MIDTERM EXAM I, MATH 2243 (030), FALL 2020

This exam contains 6 problems. To receive full credit on a problem, you must show and explain your work.

1. Determine for what values of k the following system

$$
\begin{aligned}
& 3 x+2 y=1 \\
& 6 x+k y=3
\end{aligned}
$$

has
(a) (6 points) a unique solution
(b) (6 points) no solution
(c) (6 points) infinitely many solutions
2. Consider the system

$$
\begin{gathered}
4 x_{1}+3 x_{2}+2 x_{3}=6 \\
3 x_{1}+5 x_{2}+2 x_{3}=10 \\
5 x_{1}+6 x_{2}+3 x_{3}=9
\end{gathered}
$$

(a) (6 points) Write down the augmented coefficient matrix \mathbf{M} of the system
(b) (6 points) Use the method of Gauss-Jordan elimination to transform the augmented coefficient matrix \mathbf{M} to the reduced echelon form.
(c) (6 points) Use (b) to solve the system.
3. Consider the system

$$
\begin{gathered}
2 x_{1}+3 x_{2}+4 x_{3}=2 \\
4 x_{1}+9 x_{2}+16 x_{3}=1 \\
x_{1}+x_{2}+x_{3}=3
\end{gathered}
$$

(a) (6 points) Write down the coefficient matrix \mathbf{A} of the system and the corresponding matrix equation $\mathbf{A x}=\mathbf{b}$.
(b) (10 points) Compute the determinant $\operatorname{det}(\mathbf{A})$ and the cofactor matrix $\left[\mathbf{A}_{i j}\right]$ of \mathbf{A}, and use the formula of the inverse for matrices to find \mathbf{A}^{-1}.
(c) (6 points) Use the formula $\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}$ to solve the system.
4. (12 points) Consider the following four vectors in \mathbf{R}^{3} :

$$
\mathbf{v}_{1}=(2,1,3), \mathbf{v}_{2}=(1,3,4), \mathbf{v}_{3}=(2,5,4), \mathbf{v}_{4}=(1,1,1)
$$

If they are linearly independent, show this; otherwise find real numbers $c_{1}, c_{2}, c_{3}, c_{4}$ not all zero such that $c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}+c_{4} \mathbf{v}_{4}=0$.
5. (12 points) Find a basis of the solution space of the homogenous linear system

$$
\begin{gathered}
3 x_{1}+x_{2}+4 x_{3}+18 x_{4}=0 \\
x_{1}-4 x_{2}-3 x_{3}-7 x_{4}=0 \\
2 x_{1}-x_{2}+x_{3}+7 x_{4}=0
\end{gathered}
$$

6. Consider the following matrix

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & -1 & 2 & -2 \\
1 & 0 & 3 & 4 \\
3 & -2 & 7 & 0 \\
3 & -1 & 8 & 6 \\
0 & 1 & 1 & 7
\end{array}\right]
$$

(a) (6 points) Find a basis of the row space of \mathbf{A} and use it to find the rank of \mathbf{A}.
(b) (6 points) Find a basis of the column space of \mathbf{A}
(c) (6 points) Find a subset of the vectors $\mathbf{v}_{1}=(1,1,3,3,0), \mathbf{v}_{2}=(-1,0,-2,-1,1), \mathbf{v}_{3}=$ $(2,3,7,8,1), \mathbf{v}_{4}=(-2,4,0,6,7)$ that forms a basis for the subspace \mathbf{W} of \mathbf{R}^{5} spanned by these four vectors.

1) $\left[\begin{array}{lll}3 & 2 & 1 \\ 6 & k & 3\end{array}\right]$
$\xrightarrow{1 / 3 R_{1}}\left[\begin{array}{lll}1 & 2 / 3 & 1 / 3 \\ 6 & k & 3\end{array}\right]$
$\xrightarrow{x_{2}-b_{1}}\left[\begin{array}{ccc}1 & 2 / 3 & 1 / 3 \\ 0 & k-4 & 2\end{array}\right]$
$k-4=2$
$\Rightarrow k=6$

