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Chapter 1

Introduction

1.1 Links

1. class web page (scroll down the page) http://www-users.math.umn.edu/~svitlana/
PDE-F19-UMN.html

1.2 Text book

1

http://www-users.math.umn.edu/~svitlana/PDE-F19-UMN.html
http://www-users.math.umn.edu/~svitlana/PDE-F19-UMN.html


1.3. syllabus CHAPTER 1. INTRODUCTION

1.3 syllabus
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1.4. Review of lectures CHAPTER 1. INTRODUCTION

1.4 Review of lectures

Table 1.1: Class lectures review

# date book section note

1 Sept 3, 2019 Chapter 1 Order of ODE, On Laplacian, why it shows
up so frequently everywhere, review

2 Sept 5, 2019 Chapter 2 Transport PDE 𝑢𝑡 + 𝑐𝑢𝑥 = 0, characteristic
lines. Transport with decay 𝑢𝑡+𝑐𝑢𝑥+𝑎𝑢 = 0

3 Sept 10, 2019 Chapter 2 Continue with Transport PDE 𝑢𝑡 + 𝑐𝑢𝑥 = 0,
examples 𝑢𝑡 + (𝑥2 − 1)𝑢𝑥 = 0, 𝑢(0, 𝑥) = 𝑒−𝑥

2

4 Sept 12, 2019 Chapter 2.4 Wave equation 𝑢𝑡𝑡 = 𝑐2𝑢𝑥𝑥, derivation of
d’Alembert solution on infinite line. Exam-
ple. Domain of influence. Also with exter-
nal force. Resonance

5 Sept 17, 2019 Chapter 3 Starting Fourier series. Heat PDE 𝑢𝑡 = 𝑘𝑢𝑥𝑥.
Separation of variables. Periodic bound-
ary conditions (ring). Obtain Fourier series
solution. How to find coe�cients, conver-
gence, etc...

6 Sept 19, 2019 Chapter 3 More Fourier series. 𝑓(𝑥) ∈ 𝐿2, definition of
norm of 𝑓(𝑥), basis functions. How to find
Fourier coe�cients. Example using 𝑓(𝑥) =
𝑥. Definitions, jump discontinuity. Fourier
series convergence theorem.

7 Sept 24, 2019 Chapter 3 even and odd functions. Complex Fourier
series. Example.

8 Sept 26, 2019 Chapter 3 Integration of Fourier series. Find F.S. of
𝑓(𝑥) using integration of known F.S. for
𝑔(𝑥). Convergence of functions Uniform and
piecewise. M test.

9 Oct 1, 2019 Chapter 3 More on convergence. Convergence in
norm. Definitions and examples. More
theories on Fourier series convergence.
Bessel inequality. Proof (long). Riemann-
Lebesgue Lemma

10 Oct 3, 2019 Chapter 3 Decay and smoothness of Fourier series.
Proof of the Fourier series convergence the-
orem. Dirichlet kernel.

11 Oct 8, 2019 N/A First exam

12 Oct 10, 2019 Chapter 4 Heat ODE 𝑢𝑡 = 𝑘𝑢𝑥𝑥, going over instanta-
neous smoothness. Transport PDE we can
go back and forward in time, but not with
heat PDE. Heat PDE with non zero bound-
ary conditions

13 Oct 15, 2019 Chapter 4 Root cellar problem. Solving heat PDE in
complex domain example. Starting on wave
equation. Fourier series solution

14 Oct 17, 2019 Chapter 4 Solving wave PDE on finite domain using
d’Alembert. 2 cases. B.C. B.C. is Neumann
and B.C. is Dirichlet (Even and Odd ex-
tension of initial position). Solving Laplace
PDE 𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0 on rectangle.

Continued on next page
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1.4. Review of lectures CHAPTER 1. INTRODUCTION

Table1.1 – continued from previous page

# date book section note

15 Oct 22, 2019 Chapter 4.3 Laplace in disk. Polar coordinates. Separa-
tion of variables. Converting back the so-
lution from polar to Cartesian coordinates.
Closed form integral formula.

16 Oct 24, 2019 Chapter 4.4 Closed form integral solution for Laplace
PDE inside disk. thm 4.6 and thm 4.9 (max
or min of solution at boundary), thm 4.11.
Classification of PDE’s. General formula to
find characteristic curves.

17 Oct 29, 2019 Chapter 6 Delta function. Definitions. Two cases, us-
ing limits and using integral. Integration of
delta function, di�erentiation. Introduction
to Green function

18 Oct 31, 2019 Chapter 6.2 Green function. Examples for −𝑢″(𝑥) =
𝑓(𝑥) with Dirichlet and Neumann B.C. Full
derivation

19 Nov 5, 2019 Chapter 6.2 More Green function. Neumann B.C.
Higher dimensions Green function.
Laplace on square. Exam review

20 Nov 7, 2019 Second exam

21 Tuesday Nov 12, 2019 Chapter 6 Green function in higher dimensions. On
whole plane. Green formula. Review of
multivariable calculus. Derivation of Green
function in 2D and 3D on whole space.
Exam 2 returned.

22 Thursday Nov 14,
2019

Chapter 6 Green function. Method of images. half
space and disk. Eigenfunctions

23 Tuesday Nov 19, 2019 Chapter 6 Eigenfunctions and eigenvalues for Lapla-
cian in 2 and 3D. Behaviour of eigenvalues,
Weyl law for eigenvalues. Solving PDE on
2D.

24 Thursday Nov 21,
2019

Chapter 6 Laplacian is energy minimizer. Equivelance
between 𝐸(𝑢) = ∫ 1/2|△(𝑢)|2 − 𝑓𝑢 𝑑𝑥 and solu-
tion to −△(𝑢) = 𝑓 with Dirichlet B.C. Proof-
ing that if 𝑢 solves Laplace PDE then it
minimizes the energy. And proofing that if
𝑢 minimizes energy then it solves Laplace
PDE

25 Tuesday Nov 26, 2019 Chapter 6 Fourier transform. Derivations and two ex-
amples using a box function and Gaussian
𝑒−𝑥2
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Local contents
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2.1. HW 1 CHAPTER 2. HWS

2.1 HW 1

Local contents
2.1.1 Problem 1.8a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Problem 1.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Problem 1.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.4 Problem 1.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.5 Problem 1.27b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.6 Problem 2.1.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.7 Problem 2.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.8 Problem 2.2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.9 Problem 2.2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.10 Problem 2.2.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.11 Key solution for HW 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Problem 1.8a

Find all quadratic polynomial solutions of the 3D Laplace equation 𝜕2𝑢
𝜕𝑥2 +

𝜕2𝑢
𝜕𝑦2 +

𝜕2𝑢
𝜕𝑧2 = 0

Solution

A quadratic polynomial in variables 𝑥, 𝑦, 𝑧 is

𝑢 = 𝑎1 + 𝑎2𝑥 + 𝑎3𝑦 + 𝑎4𝑧 + 𝑎5𝑥2 + 𝑎6𝑦2 + 𝑎7𝑧2 + 𝑎8𝑥𝑦 + 𝑎9𝑥𝑧 + 𝑎10𝑦𝑧 (1)

Hence 𝑢𝑥 = 𝑎2+2𝑎5𝑥+𝑎8𝑦+𝑎9𝑧 which implies that 𝑢𝑥𝑥 = 2𝑎5. Similarly 𝑢𝑦 = 𝑎3+2𝑎6𝑦+𝑎8𝑥+𝑎10𝑧,
therefore 𝑢𝑦𝑦 = 2𝑎6. And finally 𝑢𝑧 = 𝑎4 + 2𝑎7𝑧 + 𝑎9𝑥 + 𝑎10𝑦 and 𝑢𝑧𝑧 = 2𝑎7. Substituting these
results in the Laplace equation gives above result in

2𝑎5 + 2𝑎6 + 2𝑎7 = 0
𝑎5 + 𝑎6 + 𝑎7 = 0

Therefore 𝑎5 = − (𝑎6 + 𝑎7). Using this relation back in (1) gives

𝑢 = 𝑎1 + 𝑎2𝑥 + 𝑎3𝑦 + 𝑎4𝑧 − (𝑎6 + 𝑎7) 𝑥2 + 𝑎6𝑦2 + 𝑎7𝑧2 + 𝑎8𝑥𝑦 + 𝑎9𝑥𝑧 + 𝑎10𝑦𝑧

= 𝑎1 + 𝑎2𝑥 + 𝑎3𝑦 + 𝑎4𝑧 + 𝑎6 �−𝑥2 + 𝑦2� + 𝑎7 �−𝑥2 + 𝑧2� + 𝑎8𝑥𝑦 + 𝑎9𝑥𝑧 + 𝑎10𝑦𝑧

Which can be written as

𝑢 �𝑥, 𝑦, 𝑧� = 𝐴1 + 𝐴2𝑥 + 𝐴3𝑦 + 𝐴4𝑧 + 𝐴5 �𝑦2 − 𝑥2� + 𝐴6 �𝑧2 − 𝑥2� + 𝐴7𝑥𝑦 + 𝐴8𝑥𝑧 + 𝐴9𝑦𝑧

2.1.2 Problem 1.7

Find all real solutions to 2D Laplace equation 𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0 of the form 𝑢 = log �𝑝 �𝑥, 𝑦��
where 𝑝 �𝑥, 𝑦� is a quadratic polynomial.

Solution

A quadratic polynomial 𝑝 �𝑥, 𝑦� in variables 𝑥, 𝑦 is

𝑝 �𝑥, 𝑦� = 𝑎1 + 𝑎2𝑥 + 𝑎3𝑦 + 𝑎4𝑥2 + 𝑎5𝑦2 + 𝑎6𝑥𝑦

Therefore

𝑢 �𝑥, 𝑦� = log �𝑎1 + 𝑎2𝑥 + 𝑎3𝑦 + 𝑎4𝑥2 + 𝑎5𝑦2 + 𝑎6𝑥𝑦�
Hence

𝑢𝑥 =
𝑎2 + 2𝑎4𝑥 + 𝑎6𝑦

𝑝 �𝑥, 𝑦�

and

𝑢𝑥𝑥 =
2𝑎4

𝑝 �𝑥, 𝑦�
−
�𝑎2 + 2𝑎4𝑥 + 𝑎6𝑦�

2

𝑝 �𝑥, 𝑦�
2 (1)
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2.1. HW 1 CHAPTER 2. HWS

Similarly

𝑢𝑦 =
𝑎3 + 2𝑎5𝑦 + 𝑎6𝑥

𝑝 �𝑥, 𝑦�

And

𝑢𝑦𝑦 =
2𝑎5

𝑝 �𝑥, 𝑦�
−
�𝑎3 + 2𝑎5𝑦 + 𝑎6𝑥�

2

𝑝 �𝑥, 𝑦�
2 (2)

Substituting (1,2) into 𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0 gives
⎛
⎜⎜⎜⎜⎜⎜⎝
2𝑎4

𝑝 �𝑥, 𝑦�
−
�𝑎2 + 2𝑎4𝑥 + 𝑎6𝑦�

2

𝑝 �𝑥, 𝑦�
2

⎞
⎟⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎜⎝
2𝑎5

𝑝 �𝑥, 𝑦�
−
�𝑎3 + 2𝑎5𝑦 + 𝑎6𝑥�

2

𝑝 �𝑥, 𝑦�
2

⎞
⎟⎟⎟⎟⎟⎟⎠ = 0

2𝑎4 −
�𝑎2 + 2𝑎4𝑥 + 𝑎6𝑦�

2

𝑝 �𝑥, 𝑦�
+ 2𝑎5 −

�𝑎3 + 2𝑎5𝑦 + 𝑎6𝑥�
2

𝑝 �𝑥, 𝑦�
= 0

2𝑎4 + 2𝑎5 −
�𝑎2 + 2𝑎4𝑥 + 𝑎6𝑦�

2
+ �𝑎3 + 2𝑎5𝑦 + 𝑎6𝑥�

2

𝑝 �𝑥, 𝑦�
= 0

Or

(2𝑎4 + 2𝑎5) 𝑝 �𝑥, 𝑦� = �𝑎2 + 2𝑎4𝑥 + 𝑎6𝑦�
2
+ �𝑎3 + 2𝑎5𝑦 + 𝑎6𝑥�

2

But 𝑝 �𝑥, 𝑦� = 𝑎1 + 𝑎2𝑥 + 𝑎3𝑦 + 𝑎4𝑥2 + 𝑎5𝑦2 + 𝑎6𝑥𝑦. Hence the above becomes

(2𝑎4 + 2𝑎5) �𝑎1 + 𝑎2𝑥 + 𝑎3𝑦 + 𝑎4𝑥2 + 𝑎5𝑦2 + 𝑎6𝑥𝑦� = �𝑎2 + 2𝑎4𝑥 + 𝑎6𝑦�
2
+ �𝑎3 + 2𝑎5𝑦 + 𝑎6𝑥�

