 1 & 2\sqrt{3} & \sqrt{3} \\ 6 & k & 3 \end{pmatrix}$
¹/₅ $\begin{pmatrix} 1 & 2\sqrt{3} & \sqrt{3} \\ 6 & k & 3 \end{pmatrix}$
²/₅ $\begin{pmatrix} 1 & 2\sqrt{3} & \sqrt{3} \\ 8 & k & 4 & 2 \end{pmatrix}$
³/₅ $\begin{pmatrix} 1 & 2\sqrt{3} & \sqrt{3} \\ 8 & k & 4 & 2 \end{pmatrix}$
³/₅ $\begin{pmatrix} 1 & 2\sqrt{3} & \sqrt{3} \\ 8 & k & 4 & 2 \end{pmatrix}$
⁴/₅ $\begin{pmatrix} 1 & 2\sqrt{3} & \sqrt{3} \\ 8 & k & 4 & 4 \end{pmatrix}$
³/₅ $\begin{pmatrix} 1 & 3 & 2 & 1 & 6 \\ 3 & 5 & 2 & 1 & 0 \\ 5 & 6 & 3 & 9 \end{pmatrix}$
⁴/₅ $\begin{pmatrix} 1 & 3 & 2 & 1 & 6 \\ 3 & 5 & 2 & 1 & 0 \\ 5 & 6 & 3 & 9 \end{pmatrix}$
⁵/₅ $\begin{pmatrix} 1 & 3 & 2 & 1 & 6 \\ 3 & 5 & 2 & 1 & 0 \\ 5 & 6 & 3 & 9 \end{pmatrix}$
⁵/₅ $\begin{pmatrix} 1 & 3 & 2 & 1 & 0 \\ 8 & 6 & 1 & 1 & 3 \\ 8 & 0 & 1 & 1 & 3 \\ \hline \\ \end{pmatrix}$
⁶/₅ $\begin{pmatrix} 2 & 3 & 4 \\ 4 & 9 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$
⁷/₆ $\begin{pmatrix} 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 3 \\ 1 & 0 & 1 & 1 & 3 \\ \hline \\ \end{pmatrix}$
⁶/₆ $\begin{pmatrix} 2 & 3 & 4 \\ 4 & 9 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$
⁷/₆ $\begin{pmatrix} 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 3 \\ 1 & 2 & 1 & 0 & 0 \end{pmatrix}$

$$A^{-1} = \frac{[A_{ij}]^{T}}{[A_{i}]} = \frac{1}{2} \begin{bmatrix} -\frac{3}{1} & 12 & -5 \\ 1 & -2 & 1 \\ 12 & -10 & 0 \end{bmatrix}^{2} \begin{bmatrix} 2 \\ 1 \\ -2 & 1 \\ 12 & -10 & 0 \end{bmatrix}^{2} = \frac{1}{2} \begin{bmatrix} 23 \\ -26 \\ 9 \end{bmatrix}$$

$$(1, 3, 4), \forall 3 = (2, 5, 4)$$

$$V_{4} = (1, 1, 1)$$
FOUR VECTORS 1.2 |R³ ARE ALWAYS LINEARLY
$$DERENDENT = \frac{2}{15} V_{1} - \frac{1}{15} V_{2} + \frac{4}{15} V_{3} - V_{4} = 0$$

$$(1 - 4 - 3 - 7) = 0$$

$$(2 - 1 & 1 - 7) = 0$$

$$C = \frac{10 + 180}{2 - 1 + 7} = 0$$

$$(1 - 4 - 3) = 0$$

$$C = \frac{10 + 180}{2 - 1 + 7} = 0$$

 $\begin{bmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \\ \mathbf{v}_{4} \end{bmatrix} = \begin{bmatrix} \mathbf{v}_{5} - \mathbf{5}\mathbf{t} \\ -\mathbf{s} - \mathbf{3}\mathbf{t} \\ \mathbf{s} \\ \mathbf{t} \end{bmatrix} = \mathbf{s} \begin{bmatrix} -\mathbf{1} \\ -\mathbf{1} \\ \mathbf{t} \\ \mathbf{0} \end{bmatrix} + \mathbf{t} \begin{bmatrix} -\mathbf{s} \\ -\mathbf{3} \\ \mathbf{s} \\ \mathbf{t} \end{bmatrix}$

SO A BASIS FOR THE GULUTION SPACE IS

 $\left\{ \begin{bmatrix} -1\\ -1\\ -1\\ 0 \end{bmatrix} \begin{bmatrix} -5\\ -3\\ 0\\ 0 \end{bmatrix} \right\}$