So tuont is
a) a unleve sulution
for $k=6$
b) no solvtion son $k \neq 6$
c) infiwiten mams sactions for novacues of K
2)
al $M=\left[\begin{array}{lll:c}4 & 3 & 2 & 6 \\ 3 & 5 & 2 & 10 \\ 5 & 6 & 3 & 9\end{array}\right]$
b) $\operatorname{rcef}(M)=\left[\begin{array}{ccc:c}1 & 0 & 0 & 12 \\ 0 & 1 & 0 & 8 \\ 0 & 0 & 1 & -33\end{array}\right]$
c) So $x_{1}=12, x_{2}=8, x_{3}=-33$
3) a) $A=\left[\begin{array}{ccc}2 & 3 & 4 \\ 4 & 9 & 16 \\ 1 & 1 & 1\end{array}\right] \quad A\left[\begin{array}{l}x \\ x_{2} \\ x_{2}^{2}\end{array}\right]=\left[\begin{array}{c}2 \\ 1 \\ 3\end{array}\right]$
b)

$$
\begin{aligned}
\operatorname{det} A & =+1 \cdot\left|\begin{array}{ll}
3 & 4 \\
9 & 16
\end{array}\right| \cdot 1 \cdot\left|\begin{array}{ll}
24 \\
416
\end{array}\right|+1 \cdot\left|\begin{array}{ll}
23 & 3 \\
4 a
\end{array}\right| \\
& =+2 \\
{\left[A_{i j}\right] } & =\left[\begin{array}{ccc}
-7 & 12 & -5 \\
1 & -2 & 1 \\
12 & -16 & 6
\end{array}\right]
\end{aligned}
$$

$$
A^{-1}=\frac{\left(A_{i j}\right]^{\top}}{|A|}=\frac{1}{2}\left[\begin{array}{ccc}
-7 & 12 & -5 \\
12 & -2 & 1 \\
12 & -16 & 6
\end{array}\right]
$$

c)

$$
\frac{1}{2}\left[\begin{array}{ccc}
-7 & 12 & -5 \\
1 & -2 & 1 \\
12 & -16 & 6
\end{array}\right]\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right]=\frac{1}{2}\left[\begin{array}{c}
23 \\
-26 \\
9
\end{array}\right]
$$

4)

$$
\begin{aligned}
& v_{1}=(2,1,3), v_{2}=(1,3,4), v_{3}=(2,5,4) \\
& v_{4}=(1,1,1)
\end{aligned}
$$

Four vectorsin \mathbb{R}^{3} are always Linearly DEPENDENT

$$
\frac{\text { DEPENDENT } \frac{2}{15} v_{1}-\frac{1}{15} v_{2}+\frac{4}{15} v_{3}-v_{4}=0}{5\left[\begin{array}{ccccc}
3 & 1 & 4 & 18 & 0 \\
1 & -4 & -3 & -7 & 0 \\
2 & -1 & 1 & 7 & 0
\end{array}\right] \xrightarrow{\text { REF }}\left[\begin{array}{lllll}
1 & 0 & 1 & 5 & 0 \\
0 & 1 & 1 & 3 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]}
$$

So letting $x_{3}=s, x_{1}=t$, we see

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{2} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-5-5 t \\
-5-3 t \\
5 \\
t
\end{array}\right]=s\left[\begin{array}{c}
-1 \\
-1 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-5 \\
-3 \\
0 \\
1
\end{array}\right]
$$

So A basis for the solution space is

$$
\left\{\left[\begin{array}{c}
-1 \\
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-5 \\
-3 \\
0 \\
1
\end{array}\right]\right\}
$$

6) $A=\left[\begin{array}{cccc}1 & -1 & 2 & -2 \\ 1 & 0 & 3 & 4 \\ 3 & -2 & 7 & 0 \\ 3 & -1 & 8 & 6 \\ 0 & 1 & 1 & 7\end{array}\right] \stackrel{\text { ref }}{ }\left[\begin{array}{llll}1 & 0 & 3 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
a) THE row space una basis $\left\{\left[\begin{array}{l}1 \\ 0 \\ 3 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right]\right\}$
so $\operatorname{rk} A=3$
b) The column space tan basis $\left\{\left[\begin{array}{l}1 \\ 1 \\ 3 \\ 3 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ - \\ -1 \\ 1\end{array}\right],\left[\begin{array}{c}-2 \\ 4 \\ 0 \\ 0 \\ 7\end{array}\right]\right\}$ CORRESPONDING to PIVOTS.
C) Since the column space is me space we are spanning, the baches for w is tue sane A, TUE BAsis for caunar space. $\left\{\left[\begin{array}{l}1 \\ 1 \\ 3 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 0 \\ 1\end{array}\right]\left[\begin{array}{c}-2 \\ 4 \\ 0 \\ 0\end{array}\right]\right\}$