2

Expanding and comparing coe�cients gives

2𝑥2𝑎24+2𝑥2𝑎4𝑎5+2𝑎6𝑎4𝑥𝑦+2𝑎6𝑎5𝑥𝑦+2𝑎2𝑎4𝑥+2𝑎2𝑥𝑎5+2𝑦2𝑎4𝑎5+2𝑦2𝑎25+2𝑎3𝑎4𝑦+2𝑎3𝑎5𝑦+2𝑎1𝑎4+2𝑎1𝑎5 =
4𝑥2𝑎24 + 𝑥2𝑎26 + 4𝑎4𝑎6𝑥𝑦 + 4𝑎5𝑎6𝑥𝑦 + 4𝑥𝑎2𝑎4 + 2𝑎3𝑎6𝑥 + 4𝑦2𝑎25 + 𝑦2𝑎26 + 2𝑎2𝑎6𝑦 + 4𝑎3𝑎5𝑦 + 𝑎22 + 𝑎23

Simplifying

2𝑎4𝑎5𝑥2 + 2𝑎2𝑎5𝑥 + 2𝑎4𝑎5𝑦2 + 2𝑎3𝑎4𝑦 + 2𝑎1𝑎4 + 2𝑎1𝑎5 =
2𝑥2𝑎24 + 𝑎26𝑥2 + 2𝑎4𝑎6𝑥𝑦 + 2𝑎5𝑎6𝑥𝑦 + 2𝑎2𝑎4𝑥 + 2𝑎3𝑎6𝑥 + 2𝑎25𝑦2 + 𝑎26𝑦2 + 2𝑎2𝑎6𝑦 + 2𝑎3𝑎5𝑦 + 𝑎22 + 𝑎23
Comparing coe�cients of terms that contain no 𝑥, 𝑦 and coe�cients of 𝑥, 𝑦, 𝑥𝑦, 𝑥2, 𝑦2 gives
the following equations in order

2𝑎1𝑎4 + 2𝑎1𝑎5 = 𝑎22 + 𝑎23
2𝑎2𝑎5 = 2𝑎2𝑎4 + 2𝑎3𝑎6
2𝑎3𝑎4 = 2𝑎2𝑎6 + 2𝑎3𝑎5

0 = 4𝑎4𝑎6
2𝑎4𝑎5 = 2𝑎24 + 𝑎26
2𝑎4𝑎5 = 2𝑎25 + 𝑎26

Equation 0 = 4𝑎4𝑎6 above implies that 𝑎4 = 0 or 𝑎6 = 0 or both are zero. But if both are zero,
there is no solution. On the other hand, if 𝑎4 = 0, then this also leads to no solution as all
equations reduce to 0 = 0. Therefore only choice left is 𝑎6 = 0. Now the above equations
become

2𝑎1𝑎4 + 2𝑎1𝑎5 = 𝑎22 + 𝑎23
2𝑎2𝑎5 = 2𝑎2𝑎4
2𝑎3𝑎4 = 2𝑎3𝑎5

0 = 0
2𝑎4𝑎5 = 2𝑎24
2𝑎4𝑎5 = 2𝑎25

7



2.1. HW 1 CHAPTER 2. HWS

Or

2𝑎1𝑎4 + 2𝑎1𝑎5 = 𝑎22 + 𝑎23
𝑎5 = 𝑎4
𝑎4 = 𝑎5
0 = 0
𝑎5 = 𝑎4
𝑎4 = 𝑎5

Hence

𝑎4 = 𝑎5 (3)

𝑎6 = 0 (4)

2𝑎1𝑎4 + 2𝑎1𝑎5 = 𝑎22 + 𝑎23
Since 𝑎4 = 𝑎5 then

2𝑎1𝑎5 + 2𝑎1𝑎5 = 𝑎22 + 𝑎23

𝑎5 =
𝑎22 + 𝑎23
2𝑎1

(5)

Using (3,4,5) in 𝑝 �𝑥, 𝑦� = 𝑎1 + 𝑎2𝑥 + 𝑎3𝑦 + 𝑎4𝑥2 + 𝑎5𝑦2 + 𝑎6𝑥𝑦 gives

𝑝 �𝑥, 𝑦� = 𝑎1 + 𝑎2𝑥 + 𝑎3𝑦 + 𝑎5𝑥2 + 𝑎5𝑦2

= 𝑎1 + 𝑎2𝑥 + 𝑎3𝑦 + 𝑎5 �𝑥2 + 𝑦2�

= 𝑎1 + 𝑎2𝑥 + 𝑎3𝑦 +
𝑎22 + 𝑎23
2𝑎1

�𝑥2 + 𝑦2�

Only three arbitrary constants are needed. Let 𝑎1 = 𝑎, 𝑎2 = 𝑏, 𝑎3 = 𝑐 the above becomes

𝑝 �𝑥, 𝑦� = 𝑎 + 𝑏𝑥 + 𝑐𝑦 +
𝑏2 + 𝑐2

2𝑎
�𝑥2 + 𝑦2�

And the solution becomes

𝑢 �𝑥, 𝑦� = log �𝑎 + 𝑏𝑥 + 𝑐𝑦 +
𝑏2 + 𝑐2

2𝑎
�𝑥2 + 𝑦2��

2.1.3 Problem 1.13

Find all solutions 𝑢 = 𝑓 (𝑟) of the 3D Laplace equation 𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑢𝑧𝑧 = 0 that depends only
on radial coordinates 𝑟 = �𝑥2 + 𝑦2 + 𝑧2

Solution

The Laplacian in 3D in spherical coordinates is

∇ 2𝑢 �𝑟, 𝜃, 𝜙� = 𝑢𝑟𝑟 +
2
𝑟
𝑢𝑟 +

1
𝑟2 �

cos𝜃
sin𝜃𝑢𝜃 + 𝑢𝜃𝜃� +

1
𝑟2 sin2 𝜃

𝑢𝜙𝜙

The above shows that the terms that depend only on 𝑟 makes the laplacian

∇ 2𝑢 (𝑟) = 𝑢𝑟𝑟 +
2
𝑟
𝑢𝑟

Hence the PDE ∇ 2𝑢 (𝑟) = 0 becomes an ODE now since there is only one dependent
variable giving

𝑢′′ (𝑟) +
2
𝑟
𝑢′ (𝑟) = 0

Let 𝑣 = 𝑢′ (𝑟) and the above becomes

𝑣′ (𝑟) +
2
𝑟
𝑣 (𝑟) = 0

This is linear first order ODE. The integrating factor is 𝐼 = 𝑒∫
2
𝑟 𝑑𝑟 = 𝑒2 ln 𝑟 = 𝑟2. Therefore

8
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the above becomes 𝑑
𝑑𝑟
�𝑣𝑟2� = 0 or 𝑣𝑟2 = 𝐶1 or 𝑣 (𝑟) =

𝐶1
𝑟2 . Therefore

𝑢′ =
𝐶1
𝑟2

𝑑𝑢 =
𝐶1
𝑟2
𝑑𝑟

Integrating gives the solution

𝑢 = −
𝐶1
𝑟
+ 𝐶2

The above is the required solution. Hence

𝑓 (𝑟) = −𝐶1𝑟 + 𝐶2

Where 𝐶1, 𝐶2 are arbitrary constants.

2.1.4 Problem 1.20

The displacement 𝑢 (𝑡, 𝑥) of a forced violin string is modeled by the PDE 𝑢𝑡𝑡 = 4𝑢𝑥𝑥 +𝐹 (𝑡, 𝑥).
When the string is subjected to the external force 𝐹 (𝑡, 𝑥) = cos 𝑥, the solution is 𝑢 (𝑡, 𝑥) =
cos (𝑥 − 2𝑡) + 1

4 cos 𝑥, while when 𝐹 (𝑡, 𝑥) = sin 𝑥, the solution is 𝑢 (𝑡, 𝑥) = sin (𝑥 − 2𝑡) + 1
4 sin 𝑥.

Find a solution when the forcing function is (a) cos 𝑥 − 5 sin 𝑥, (b) sin (𝑥 − 3)

Solution

2.1.4.1 Part (a)

Since the PDE is linear, superposition can be used. When the input is 𝐹 (𝑡, 𝑥) = cos 𝑥−5 sin 𝑥
then the solution is

𝑢 (𝑡, 𝑥) = �cos (𝑥 − 2𝑡) + 1
4

cos 𝑥� − 5 �sin (𝑥 − 2𝑡) +
1
4

sin 𝑥�

= cos (𝑥 − 2𝑡) + 1
4

cos 𝑥 − 5 sin (𝑥 − 2𝑡) − 5
4

sin 𝑥

2.1.4.2 Part (b)

Since the PDE is linear, superposition can be used. When the input is 𝐹 (𝑡, 𝑥) = sin (𝑥 − 3)
then the solution same as when the input is sin 𝑥 but shifted by 3. Hence

𝑢 (𝑡, 𝑥) = sin ((𝑥 − 3) − 2𝑡) + 1
4

sin (𝑥 − 3)

2.1.5 Problem 1.27b

Solve the following inhomogeneous linear ODE 5𝑢′′ − 4𝑢′ + 4𝑢 = 𝑒𝑥 cos 𝑥

Solution

First the homogeneous solution 𝑢ℎ is found, then a particular solution 𝑢𝑝 is found. The
general solution will be the sum of both 𝑢 = 𝑢ℎ + 𝑢𝑝. Since this is a constant coe�cient

ODE, the characteristic equation is 5𝜆2 − 4𝜆 + 4 = 0. The roots are 𝜆1 =
2
5 +

4
5 𝑖, 𝜆1 =

2
5 −

4
5 𝑖,

which implies the solution is

𝑢ℎ (𝑥) = 𝑒
2
5𝑥 �𝑐1 cos �

4
5
𝑥� + 𝑐2 sin �

4
5
𝑥��

Using the method of undetermined coe�cients, and since the forcing function is 𝑒𝑥 cos 𝑥,
then let

𝑢𝑝 = 𝐴𝑒𝑥 (𝐵 cos 𝑥 + 𝐶 sin 𝑥) (1)

9
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Hence

𝑢′𝑝 = 𝐴𝑒𝑥 (𝐵 cos 𝑥 + 𝐶 sin 𝑥) + 𝐴𝑒𝑥 (−𝐵 sin 𝑥 + 𝐶 cos 𝑥) (2)

𝑢′′𝑝 = 𝐴𝑒𝑥 (𝐵 cos 𝑥 + 𝐶 sin 𝑥) + 𝐴𝑒𝑥 (−𝐵 sin 𝑥 + 𝐶 cos 𝑥) + 𝐴𝑒𝑥 (−𝐵 sin 𝑥 + 𝐶 cos 𝑥) + 𝐴𝑒𝑥 (−𝐵 cos 𝑥 − 𝐶 sin 𝑥)
= 𝐴𝑒𝑥 (𝐵 cos 𝑥 + 𝐶 sin 𝑥 − 𝐵 sin 𝑥 + 𝐶 cos 𝑥 − 𝐵 sin 𝑥 + 𝐶 cos 𝑥 − 𝐵 cos 𝑥 − 𝐶 sin 𝑥)
= 𝐴𝑒𝑥 (−𝐵 sin 𝑥 + 𝐶 cos 𝑥 − 𝐵 sin 𝑥 + 𝐶 cos 𝑥)
= 𝐴𝑒𝑥 (−2𝐵 sin 𝑥 + 2𝐶 cos 𝑥) (3)

Substituting (1,2,3) back into the original ODE gives

5𝐴𝑒𝑥 (−2𝐵 sin 𝑥 + 2𝐶 cos 𝑥) − 4 (𝐴𝑒𝑥 (𝐵 cos 𝑥 + 𝐶 sin 𝑥) + 𝐴𝑒𝑥 (−𝐵 sin 𝑥 + 𝐶 cos 𝑥)) + 4𝐴𝑒𝑥 (𝐵 cos 𝑥 + 𝐶 sin 𝑥) = 𝑒𝑥 cos 𝑥
𝐴𝑒𝑥 (−10𝐵 sin 𝑥 + 10𝐶 cos 𝑥) − 𝐴𝑒𝑥 (4𝐵 cos 𝑥 + 4𝐶 sin 𝑥) − 𝐴𝑒𝑥 (−4𝐵 sin 𝑥 + 4𝐶 cos 𝑥) + 𝐴𝑒𝑥 (4𝐵 cos 𝑥 + 4𝐶 sin 𝑥) = 𝑒𝑥 cos 𝑥

𝐴𝑒𝑥 (−10𝐵 sin 𝑥 + 10𝐶 cos 𝑥 − 4𝐵 cos 𝑥 − 4𝐶 sin 𝑥 + 4𝐵 sin 𝑥 − 4𝐶 cos 𝑥 + 4𝐵 cos 𝑥 + 4𝐶 sin 𝑥) = 𝑒𝑥 cos 𝑥

Hence

𝐴𝑒𝑥 (6𝐶 cos 𝑥 − 6𝐵 sin 𝑥) = 𝑒𝑥 cos 𝑥
Comparing coe�cients shows that

𝐴 = 1
𝐵 = 0

𝐶 =
1
6

Hence from (1)

𝑢𝑝 = 𝑒𝑥
sin 𝑥
6

Therefore the general solution is

𝑢 (𝑥) = 𝑢ℎ (𝑥) + 𝑢𝑝 (𝑥)

= 𝑒
2
5𝑥 �𝑐1 cos �

4
5
𝑥� + 𝑐2 sin �

4
5
𝑥�� + 𝑒𝑥

sin 𝑥
6

2.1.6 Problem 2.1.6

Solve the PDE 𝜕2𝑢
𝜕𝑥𝜕𝑦 = 0 for 𝑢 �𝑥, 𝑦�

Solution

Integrating once w.r.t 𝑥 gives
𝜕𝑢
𝜕𝑦

= 𝐹 �𝑦�

Where 𝐹 �𝑦� acts as the constant of integration, but since this is a PDE, it becomes an
arbitrary function of 𝑦 only. Integrating the above again w.r.t. 𝑦 gives

𝑢 = �𝐹 �𝑦� 𝑑𝑦 + 𝐺 (𝑥)

Where 𝐺 (𝑥) is an arbitrary function of 𝑥 only. If we let ∫𝐹 �𝑦� 𝑑𝑦 = 𝐻 �𝑦� where 𝐻�𝑦� is the
antiderivative for the indefinite integral which depends on 𝑦 only. Then the above can be
written as

𝑢 �𝑥, 𝑦� = 𝐻 �𝑦� + 𝐺 (𝑥)

To verify, from the above 𝜕𝑢
𝜕𝑦 = 𝐻

′ �𝑦� and hence

𝜕2𝑢
𝜕𝑥𝜕𝑦

=
𝑑
𝑑𝑥
�𝐻′ �𝑦��

= 0

2.1.7 Problem 2.2.2

Solve the following initial value problems and graph the solutions at 𝑡 = 1, 2, 3

a 𝑢𝑡 − 3𝑢𝑥 = 0, 𝑢 (0, 𝑥) = 𝑒−𝑥
2

10
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b 𝑢𝑡 + 2𝑢𝑥 = 0, 𝑢 (−1, 𝑥) =
𝑥

1+𝑥2

c 𝑢𝑡 + 𝑢𝑥 +
1
2𝑢 = 0, 𝑢 (0, 𝑥) = arctan (𝑥)

d 𝑢𝑡 − 4𝑢𝑥 + 𝑢 = 0, 𝑢 (0, 𝑥) =
1

1+𝑥2

Solution

2.1.7.1 Part a

Let 𝜉 be the characteristic variable defined such that 𝜉 = 𝑥 − 𝑐𝑡. Where characteristic lines
are given by 𝑥 = 𝑥0 + 𝑐𝑡. But 𝑐 = −3 in this problem. Hence characteristic lines are

𝑥 = 𝑥0 − 3𝑡

Where 𝑥0 means the same as 𝑥 (0), i.e. 𝑥 (𝑡) at time 𝑡 = 0. Since 𝑐 = −3 then

𝜉 = 𝑥 + 3𝑡

Let

𝑢 (𝑡, 𝑥) ≡ 𝑣 (𝑡, 𝜉)

𝑢𝑡 − 3𝑢𝑥 = 0 is now transformed to 𝑣 (𝑡, 𝜉) as follows
𝜕𝑢
𝜕𝑡

=
𝜕𝑣
𝜕𝑡
𝜕𝑡
𝜕𝑡
+
𝜕𝑣
𝜕𝜉

𝜕𝜉
𝜕𝑡

=
𝜕𝑣
𝜕𝑡

+ 3
𝜕𝑣
𝜕𝜉

(1)

And
𝜕𝑢
𝜕𝑥

=
𝜕𝑣
𝜕𝑡
𝜕𝑡
𝜕𝑥

+
𝜕𝑣
𝜕𝜉

𝜕𝜉
𝜕𝑥

= 0 +
𝜕𝑣
𝜕𝜉

=
𝜕𝑣
𝜕𝜉

(2)

Substituting (1,2) in 𝑢𝑡 − 3𝑢𝑥 = 0 gives the transformed PDE as

𝜕𝑣
𝜕𝑡

+ 3
𝜕𝑣
𝜕𝜉

− 3
𝜕𝑣
𝜕𝜉

= 0

𝜕𝑣
𝜕𝑡

= 0

Integrating w.r.t 𝜉 gives the solution in 𝑣 (𝑡, 𝜉) space as

𝑣 (𝑡, 𝜉) = 𝐹 (𝜉)

Where 𝐹 (𝜉) is an arbitrary continuous function of 𝜉. Transforming back to 𝑢 (𝑡, 𝑥) gives

𝑢 (𝑡, 𝑥) = 𝐹 (𝑥 + 3𝑡) (3)

At 𝑡 = 0 the above becomes

𝑒−𝑥20 = 𝐹 (𝑥0)

This means that (3) becomes (since 𝑥 = 𝑥0 + 𝑐𝑡 or 𝑥 = 𝑥0 − 3𝑡 or 𝑥0 = 𝑥 + 3𝑡)

𝑢 (𝑡, 𝑥) = 𝑒−(𝑥+3𝑡)
2

2.1.7.2 Part b

𝑢𝑡 + 2𝑢𝑥 = 0

𝑢 (−1, 𝑥) =
𝑥

1 + 𝑥2
Let 𝜉 be the characteristic variable defined such that 𝜉 = 𝑥 − 𝑐𝑡. Where characteristic lines
are given by 𝑥 = 𝑥0 + 𝑐𝑡. But 𝑐 = 2 in this problem. Hence characteristic lines are

𝑥 = 𝑥0 + 2𝑡

And

𝜉 = 𝑥 − 2𝑡

11
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Let 𝑢 (𝑡, 𝑥) ≡ 𝑣 (𝑡, 𝜉). Then 𝑢𝑡 + 2𝑢𝑥 = 0 is transformed to 𝑣 (𝑡, 𝜉) as was done in part (a) (will
not be repeated) which results in

𝜕𝑣
𝜕𝑡

= 0

Integrating w.r.t 𝜉 gives the solution

𝑣 (𝑡, 𝜉) = 𝐹 (𝜉)

Where 𝐹 (𝜉) is an arbitrary continuous function of 𝜉. Transforming back to 𝑢 (𝑡, 𝑥) results in

𝑢 (𝑡, 𝑥) = 𝐹 (𝑥 − 2𝑡) (3)

At 𝑡 = −1 the above becomes
𝑥0

1 + 𝑥20
= 𝐹 (𝑥0 + 2)

Let 𝑥0 + 2 = 𝑧. Then 𝑥0 = 𝑧 − 2. And the above becomes
𝑧 − 2

1 + (𝑧 − 2)2
= 𝐹 (𝑧)

This means that (3) becomes

𝑢 (𝑡, 𝑥) =
(𝑥 − 2𝑡) − 2

1 + ((𝑥 − 2𝑡) − 2)2

=
𝑥 − 2𝑡 − 2

1 + (𝑥 − 2𝑡 − 2)2

2.1.7.3 Part c

𝑢𝑡 + 𝑢𝑥 +
1
2
𝑢 = 0 (1)

𝑢 (0, 𝑥) = arctan (𝑥)
Let 𝜉 be the characteristic variable defined such that 𝜉 = 𝑥 − 𝑐𝑡. Where characteristic lines
are given by 𝑥 = 𝑥0 + 𝑐𝑡. But 𝑐 = 1 in this problem. Hence characteristic lines are given by
solution to

𝑑𝑥
𝑑𝑡
= 1

𝑥 (𝑡) = 𝑥0 + 𝑡

And

𝜉 = 𝑥 − 𝑐𝑡
= 𝑥 − 𝑡

Then 𝑢𝑡 +𝑢𝑥 are transformed to 𝑣 (𝑡, 𝜉) as was done in part (a) (will not be repeated) which
results in

𝑢𝑡 + 𝑢𝑥 =
𝜕𝑣
𝜕𝑡

Substituting the above into (1) gives (where now 𝑣 is used in place of 𝑢).
𝜕𝑣
𝜕𝑡

+
1
2
𝑣 = 0

This is now first order ODE since it only depends on 𝑡. Therefore 𝑣′+ 1
2𝑣 = 0. This is linear

in 𝑣. Hence the solution is 𝑑
𝑑𝑡
�𝑣𝑒∫

1
2𝑑𝑡� = 0 or 𝑣𝑒

1
2 𝑡 = 𝐹 (𝜉) where 𝐹 is arbitrary function of 𝜉.

Hence

𝑣 (𝑡, 𝜉) = 𝑒
−1
2 𝑡𝐹 (𝜉)

Converting back to 𝑢 (𝑡, 𝑥) gives

𝑢 (𝑡, 𝑥) = 𝑒
−𝑡
2 𝐹 (𝑥 − 𝑡) (2)

At 𝑡 = 0 the above becomes

arctan (𝑥0) = 𝐹 (𝑥0)

12
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From the above then (2) can be written as

𝑢 (𝑡, 𝑥) = 𝑒
−𝑡
2 arctan (𝑥 − 𝑡)

2.1.7.4 Part d

𝑢𝑡 − 4𝑢𝑥 + 𝑢 = 0

𝑢 (0, 𝑥) =
1

1 + 𝑥2
Let 𝜉 be the characteristic variable defined such that 𝜉 = 𝑥 − 𝑐𝑡. Where characteristic lines
are given by 𝑥 = 𝑥0 + 𝑐𝑡. But 𝑐 = −4 in this problem. Hence characteristic lines are

𝑥 = 𝑥0 − 4𝑡

And

𝜉 = 𝑥 + 4𝑡

Then 𝑢𝑡−4𝑢𝑥 are transformed to 𝑣 (𝑡, 𝜉) as was done in part (a) (will not be repeated) which
results in

𝑢𝑡 − 4𝑢𝑥 =
𝜕𝑣
𝜕𝑡

Substituting the above into (1) gives (where now 𝑣 is used in place of 𝑢).
𝜕𝑣
𝜕𝑡

+ 𝑣 = 0

This is now first order ODE since it only depends on 𝑡. Therefore 𝑣′ + 𝑣 = 0. This is linear
in 𝑣. Hence the solution is 𝑑

𝑑𝑡
�𝑣𝑒∫𝑑𝑡� = 0 or 𝑣𝑒𝑡 = 𝐹 (𝜉) where 𝐹 is arbitrary function of 𝜉.

Hence

𝑣 (𝑡, 𝜉) = 𝑒−𝑡𝐹 (𝜉)

Converting to 𝑢 (𝑡, 𝑥) gives

𝑢 (𝑡, 𝑥) = 𝑒−𝑡𝐹 (𝑥 + 4𝑡) (2)

At 𝑢 (0, 𝑥) = 1
1+𝑥2 the above becomes

1
1 + 𝑥20

= 𝐹 (𝑥0)

From the above then (2) can be written as

𝑢 (𝑡, 𝑥) =
𝑒−𝑡

1 + (𝑥 + 4𝑡)2

2.1.8 Problem 2.2.3

Graph some of the characteristic lines for the following equation and write down the
formula for the general solution

(b) 𝑢𝑡 + 5𝑢𝑥 = 0 , (d) 𝑢𝑡 − 4𝑢𝑥 + 𝑢 = 0

Solution

2.1.8.1 Part b

𝑢𝑡 + 5𝑢𝑥 = 0

Let 𝜉 be the characteristic variable defined such that 𝜉 = 𝑥 − 𝑐𝑡. Where characteristic lines
are given by 𝑥 = 𝑥0 + 𝑐𝑡. But 𝑐 = 5 in this problem. Hence characteristic lines are

𝑥 (𝑡) = 𝑥0 + 5𝑡 (1)

And

𝜉 = 𝑥 − 5𝑡

Then 𝑢𝑡 − 5𝑢𝑥 = 0 is transformed to 𝑣 (𝑡, 𝜉) as was done in earlier (will not be repeated)

13
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which results in

𝑢𝑡 − 5𝑢𝑥 =
𝜕𝑣
𝜕𝑡

Therefore 𝜕𝑣
𝜕𝑡 = 0 which has the general solution 𝑣 (𝑡, 𝜉) = 𝐹 (𝜉) where 𝐹 is arbitrary function

of 𝜉. Transforming back to 𝑢 (𝑡, 𝑥) gives

𝑢 (𝑡, 𝑥) = 𝐹 (𝑥 − 5𝑡)

On the characteristic lines given by (1) the solution 𝑢 (𝑡, 𝑥) is constant. The slope of the
characteristic lines is 5 and intercept is 𝑥0. The following is a plot of few lines using di�erent
values of 𝑥0.

t

x

Figure 2.1: Showing some characteristic lines for part b

2.1.8.2 Part d

𝑢𝑡 − 4𝑢𝑥 + 𝑢 = 0

Let 𝜉 be the characteristic variable defined such that 𝜉 = 𝑥 − 𝑐𝑡. Where characteristic lines
are given by 𝑥 = 𝑥0 + 𝑐𝑡. But 𝑐 = −4 in this problem. Hence characteristic lines are

𝑥 (𝑡) = 𝑥0 − 4𝑡 (1)

And

𝜉 = 𝑥 + 4𝑡

Then 𝑢𝑡 − 4𝑢𝑥 is transformed to 𝑣 (𝑡, 𝜉) as was done in earlier (will not be repeated) which
results in

𝑢𝑡 − 4𝑢𝑥 =
𝜕𝑣
𝜕𝑡

Therefore the original PDE becomes 𝜕𝑣
𝜕𝑡 + 𝑣 = 0, where 𝑢 is replaced by 𝑣. This is linear

first order ODE which has the solution 𝑣 (𝑡, 𝜉) = 𝑒−𝑡𝐹 (𝜉) where 𝐹 is arbitrary function of 𝜉.
Transforming back to 𝑢 (𝑡, 𝑥) gives the general solution as

𝑢 (𝑡, 𝑥) = 𝑒−𝑡𝐹 (𝑥 + 4𝑡)

The following is a plot of few characteristic lines 𝑥 = 𝑥0 − 4𝑡 using di�erent values of 𝑥0.

14
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t

x

Figure 2.2: Showing some characteristic lines for part d

2.1.9 Problem 2.2.5

Solve 𝑢𝑡 + 2𝑢𝑥 = sin 𝑥, 𝑢 (0, 𝑥) = sin 𝑥

Solution

Let 𝜉 be the characteristic variable defined such that 𝜉 = 𝑥 − 𝑐𝑡. Where characteristic lines
are given by 𝑥 = 𝑥0 + 𝑐𝑡. But 𝑐 = 2 in this problem. Hence characteristic lines are

𝑥 = 𝑥0 + 2𝑡 (1)

And

𝜉 = 𝑥 − 2𝑡

Then 𝑢𝑡 + 2𝑢𝑥 is transformed to 𝑣 (𝑡, 𝜉) as was done in earlier (will not be repeated) which
results in

𝑢𝑡 + 2𝑢𝑥 =
𝜕𝑣
𝜕𝑡

Substituting this into the original PDE gives

𝜕𝑣 (𝑡, 𝜉)
𝜕𝑡

= sin (𝜉 + 2𝑡)

Integrating w.r.t 𝑡 gives

𝑣 (𝑡, 𝜉) = � sin (𝜉 + 2𝑡) 𝑑𝑡 + 𝐹 (𝜉)

= −
cos (𝜉 + 2𝑡)

2
+ 𝐹 (𝜉)

Transforming back to 𝑢 (𝑡, 𝑥) gives

𝑢 (𝑡, 𝑥) = −
cos (𝑥 − 2𝑡 + 2𝑡)

2
+ 𝐹 (𝑥 − 2𝑡)

=
−1
2

cos (𝑥) + 𝐹 (𝑥 − 2𝑡) (1)

When 𝑡 = 0, 𝑢 (0, 𝑥) = sin 𝑥, therefore the above becomes

sin 𝑥0 = 𝐹 (𝑥0) −
1
2

cos 𝑥0

𝐹 (𝑥0) = sin 𝑥0 +
1
2

cos 𝑥0
Therefore the solution (1) becomes

𝑢 (𝑡, 𝑥) = �sin (𝑥 − 2𝑡) +
1
2

cos (𝑥 − 2𝑡)� −
1
2

cos 𝑥

= sin (𝑥 − 2𝑡) + 1
2

cos (𝑥 − 2𝑡) − 1
2

cos 𝑥

15
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2.1.10 Problem 2.2.9

(a) Prove that if the initial data is bounded, �𝑓 (𝑥)� ≤ 𝑀 for all 𝑥 ∈ ℝ, then the solution to the
damped transport equation (2.14) 𝑢𝑡 + 𝑐𝑢𝑥 + 𝑎𝑢 = 0 with 𝑎 > 0 satisfies 𝑢 (𝑡, 𝑥) → 0 as 𝑡 → ∞.
(b) Find a solution to (2.14) that is defined for all (𝑡, 𝑥) but does not satisfy 𝑢 (𝑡, 𝑥) → 0 as
𝑡 → ∞.

Solution

2.1.10.1 Part(a)

𝑢𝑡 + 𝑐𝑢𝑥 + 𝑎𝑢 = 0 is solved to show what is required. Let 𝜉 be the characteristic variable
defined such that 𝜉 = 𝑥 − 𝑐𝑡. Where characteristic lines are given by 𝑥 = 𝑥0 + 𝑐𝑡. Hence
characteristic lines are

𝑥 = 𝑥0 + 𝑐𝑡 (1)

And

𝜉 = 𝑥 − 𝑐𝑡

Then 𝑢𝑡 + 𝑐𝑢𝑥 is transformed to 𝑣 (𝑡, 𝜉) as was done in earlier (will not be repeated) which
results in

𝑢𝑡 + 𝑐𝑢𝑥 =
𝜕𝑣
𝜕𝑡

Substituting this into the original PDE gives

𝜕𝑣
𝜕𝑡

+ 𝑎𝑣 = 0

Where 𝑢 is replaced by 𝑣. This can be viewed as first order linear ODE since it depends
on 𝑡 only. Its solution is 𝑣 (𝑡, 𝜉) = 𝑒−𝑎𝑡𝐹 (𝜉) where 𝐹 is arbitrary function of 𝜉. Transforming
back to 𝑢 (𝑡, 𝑥) gives

𝑢 (𝑡, 𝑥) = 𝑒−𝑎𝑡𝐹 (𝑥 − 𝑐𝑡) (1)

At 𝑡 = 0 initial data is 𝑓 (𝑥). Hence the above becomes at 𝑡 = 0

𝑓 (𝑥) = 𝐹 (𝑥)

Hence (1) now becomes

𝑢 (𝑡, 𝑥) = 𝑒−𝑎𝑡𝑓 (𝑥 − 𝑐𝑡) (2)

But since �𝑓 (𝑥)� is bounded, and since 𝑎 > 0 then 𝑒−𝑎𝑡 → 0 as 𝑡 → ∞. Which implies the
solution itself 𝑢 (𝑡, 𝑥) goes to zero as well. This is the reason why initial data needed to be
bounded for this to happen.

2.1.10.2 Part(b)

Keeping 𝑎 > 0. If initial data have the form 𝑓 (𝑥) 𝑒−𝑏𝑥 where |𝑏| > 𝑎, then at 𝑡 = 0 the solution
found in (1) becomes

𝑓 (𝑥0) 𝑒−𝑏𝑥0 = 𝐹 (𝑥0)

Then the solution (2) now becomes, after replacing 𝑥0 by 𝑥 − 𝑐𝑡

𝑢 (𝑡, 𝑥) = 𝑒−𝑎𝑡𝑒−𝑏(𝑥−𝑐𝑡)𝑓 (𝑥 − 𝑐𝑡)
= 𝑒−𝑎𝑡+𝑏𝑐𝑡𝑒−𝑏𝑥𝑓 (𝑥 − 𝑐𝑡)
= 𝑒(𝑏𝑐−𝑎)𝑡𝑒−𝑏𝑥𝑓 (𝑥 − 𝑐𝑡)

The problem is asking to show that this does not go to zero for all 𝑥 ∈ ℝ as 𝑡 → ∞. Since
|𝑏| > 𝑎 then 𝑏𝑐 − 𝑎 is positive quantity (𝑐 is assumed positive)1.

Therefore 𝑒(𝑏𝑐−𝑎)𝑡 will blow up as 𝑡 → ∞. And therefore the whole solution will not go to
zero. For any 𝑥, no matter how large 𝑥 is, a large enough 𝑡 can be found to make the
product 𝑒(𝑏𝑐−𝑎)𝑡𝑒−𝑏𝑥 blow up.

1If 𝑐 was negative then initial data could be choosen to be 𝑓 (𝑥) 𝑒𝑏𝑥 where |𝑏| > 𝑎 which will lead to same
result.
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2.2 HW 2
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2.2.1 Problem 2.2.17

(a) Solve the initial value problem 𝑢𝑡 − 𝑥𝑢𝑥 = 0, 𝑢 (0, 𝑥) = 1
1+𝑥2 . (b) Graph the solution at

times 𝑡 = 0, 1, 2, 3. (c) What is lim𝑡→∞ 𝑢 (𝑡, 𝑥)?

Solution

2.2.1.1 Part a

The characteristic curves equations is given by
𝑑𝑥
𝑑𝑡
= −𝑥

Integrating this results in ln |𝑥| = −𝑡 + 𝐶 or 𝑥 = 𝜉𝑒−𝑡. Hence the characteristic variable is

𝜉 (𝑥, 𝑡) = 𝑥𝑒𝑡

𝑢 on the characteristic curves is an arbitrary function of the characteristic variable. Hence

𝑢 (𝑡, 𝜉) = 𝐹 (𝜉)

𝑢 (𝑡, 𝑥) = 𝐹 �𝑥𝑒𝑡� (1)

Where 𝐹 is arbitrary function determined from initial conditions. Using initial conditions
at 𝑡 = 0, the above becomes

1
1 + 𝑥2

= 𝐹 (𝑥)

Using the above in (1) gives the final solution as

𝑢 (𝑡, 𝑥) =
1

1 + (𝑥𝑒𝑡)2
(2)

2.2.1.2 Part b

The following are some plots and the code used.

In[ ]:= p = Grid[Partition[Table[Quiet@Plot[u[x, time], {x, -5, 5},

PlotRange → {All, {0, 1.1}},

AxesLabel → {Style["x", 12], Style["u", 14]},

BaseStyle → 12,

ImageSize → 400, PlotStyle → Red, GridLines → Automatic,

GridLinesStyle → LightGray,

PlotLabel → Row[{"time = ", padIt2[time, {1, 1}], " seconds"}]],

{time, {0, 1, 2, 3}}

], 2], Spacings → {1, 1}, Frame → All]

Figure 2.3: Source code
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Out[ ]=
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Figure 2.4: Solution at di�erent times

2.2.1.3 Part c

From the solution in (2), when 𝑥 = 0, then lim𝑡→∞ 𝑢 (𝑡, 0) = 1. But when 𝑥 ≠ 0, then
lim𝑡→∞ 𝑢 (𝑡, 𝑥) = 0. Therefore

lim
𝑡→∞

𝑢 (𝑡, 𝑥) =
1 𝑥 = 0
0 𝑥 ≠ 0

Hence the solution is discontinuous at 𝑥 = 0 in the limit as 𝑡 → ∞.

2.2.2 Problem 2.2.18

Suppose the initial data 𝑢 (0, 𝑥) = 𝑓 (𝑥) of the nonuniform transport equation (2.28), which
is 𝑢𝑡 + �𝑥2 − 1� 𝑢𝑥 = 0 is continuous and satisfies 𝑓 (𝑥) → 0 as |𝑥| → ∞. What is the limiting
solution profile 𝑢 (𝑡, 𝑥) as (a) 𝑡 → ∞ (b) 𝑡 → −∞ ?

Solution

The characteristic curves equations is given by 𝑑𝑥
𝑑𝑡 = �𝑥

2 − 1�. Integrating this results in

1
2

ln � 𝑥 − 1
𝑥 + 1

� = 𝑡 + 𝐶3

ln � 𝑥 − 1
𝑥 + 1

� = 2𝑡 + 𝐶2

𝑥 − 1
𝑥 + 1

= 𝜉𝑒2𝑡

𝜉 =
𝑥 − 1
𝑥 + 1

𝑒−2𝑡

𝑢 on the characteristic curves is an arbitrary function of the characteristic variable. Hence

𝑢 = 𝐹 (𝜉)

= 𝐹 �
𝑥 − 1
𝑥 + 1

𝑒−2𝑡� (1)

Where 𝐹 is arbitrary function which is determined from initial conditions. From initial
conditions the above becomes

𝑓 (𝑥) = 𝐹 �
𝑥 − 1
𝑥 + 1�
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Let 𝑥−1
𝑥+1 = 𝑧. Hence (𝑥 − 1) = 𝑧 (𝑥 + 1) or 𝑥 − 1 − 𝑧 − 𝑧𝑥 = 0 or 𝑥 (1 − 𝑧) − 1 − 𝑧 = 0 or 𝑥 = 1+𝑧

1−𝑧 .
Therefore

𝑓 �
1 + 𝑧
1 − 𝑧�

= 𝐹 (𝑧)

Therefore (1) can now be written as

𝑢 (𝑡, 𝑥) = 𝑓

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + � 𝑥−1𝑥+1𝑒
−2𝑡�

1 − � 𝑥−1𝑥+1𝑒
−2𝑡�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2)

2.2.2.1 Part (a)

As 𝑡 → ∞ then solution (2) becomes

lim
𝑡→∞

𝑢 (𝑡, 𝑥) = 𝑓 �
1 + 0
1 − 0�

= 𝑓 (1)

2.2.2.2 Part (b)

And as 𝑡 → −∞ then

lim
𝑡→−∞

𝑢 (𝑡, 𝑥) = 𝑓 �
+∞
−∞

�

= 𝑓 (−1)

2.2.3 Problem 2.2.26

Consider the transport equation 𝜕𝑢
𝜕𝑡 +𝑐 (𝑡, 𝑥)

𝜕𝑢
𝜕𝑥 = 0 with time varying wave speed. Define the

corresponding characteristic ODE to be 𝑑𝑥
𝑑𝑡 = 𝑐 (𝑡, 𝑥), the graphs of whose solutions 𝑥 (𝑡) are

the characteristic curves. (a) Prove that any solution 𝑢 (𝑡, 𝑥) to the PDE is constant on each
characteristic curve. (b) Suppose that the general solution to the characteristic equation
is written in the form 𝜉 (𝑡, 𝑥) = 𝑘, where 𝑘 is an arbitrary constant. Prove that 𝜉 (𝑡, 𝑥) defines
a characteristic variable, meaning that 𝑢 (𝑡, 𝑥) = 𝑓 (𝜉 (𝑡, 𝑥)) is a solution to the time-varying
transport equation for any continuously di�erentiable scalar function 𝑓 ∈ 𝐶1.

Solution

2.2.3.1 Part (a)

Let 𝑥 (𝑡) be the solution to characteristic ODE 𝑑𝑥
𝑑𝑡 = 𝑐 (𝑡, 𝑥). Then

𝑑
𝑑𝑡
(𝑢 (𝑡, 𝑥 (𝑡))) =

𝜕𝑢
𝜕𝑡

+
𝜕𝑢
𝜕𝑥

𝑑𝑥
𝑑𝑡

=
𝜕𝑢
𝜕𝑡

+
𝜕𝑢
𝜕𝑥
𝑐 (𝑡, 𝑥)

But 𝜕𝑢
𝜕𝑡 +

𝜕𝑢
𝜕𝑥 𝑐 (𝑡, 𝑥) = 0, since this is the given PDE above. The above now reduces to

𝑑
𝑑𝑡
(𝑢 (𝑡, 𝑥 (𝑡))) = 0

Which implies that 𝑢 (𝑡, 𝑥 (𝑡)) is constant on the characteristic curves.

2.2.3.2 Part (b)

𝜕
𝜕𝑡
𝑓 (𝜉 (𝑡, 𝑥)) =

𝑑𝑓
𝑑𝜉 (𝑡, 𝑥) �

𝜕
𝜕𝑡
(𝜉 (𝑡, 𝑥))�

=
𝑑𝑓

𝑑𝜉 (𝑡, 𝑥) �
𝜕𝜉
𝜕𝑡

+
𝜕𝜉
𝜕𝑥

𝑑𝑥
𝑑𝑡 �

=
𝑑𝑓

𝑑𝜉 (𝑡, 𝑥) �
𝜕𝜉
𝜕𝑡

+
𝜕𝜉
𝜕𝑥
𝑐 (𝑡, 𝑥)�
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And
𝜕
𝜕𝑥
𝑓 (𝜉 (𝑡, 𝑥)) =

𝑑𝑓
𝑑𝜉 (𝑡, 𝑥) �

𝜕
𝜕𝑥
𝜉 (𝑡, 𝑥)�

=
𝑑𝑓

𝑑𝜉 (𝑡, 𝑥) �
𝜕𝜉
𝜕𝑡

𝑑𝑡
𝑑𝑥
+
𝜕𝜉
𝜕𝑥

𝑑𝑥
𝑑𝑥�

=
𝑑𝑓

𝑑𝜉 (𝑡, 𝑥) �
𝜕𝜉
𝜕𝑥�

Hence
𝜕
𝜕𝑡
𝑓 (𝜉 (𝑡, 𝑥)) + 𝑐 (𝑡, 𝑥)

𝜕
𝜕𝑥
𝑓 (𝜉 (𝑡, 𝑥)) =

𝑑𝑓
𝑑𝜉 (𝑡, 𝑥) �

𝜕𝜉
𝜕𝑡

+
𝜕𝜉
𝜕𝑥
𝑐 (𝑡, 𝑥)� + 𝑐 (𝑡, 𝑥)

𝑑𝑓
𝑑𝜉 (𝑡, 𝑥) �

𝜕𝜉
𝜕𝑥�

=
𝑑𝑓

𝑑𝜉 (𝑡, 𝑥) �
𝜕𝜉
𝜕𝑡

+
𝜕𝜉
𝜕𝑥
𝑐 (𝑡, 𝑥) + 𝑐 (𝑡, 𝑥)

𝜕𝜉
𝜕𝑥�

=
𝑑𝑓

𝑑𝜉 (𝑡, 𝑥) �
𝜕𝜉
𝜕𝑡

+ 2
𝜕𝜉
𝜕𝑥
𝑐 (𝑡, 𝑥)�

But 𝜉 (𝑡, 𝑥) is constant 𝑘. Hence 𝑑𝑓
𝑑𝜉(𝑡,𝑥) = 0. Therefore RHS above is zero, and the above

reduces to
𝜕
𝜕𝑡
𝑓 (𝜉 (𝑡, 𝑥)) + 𝑐 (𝑡, 𝑥)

𝜕
𝜕𝑥
𝑓 (𝜉 (𝑡, 𝑥)) = 0

This shows that 𝑓 (𝜉 (𝑡, 𝑥)) satisfies the given transport PDE. Hence it is a solution. Or
𝑢 (𝑡, 𝑥) = 𝑓 (𝜉 (𝑡, 𝑥)).

2.2.4 Problem 2.2.29

Consider the first-order PDE 𝑢𝑡 + (1 − 2𝑡) 𝑢𝑥 = 0. Use exercise 2.2.26 to: (a) Find and sketch
the characteristic curves. (b) Write down the general solution. (c) Solve the initial value
problem with 𝑢 (0, 𝑥) = 1

1+𝑥2 . (d) Describe the behavior of your solution 𝑢 (𝑡, 𝑥) from part (c)
as 𝑡 → ∞. What about 𝑡 → −∞?

Solution

2.2.4.1 Part (a)

The characteristic curves are given by 𝑑𝑥
𝑑𝑡 = (1 − 2𝑡). Therefore

𝑥 (𝑡) = 𝑡 − 𝑡2 + 𝜉

𝜉 = 𝑥 − �𝑡 − 𝑡2�

The following is plot of characteristic curves for di�erent 𝜉 values.

Table[Plot[t - t^2 + k, {t, 0, 4}, PlotRange → {All, {-10, 7}},

AxesLabel → {"t", "x(t)"}, BaseStyle → 14],

{k, 0, 5, 1}];

Show[%]

Out[ ]= 1 2 3 4
t

-10

-5

5

x(t)

Figure 2.5: Plot of some characteristic curves
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2.2.4.2 Part (b)

solution 𝑢 on the characteristic curves is an arbitrary function of the characteristic variable.
Hence

𝑢 (𝑡, 𝑥) = 𝐹 (𝜉)

= 𝐹 �𝑥 − �𝑡 − 𝑡2��

= 𝐹 �𝑥 − 𝑡 + 𝑡2� (1)

Where 𝐹 is arbitrarily function.

2.2.4.3 Part (c)

At 𝑡 = 0 the above solution becomes
1

1 + 𝑥2
= 𝐹 (𝑥) (2)

Therefore using (2) in (1), then (1) becomes

𝑢 (𝑡, 𝑥) =
1

1 + �𝑥 − 𝑡 + 𝑡2�
2 (3)

2.2.4.4 Part (d)

The solution in (3) shows that

lim
𝑡→∞

𝑢 (𝑡, 𝑥) =
1
∞
= 0

Also

lim
𝑡→−∞

𝑢 (𝑡, 𝑥) =
1
∞
= 0

Hence the solution vanishes for large 𝑡.

2.2.5 Problem 2.4.2

(a) Solve the wave equation 𝑢𝑡𝑡 = 𝑢𝑥𝑥 when the initial displacement is the box function

𝑢 (0, 𝑥) =

⎧⎪⎪⎨
⎪⎪⎩
1 1 < 𝑥 < 2
0 otherwise

, while the initial velocity is zero. (b) Sketch the resulting

solution at several times.

Solution

2.2.5.1 Part (a)

d’Alembert solution of the wave equation is given by

𝑢 (𝑡, 𝑥) =
1
2
�𝑓 (𝑥 − 𝑐𝑡) + 𝑓 (𝑥 + 𝑐𝑡)� +

1
2𝑐 �

𝑥+𝑐𝑡

𝑥−𝑐𝑡
𝑔 (𝑠) 𝑑𝑠

Where 𝑐 is the wave speed which is 𝑐 = 1 in this problem and 𝑓 (𝑥) = 𝑢 (0, 𝑥) and 𝑔 (𝑥) =
𝑢𝑡 (0, 𝑥) = 0. The above simplifies to

𝑢 (𝑡, 𝑥) =
1
2
�𝑓 (𝑥 − 𝑡) + 𝑓 (𝑥 + 𝑡)�

=
1
2

⎛
⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎨
⎪⎪⎩
1 1 < 𝑥 − 𝑡 < 2
0 otherwise

+

⎧⎪⎪⎨
⎪⎪⎩
1 1 < 𝑥 + 𝑡 < 2
0 otherwise

⎞
⎟⎟⎟⎟⎟⎠

=
1
2

⎛
⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎨
⎪⎪⎩
1 1 + 𝑡 < 𝑥 < 2 + 𝑡
0 otherwise

+

⎧⎪⎪⎨
⎪⎪⎩
1 1 − 𝑡 < 𝑥 < 2 − 𝑡
0 otherwise

⎞
⎟⎟⎟⎟⎟⎠

Complete split of the box function into two separate halves happens at 𝑡 = 0.5 because
when 𝑡 = 0.5 in the above gives

𝑢 (𝑡, 𝑥) =
1
2

⎛
⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎨
⎪⎪⎩
1 1.5 < 𝑥 < 2.5
0 otherwise

+

⎧⎪⎪⎨
⎪⎪⎩
1 0.5 < 𝑥 < 1.5
0 otherwise

⎞
⎟⎟⎟⎟⎟⎠
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This shows that just after 𝑡 = 0.5, there is no longer a common region between 1.5 < 𝑥 < 2.5
and 0.5 < 𝑥 < 1.5.

Hence for 𝑡 > 0.5 the solution 𝑢 will be 1
2 when 1 + 𝑡 < 𝑥 < 2 + 𝑡 or when 1 − 𝑡 < 𝑥 < 2 − 𝑡 and

will be zero otherwise.

But when 𝑡 < 0.5, there will still be a common region before the full split. Some region is till
common, and some region is not. For example, picking 𝑡 = 0.25, then there is a common
region between 1.25 < 𝑥 < 2.25 and 0.75 < 𝑥 < 1.75. In this case the common region is
1.25 < 𝑥 < 1.75. Over this region, 𝑢 = 1. But over the non common region 𝑢 = 1

2 when

0.75 < 𝑥 < 1.25 and 𝑢 = 1
2 for 0.1.75 < 𝑥 < 2.25 and 𝑢 = 0 otherwise. In terms of 𝑡 the above

can be written as

When 𝑡 ≥ 1
2 then the solution is

𝑢 =
1
2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2 1 − 𝑡 < 𝑥 < 2 − 𝑡
1
2 1 + 𝑡 < 𝑥 < 2 + 𝑡
0 otherwise

When 𝑡 < 1
2

𝑢 =
1
2

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 1 + 𝑡 < 𝑥 < 2 − 𝑡
1
2 1 − 𝑡 < 𝑥 < 1 + 𝑡
1
2 2 − 𝑡 < 𝑥 < 2 + 𝑡
0 otherwise

It it easier to do all of this using the computer by plotting the solution for di�erent times.

2.2.5.2 Part (b)

The following are plots of the motion of the wave for several times.
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Figure 2.6: Plots for several times

In[ ]:= u[x_, t_] :=
1

2
(Piecewise[{{1, 1 < x - t < 2}, {0, True}}] + Piecewise[{{1, 1 < x + t < 2}, {0, True}}]);

plots = Table[Grid[{{Row[{"time ", t}]},

{Plot[u[x, t], {x, -1, 4}, Exclusions → None, ImageSize → 300,

PlotPoints → 40,

PerformanceGoal → "Quality", PlotStyle → Red,

GridLines → Automatic, GridLinesStyle → LightGray,

PlotRange → {All, {0, 1.1}}]}

}], {t, {0, .1, .2, .3, .4, .5, .6, .7, .8, .9, 1, 1.1}}];

Grid[Partition[plots, 3], Frame → All]

Figure 2.7: Code used

2.2.6 Problem 2.4.3

Answer 2.4.2 when the initial velocity is the box function while the initial displacement is
zero.

Solution

2.2.6.1 Part (a)

d’Alembert solution of the wave equation is

𝑢 (𝑡, 𝑥) =
1
2
�𝑓 (𝑥 − 𝑐𝑡) + 𝑓 (𝑥 + 𝑐𝑡)� +

1
2𝑐 �

𝑥+𝑐𝑡

𝑥−𝑐𝑡
𝑔 (𝑠) 𝑑𝑠
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Where 𝑐 is the wave speed which is 𝑐 = 1 in this problem and 𝑓 (𝑥) = 0 and 𝑔 (𝑥) = 𝑢𝑡 (0, 𝑥) =
𝑓 (𝑥) which is the box function given in the last problem. The above becomes

𝑢 (𝑡, 𝑥) =
1
2 �

𝑥+𝑡

𝑥−𝑡
𝑓 (𝑠) 𝑑𝑠

=
1
2 �

𝑠=𝑥+𝑡

𝑠=𝑥−𝑡

⎧⎪⎪⎨
⎪⎪⎩
1 1 < 𝑠 < 2
0 otherwise

𝑑𝑠

2.2.6.2 Part (b)

The following are plots of the motion of the wave for several times of the above solution

In[ ]:= u[x_, t_] :=
1

2
Integrate[Piecewise[{{1, 1 < s < 2}, {0, True}}], {s, x - t, x + t}];

plots = Table[Grid[{{Row[{"time ", t}]},

{Plot[u[x, t], {x, -1, 4}, Exclusions → None, ImageSize → 300,

PlotPoints → 40,

PerformanceGoal → "Quality", PlotStyle → Red,

GridLines → Automatic, GridLinesStyle → LightGray,

PlotRange → {All, {0, 1.1}}]}

}], {t, {0, .1, .2, .3, .4, .5, .6, .7, .8, .9, 1, 1.1}}];

Grid[Partition[plots, 3], Frame → All]

Figure 2.8: Code used
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Figure 2.9: Plots for several times
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2.2.7 Problem 2.4.4

Write the following solutions to the wave equation 𝑢𝑡𝑡 = 𝑢𝑥𝑥 in d’Alembert form (2.82)
which is 𝑢 (𝑡, 𝑥) = 𝑓(𝑥−𝑐𝑡)+𝑓(𝑥+𝑐𝑡)

2 + 1
2𝑐
∫𝑥+𝑐𝑡
𝑥−𝑐𝑡

𝑔 (𝑠) 𝑑𝑠. Hint: What is the appropriate initial data?

(b) cos 2𝑥 sin 2𝑡. (d) 𝑡2 + 𝑥2

Solution

2.2.7.1 Part(b)

Since 𝑐 = 1, the solution becomes

cos 2𝑥 sin 2𝑡 = 𝑓 (𝑥 − 𝑡) + 𝑓 (𝑥 + 𝑡)
2

+
1
2 �

𝑥+𝑡

𝑥−𝑡
𝑔 (𝑠) 𝑑𝑠

Let 𝑓 (𝑥) = 𝑢 (0, 𝑥) = 0. The above solution simplifies to

2 cos 2𝑥 sin 2𝑡 = 1
2 �

𝑥+𝑡

𝑥−𝑡
𝑔 (𝑠) 𝑑𝑠

cos 2𝑥 sin 2𝑡 = 1
4 �

𝑥+𝑡

𝑥−𝑡
𝑔 (𝑠) 𝑑𝑠 (1)

We now need to determine 𝑔 (𝑠) to satisfy the above. By fundamental theorem of calculus

1
4 �

𝑥+𝑡

𝑥−𝑡
𝑔 (𝑠) 𝑑𝑠 =

1
4
�𝑔′ (𝑥 + 𝑡) − 𝑔′ (𝑥 − 𝑡)� (2)

Let 𝑔 (𝑥) = 2 cos 2𝑥. Now we need to verify that this will satisfy equation (1). Expanding
RHS of (2) gives

𝑔′ (𝑥 + 𝑡) − 𝑔′ (𝑥 − 𝑡) = 2 (− sin (2 (𝑥 + 𝑡)) + sin (2 (𝑥 − 𝑡)))
= 2 (sin (2𝑥 − 2𝑡) − sin (2𝑥 + 2𝑡))

But sin (𝐴 − 𝐵) = sin𝐴 cos𝐵− cos𝐴 sin𝐵 and sin (𝐴 + 𝐵) = sin𝐴 cos𝐵+ cos𝐴 sin𝐵. Substitut-
ing these in the above, where 𝐴 = 2𝑥, 𝐵 = 2𝑡, the above becomes

𝑔′ (𝑥 + 𝑡) − 𝑔′ (𝑥 − 𝑡) = 2 (sin 2𝑥 cos 2𝑡 − cos 2𝑥 sin 2𝑡 − (sin 2𝑥 cos 2𝑡 + cos 2𝑥 sin 2𝑡))
= 2 (sin 2𝑥 cos 2𝑡 − cos 2𝑥 sin 2𝑡 − sin 2𝑥 cos 2𝑡 − cos 2𝑥 sin 2𝑡)
= 4 cos 2𝑥 sin 2𝑡 (3)

Substituting (3) into (1) gives

cos 2𝑥 sin 2𝑡 = 1
4
(4 cos 2𝑥 sin 2𝑡)

= cos 2𝑥 sin 2𝑡
Verified.

Hence if initial condition is 𝑓 (𝑥) = 0 and if 𝑔 (𝑥) = 2 cos 2𝑥, then the solution using d’Alem-
bert form will be the one given 𝑢 (𝑡, 𝑥) = 2 cos 2𝑥 sin 2𝑡 which is what we are asked to show.
Therefore

cos 2𝑥 sin 2𝑡 = 1
2
�𝑓 (𝑥 − 𝑡) + 𝑓 (𝑥 + 𝑡)� +

1
2 �

𝑥+𝑡

𝑥−𝑡
𝑔 (𝑠) 𝑑𝑠

𝑢 (0, 𝑥) = 0
𝑢𝑡 (0, 𝑥) = 2 cos 2𝑥

2.2.7.2 Part(d)

Since 𝑐 = 1, the solution becomes

𝑡2 + 𝑥2 =
1
2
�𝑓 (𝑥 − 𝑡) + 𝑓 (𝑥 + 𝑡)� +

1
2 �

𝑥+𝑡

𝑥−𝑡
𝑔 (𝑠) 𝑑𝑠

Let 𝑔 (𝑥) = 𝑢𝑡 (0, 𝑥) = 0. The above reduces to

𝑡2 + 𝑥2 =
1
2
�𝑓 (𝑥 − 𝑡) + 𝑓 (𝑥 + 𝑡)�
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Assuming 𝑓 (𝑥) = 𝑥2, now we will see if this assumption generates the solution needed. The
RHS above now becomes

1
2
�𝑓 (𝑥 − 𝑡) + 𝑓 (𝑥 + 𝑡)� =

1
2
�(𝑥 − 𝑡)2 + (𝑥 + 𝑡)2�

=
1
2
��𝑥2 + 𝑡2 − 2𝑥𝑡� + �𝑥2 + 𝑡2 + 2𝑥𝑡��

=
1
2
�𝑥2 + 𝑡2 + 𝑥2 + 𝑡2�

= 𝑡2 + 𝑥2

Verified.

Hence by setting 𝑔 (𝑥) = 0 and 𝑓 (𝑥) = 𝑥2 the given solution is obtained. Therefore

𝑡2 + 𝑥2 =
1
2
�𝑓 (𝑥 − 𝑡) + 𝑓 (𝑥 + 𝑡)� +

1
2 �

𝑥+𝑡

𝑥−𝑡
𝑔 (𝑠) 𝑑𝑠

𝑢 (0, 𝑥) = 𝑥2

𝑢𝑡 (0, 𝑥) = 0

2.2.8 Problem 2.4.10

Suppose 𝑢 (𝑡, 𝑥) solves the initial value problem 𝑢𝑡𝑡 = 4𝑢𝑥𝑥+sin (𝜔𝑡) cos (𝑥) , 𝑢 (0, 𝑥) = 0, 𝑢𝑡 (0, 𝑥) =
0. Is ℎ (𝑡) = 𝑢 (𝑡, 0) a periodic function?

Solution

The solution is given by eq (2.96) in the textbook (since 𝑓 (𝑥) = 0 and 𝑔 (𝑥) = 0 and 𝑐2 = 4
or 𝑐 = 2) as the following

𝑢 (𝑡, 𝑥) =
1
4 �

𝑡

0
�

𝑥+(𝑡−𝑠)

𝑥−(𝑡−𝑠)
𝐹 �𝑠, 𝑦� 𝑑𝑦𝑑𝑠

But here 𝐹 �𝑠, 𝑦� = sin (𝜔𝑠) cos �𝑦�. Therefore, using the book example 2.19, where we just
need to change sin 𝑥 to cos 𝑥 in the solution shown, then the above integral gives

𝑢 (𝑡, 𝑥) =
1
4 �

𝑡

0
�

𝑥+(𝑡−𝑠)

𝑥−(𝑡−𝑠)
sin (𝜔𝑠) cos �𝑦� 𝑑𝑦𝑑𝑠

=

⎧⎪⎪⎨
⎪⎪⎩

sin(𝜔𝑡)−𝜔 sin 𝑡
1−𝜔2 cos 𝑥 0 < 𝜔 ≠ 1

sin 𝑡−𝑡 cos 𝑡
2 cos 𝑥 𝜔 = 1

At 𝑥 = 0, then

ℎ (𝑡) = 𝑢 (𝑡, 0) =

⎧⎪⎪⎨
⎪⎪⎩

sin(𝜔𝑡)−𝜔 sin 𝑡
1−𝜔2 0 < 𝜔 ≠ 1

sin 𝑡−𝑡 cos 𝑡
2 𝜔 = 1

Therefore ℎ (𝑡) is periodic only if 𝜔 = 𝑝
𝑞 ≠ 1 is a rational number.

2.2.9 Problem 2.4.11

(a)Write down an explicit formula for the solution to initial value problem 𝑢𝑡𝑡 = 4𝑢𝑥𝑥, 𝑢 (0, 𝑥) =
sin 𝑥, 𝑢𝑡 (0, 𝑥) = cos 𝑥 for −∞ < 𝑥 < ∞, 𝑡 ≥ 0. (b) True of False: The solution is a periodic
function of 𝑡. (c) Now solve the forced initial value problem 𝑢𝑡𝑡 = 4𝑢𝑥𝑥 + cos 2𝑡, 𝑢 (0, 𝑥) =
sin 𝑥, 𝑢𝑡 (0, 𝑥) = cos 𝑥 for −∞ < 𝑥 < ∞, 𝑡 ≥ 0. (d) True of False: The forced equation exhibits
resonance. Explain. (e) Does the answer to part (d) change if the forcing function is sin 2𝑡
?

Solution

2.2.9.1 Part (a)

Using d’Alembert formula where 𝑢 (0, 𝑥) = 𝑓 (𝑥) = sin 𝑥 and 𝑢𝑡 (0, 𝑥) = 𝑔 (𝑥) = cos 𝑥, then the
solution is
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𝑢 (𝑡.𝑥) =
1
2
�𝑓 (𝑥 − 𝑐𝑡) + 𝑓 (𝑥 + 𝑐𝑡)� +

1
2𝑐 �

𝑥+𝑐𝑡

𝑥−𝑐𝑡
𝑔 (𝑠) 𝑑𝑠

But 𝑐 = 2, 𝑓 (𝑥) = sin 𝑥, 𝑔 (𝑥) = cos 𝑥, then the above becomes

𝑢 (𝑡, 𝑥) =
1
2
(sin (𝑥 − 2𝑡) + sin (𝑥 + 2𝑡)) + 1

4 �
𝑥+2𝑡

𝑥−2𝑡
cos (𝑠) 𝑑𝑠

=
1
2
(sin (𝑥 − 2𝑡) + sin (𝑥 + 2𝑡)) + 1

4
[sin (𝑠)]𝑥+2𝑡𝑥−2𝑡

=
1
2
(sin (𝑥 − 2𝑡) + sin (𝑥 + 2𝑡)) + 1

4
(sin (𝑥 + 2𝑡) − sin (𝑥 − 2𝑡))

=
1
2

sin (𝑥 − 2𝑡) + 1
2

sin (𝑥 + 2𝑡) + 1
4

sin (𝑥 + 2𝑡) − 1
4

sin (𝑥 − 2𝑡)

=
1
4

sin (𝑥 − 2𝑡) + 3
4

sin (𝑥 + 2𝑡)

2.2.9.2 Part (b)

True.

If we can find a common multiple between 𝑥 − 2𝑡 and 𝑥 + 2𝑡 then the solution is periodic.
i.e. if 𝐹1 (𝑧) has period 𝑝1 and 𝐹2 (𝑧) has period 𝑝2, then if we can find positive integers 𝑎1, 𝑎2
such that 𝑎1𝑝1 = 𝑎2𝑝2 = 𝑟, then 𝑟 is the period of 𝐹1 (𝑥) + 𝐹2 (𝑥).

In this problem, 𝐹1 = sin (𝑥 − 2𝑡) , 𝐹2 = sin (𝑥 + 2𝑡). But both of these have period 2𝜋. Hence
𝑝1 = 2𝜋, 𝑝2 = 2𝜋. Therefore choosing 𝑎1 = 1, 𝑎2 = 1, then 𝑟 = 2𝜋. The period of sum.

2.2.9.3 Part (c)

When the PDE becomes 𝑢𝑡𝑡 = 4𝑢𝑥𝑥 + cos 2𝑡, then we need to add forcing solution part of
the solution. Hence the solution now becomes, using 2.97 in the book as (using 𝑐 = 2)

𝑢 (𝑡, 𝑥) =
1
2
(sin (𝑥 − 2𝑡) + sin (𝑥 + 2𝑡)) + 1

4 �
𝑥+2𝑡

𝑥−2𝑡
cos (𝑠) 𝑑𝑠 + 1

4 �
𝑡

0
�

𝑥+2(𝑡−𝑠)

𝑥−2(𝑡−𝑠)
𝐹 �𝑠, 𝑦� 𝑑𝑦𝑑𝑠

Where 𝐹 �𝑠, 𝑦� = cos (2𝑡). Hence the above becomes (using result from part (a) for the non
forcing part) as

𝑢 (𝑡, 𝑥) =
1
4

sin (𝑥 − 2𝑡) + 3
4

sin (𝑥 + 2𝑡) + 1
4 �

𝑡

0
�

𝑥+2(𝑡−𝑠)

𝑥−2(𝑡−𝑠)
cos (2𝑠) 𝑑𝑦𝑑𝑠

=
1
4

sin (𝑥 − 2𝑡) + 3
4

sin (𝑥 + 2𝑡) + 1
4 �

𝑡

0
cos (2𝑠)�

𝑥+2(𝑡−𝑠)

𝑥−2(𝑡−𝑠)
𝑑𝑦𝑑𝑠

=
1
4

sin (𝑥 − 2𝑡) + 3
4

sin (𝑥 + 2𝑡) + 1
4 �

𝑡

0
cos (2𝑠) ((𝑥 + 2 (𝑡 − 𝑠)) − (𝑥 − 2 (𝑡 − 𝑠))) 𝑑𝑠

=
1
4

sin (𝑥 − 2𝑡) + 3
4

sin (𝑥 + 2𝑡) + 1
4 �

𝑡

0
cos (2𝑠) (𝑥 + 2𝑡 − 2𝑠 − (𝑥 − 2𝑡 + 2𝑠)) 𝑑𝑠

=
1
4

sin (𝑥 − 2𝑡) + 3
4

sin (𝑥 + 2𝑡) + 1
4 �

𝑡

0
cos (2𝑠) (𝑥 + 2𝑡 − 2𝑠 − 𝑥 + 2𝑡 − 2𝑠) 𝑑𝑠

=
1
4

sin (𝑥 − 2𝑡) + 3
4

sin (𝑥 + 2𝑡) + 1
4 �

𝑡

0
cos (2𝑠) (4𝑡 − 4𝑠) 𝑑𝑠

But 1
4
∫𝑡
0

cos (2𝑠) (4𝑡 − 4𝑠) 𝑑𝑠 = sin2 𝑡
2 . Hence the above solution becomes

𝑢 (𝑡, 𝑥) =
1
4

sin (𝑥 − 2𝑡) + 3
4

sin (𝑥 + 2𝑡) + sin2 𝑡
2

Which can also be written as

𝑢 (𝑡, 𝑥) =
1
4

sin (𝑥 − 2𝑡) + 3
4

sin (𝑥 + 2𝑡) + 1
2 �

1
2
−
1
2

cos (2𝑡)�

=
1
4

sin (𝑥 − 2𝑡) + 3
4

sin (𝑥 + 2𝑡) + 1
4
−
1
4

cos (2𝑡)
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2.2.9.4 Part (d)

False. No resonance. Solution is periodic. There is no term in the solution which is being
multiplied by 𝑡. Hence solution do not grow with time which indicates no resonance.

2.2.9.5 Part (e)

If the PDE now becomes 𝑢𝑡𝑡 = 4𝑢𝑥𝑥 + sin 2𝑡, 𝑢 (0, 𝑥) = sin 𝑥, 𝑢𝑡 (0, 𝑥) = cos 𝑥, then the solution
becomes

𝑢 (𝑡, 𝑥) =
1
4

sin (𝑥 − 2𝑡) + 3
4

sin (𝑥 + 2𝑡) + 1
4 �

𝑡

0
�

𝑥+2(𝑡−𝑠)

𝑥−2(𝑡−𝑠)
sin (2𝑠) 𝑑𝑦𝑑𝑠

=
1
4

sin (𝑥 − 2𝑡) + 3
4

sin (𝑥 + 2𝑡) + 1
4 �

𝑡

0
sin (2𝑠)�

𝑥+2(𝑡−𝑠)

𝑥−2(𝑡−𝑠)
𝑑𝑦𝑑𝑠

=
1
4

sin (𝑥 − 2𝑡) + 3
4

sin (𝑥 + 2𝑡) + 1
4 �

𝑡

0
sin (2𝑠) ((𝑥 + 2 (𝑡 − 𝑠)) − (𝑥 − 2 (𝑡 − 𝑠))) 𝑑𝑠

=
1
4

sin (𝑥 − 2𝑡) + 3
4

sin (𝑥 + 2𝑡) + 1
4 �

𝑡

0
sin (2𝑠) (𝑥 + 2𝑡 − 2𝑠 − (𝑥 − 2𝑡 + 2𝑠)) 𝑑𝑠

=
1
4

sin (𝑥 − 2𝑡) + 3
4

sin (𝑥 + 2𝑡) + 1
4 �

𝑡

0
sin (2𝑠) (𝑥 + 2𝑡 − 2𝑠 − 𝑥 + 2𝑡 − 2𝑠) 𝑑𝑠

=
1
4

sin (𝑥 − 2𝑡) + 3
4

sin (𝑥 + 2𝑡) + 1
4 �

𝑡

0
sin (2𝑠) (4𝑡 − 4𝑠) 𝑑𝑠

But 1
4
∫𝑡
0

sin (2𝑠) (4𝑡 − 4𝑠) 𝑑𝑠 = 1
4
(2𝑡 − sin (2𝑡)). Hence the solution now becomes

𝑢 (𝑡, 𝑥) =
1
4

sin (𝑥 − 2𝑡) + 3
4

sin (𝑥 + 2𝑡) + 1
4
(2𝑡 − sin (2𝑡))

We see now that resonance now occurs due to above term 1
2 𝑡 in the solution. This means

as 𝑡 increases, the solution will keep increasing with no limit.

2.2.10 Problem 2.4.13

Let 𝑢 (𝑡, 𝑥) be a classical solution to the wave equation 𝑢𝑡𝑡 = 𝑐2𝑢𝑥𝑥. The total energy

𝐸 (𝑡) = �
∞

−∞

1
2

⎛
⎜⎜⎜⎜⎝�
𝜕𝑢
𝜕𝑡 �

2

+ 𝑐2 �
𝜕𝑢
𝜕𝑥�

2⎞⎟⎟⎟⎟⎠ 𝑑𝑥

Represents the sum of kinetic and potential energies of the displacement 𝑢 (𝑡, 𝑥) at time 𝑡.
Suppose that Δ𝑢 → 0 su�ciently rapidly as 𝑥 → ±∞; more precisely, one can find 𝛼 > 1

2 and

𝐶 (𝑡) > 0 such that |𝑢𝑡 (𝑡, 𝑥)| , |𝑢𝑥 (𝑡, 𝑥)| ≤
𝐶(𝑡)
|𝑥|𝛼

for each fixed 𝑡 and all su�ciently large |𝑥| ≫ 0.
For such solutions establish the law of conservation of energy by showing that 𝐸 (𝑡) is finite
and constant. Hint: You do not need the formula for the solution.

Solution

To show 𝐸 (𝑡) is constant, it is su�cient to show that 𝑑
𝑑𝑡𝐸 (𝑡) = 0. From above

𝑑
𝑑𝑡
𝐸 (𝑡) =

𝑑
𝑑𝑡 �

∞

−∞

1
2
�𝑢2𝑡 + 𝑐2𝑢2𝑥� 𝑑𝑥

Moving 𝑑
𝑑𝑡 inside the integral (assuming solution is piecewise smooth), the above becomes

𝑑
𝑑𝑡
𝐸 (𝑡) = �

∞

−∞

1
2 �

𝑑
𝑑𝑡
𝑢2𝑡 + 𝑐2

𝑑
𝑑𝑡
𝑢2𝑥� 𝑑𝑥

But 𝑑
𝑑𝑡𝑢

2
𝑡 = 2𝑢𝑡𝑢𝑡𝑡 and

𝑑
𝑑𝑡𝑢

2
𝑥 = 2𝑢𝑥𝑢𝑥𝑡. The above becomes

𝑑
𝑑𝑡
𝐸 (𝑡) = �

∞

−∞

1
2
�2𝑢𝑡𝑢𝑡𝑡 + 2𝑐2𝑢𝑥𝑢𝑥𝑡� 𝑑𝑥

= �
∞

−∞
𝑢𝑡𝑢𝑡𝑡 + 𝑐2𝑢𝑥𝑢𝑥𝑡𝑑𝑥
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But 𝑢𝑡𝑡 = 𝑐2𝑢𝑥𝑥 from the PDE itself. The above now simplifies to
𝑑
𝑑𝑡
𝐸 (𝑡) = �

∞

−∞
𝑐2𝑢𝑡𝑢𝑥𝑥 + 𝑐2𝑢𝑥𝑢𝑥𝑡𝑑𝑥

= 𝑐2�
∞

−∞
𝑢𝑡𝑢𝑥𝑥 + 𝑢𝑥𝑢𝑥𝑡𝑑𝑥

But 𝑢𝑡𝑢𝑥𝑥 + 𝑢𝑥𝑢𝑥𝑡 =
𝑑
𝑑𝑥
(𝑢𝑡𝑢𝑥). The above becomes

𝑑
𝑑𝑡
𝐸 (𝑡) = 𝑐2�

∞

−∞

𝑑
𝑑𝑥
(𝑢𝑡𝑢𝑥) 𝑑𝑥

= 𝑐2�
∞

−∞
𝑑 (𝑢𝑡𝑢𝑥)

= 𝑐2 [𝑢𝑡𝑢𝑥]
∞
−∞

But the problem says that as 𝑥 → ±∞ then 𝑢𝑥 → 0. It also say that |𝑢𝑡| is bounded. This shows
that the RHS above is zero. Therefore 𝑑

𝑑𝑡𝐸 (𝑡) = 0 or 𝐸 (𝑡) is constant. The fact constant
is bounded is seen by noting that the problems says that |𝑢𝑥| and |𝑢𝑡| are bounded. This
completes the proof.

2.2.11 Problem 2.4.15

The telegraph equation 𝑢𝑡𝑡 + 𝑎𝑢𝑡 = 𝑐2𝑢𝑥𝑥 with 𝑎 > 0, models the vibration of a string under
frictional damping. (a) Show that, under the decay assumption of exercise 2.4.13, the wave
energy (2.98)

𝐸 (𝑡) = �
∞

−∞

1
2

⎛
⎜⎜⎜⎜⎝�
𝜕𝑢
𝜕𝑡 �

2

+ 𝑐2 �
𝜕𝑢
𝜕𝑥�

2⎞⎟⎟⎟⎟⎠ 𝑑𝑥

of a classical solution is a nonincreasing function of 𝑡. (b) Prove uniqueness of such solutions
to the initial value problem for the telegraph equation.

Solution

2.2.11.1 Part (a)

𝑑
𝑑𝑡
𝐸 (𝑡) =

𝑑
𝑑𝑡 �

∞

−∞

1
2
�𝑢2𝑡 + 𝑐2𝑢2𝑥� 𝑑𝑥

Moving 𝑑
𝑑𝑡 inside the integral (assuming solution is smooth), the above becomes

𝑑
𝑑𝑡
𝐸 (𝑡) = �

∞

−∞

1
2 �

𝑑
𝑑𝑡
𝑢2𝑡 + 𝑐2

𝑑
𝑑𝑡
𝑢2𝑥� 𝑑𝑥

But 𝑑
𝑑𝑡𝑢

2
𝑡 = 2𝑢𝑡𝑢𝑡𝑡 and

𝑑
𝑑𝑡𝑢

2
𝑥 = 2𝑢𝑥𝑢𝑥𝑡. The above becomes

𝑑
𝑑𝑡
𝐸 (𝑡) = �

∞

−∞

1
2
�2𝑢𝑡𝑢𝑡𝑡 + 2𝑐2𝑢𝑥𝑢𝑥𝑡� 𝑑𝑥

= �
∞

−∞
𝑢𝑡𝑢𝑡𝑡 + 𝑐2𝑢𝑥𝑢𝑥𝑡𝑑𝑥

But 𝑢𝑡𝑡 = 𝑐2𝑢𝑥𝑥 − 𝑎𝑢𝑡 from the PDE itself, hence the above simplifies to
𝑑
𝑑𝑡
𝐸 (𝑡) = �

∞

−∞
𝑢𝑡 �𝑐2𝑢𝑥𝑥 − 𝑎𝑢𝑡� + 𝑐2𝑢𝑥𝑢𝑥𝑡𝑑𝑥

= �
∞

−∞
𝑐2𝑢𝑡𝑢𝑥𝑥 − 𝑎𝑢2𝑡 + 𝑐2𝑢𝑥𝑢𝑥𝑡𝑑𝑥

= 𝑐2�
∞

−∞
𝑢𝑡𝑢𝑥𝑥 + 𝑢𝑥𝑢𝑥𝑡𝑑𝑥 − 𝑎�

∞

−∞
𝑢2𝑡 𝑑𝑥
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But ∫
∞

−∞
𝑢𝑡𝑢𝑥𝑥 + 𝑢𝑥𝑢𝑥𝑡𝑑𝑥 =

𝑑
𝑑𝑥
(𝑢𝑡𝑢𝑥), then the above becomes

𝑑
𝑑𝑡
𝐸 (𝑡) = 𝑐2�

∞

−∞

𝑑
𝑑𝑥
(𝑢𝑡𝑢𝑥) 𝑑𝑥 − 𝑎�

∞

−∞
𝑢2𝑡 𝑑𝑥

= 𝑐2�
∞

−∞
𝑑 (𝑢𝑡𝑢𝑥) 𝑑𝑥 − 𝑎�

∞

−∞
𝑢2𝑡 𝑑𝑥

= 𝑐2 [𝑢𝑡𝑢𝑥]
∞
−∞ − 𝑎�

∞

−∞
𝑢2𝑡 𝑑𝑥

As in the previous problem [𝑢𝑡𝑢𝑥]
∞
−∞ = 0 since 𝑢𝑥 → 0 for 𝑥 → ±∞. Then the above now

reduces to
𝑑
𝑑𝑡
𝐸 (𝑡) = −𝑎�

∞

−∞
𝑢2𝑡 𝑑𝑥

But ∫
∞

−∞
𝑢2𝑡 𝑑𝑥 is either zero or positive because the integrand is always positive.

Hence 𝑑
𝑑𝑡𝐸 (𝑡) is negative quantity because 𝑎 > 0. This shows that rate of change of energy

is either zero or negative and can not be positive. This means 𝐸 (𝑡) is non increasing which
is what we are asked to show.

2.2.11.2 Part (b)

Let 𝑢1 (𝑡, 𝑥) and 𝑢2 (𝑡, 𝑥) be two di�erent solutions to same 𝑢𝑡𝑡 + 𝑎𝑢𝑡 = 𝑐2𝑢𝑥𝑥 with same initial
data. Let 𝑤 (𝑡, 𝑥) = 𝑢1 (𝑡, 𝑥) − 𝑢2 (𝑡, 𝑥). Therefore

𝑤𝑡𝑡 + 𝑎𝑤𝑡 = 𝑐2𝑤𝑥𝑥
Applying the energy formula to 𝑤 (𝑡, 𝑥) shows that

𝐸 (𝑡) = �
∞

−∞

1
2
�(𝑤𝑡)

2 + 𝑐2 (𝑤𝑥)
2� 𝑑𝑥

𝑑𝐸
𝑑𝑡

=
𝑑
𝑑𝑡 �

∞

−∞

1
2
�(𝑤𝑡)

2 + 𝑐2 (𝑤𝑥)
2� 𝑑𝑥

Following same steps in problem 2.4.13, the above becomes zero. Which means that 𝑑𝐸𝑑𝑡 = 0
or 𝐸 (𝑡) is constant. But 𝐸 (−∞) = 𝐸 (∞) = 0 which means that 𝐸 (𝑡) = 0. In other words

�
∞

−∞

1
2
�(𝑤𝑡)

2 + 𝑐2 (𝑤𝑥)
2� 𝑑𝑥 = 0

But since the integrand is positive, then this means 𝑤𝑡 = 0 and 𝑤𝑥 = 0. But this implies that
𝑤 (𝑡, 𝑥) is itself a constant.

We now need to show that this constant is zero. i.e. to show that 𝑤 (𝑡, 𝑥) = 0 to finish the
proof.

Since 𝑤 (0, 𝑥) = 0, because this is the initial data, which is the di�erence between the initial
data of the two solutions 𝑢1, 𝑢2 which is the same, hence the di�erence of the initial data
is zero.

But if 𝑤 (0, 𝑥) = 0 and 𝑤 (𝑡, 𝑥) is constant, it must be that 𝑤 (𝑡, 𝑥) = 0 for all time and space.

But since 𝑤 (𝑡, 𝑥) = 𝑢1 (𝑡, 𝑥) = 𝑢2 (𝑡, 𝑥) then

𝑢1 (𝑡, 𝑥) = 𝑢2 (𝑡, 𝑥)

Which mean that the solution to the telegraph PDE is unique.
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2.2.12 Key solution for HW 2
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2.3 HW 3

Local contents
2.3.1 Problem 3.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.2 Problem 3.1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.3 Problem 3.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3.4 Problem 3.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.3.5 Problem 3.2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.3.6 Problem 3.2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.3.7 Problem 3.2.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.3.8 Problem 3.2.25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.3.9 Problem 3.2.27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.3.10 Problem 3.2.30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.3.11 Key solution for HW 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.3.1 Problem 3.1.2

Find all separable eigensolutions to the heat equation 𝑢𝑡 = 𝑢𝑥𝑥 on 0 ≤ 𝑥 ≤ 𝜋 subject to (a)
homogeneous boundary conditions 𝑢 (𝑡, 0) = 0, 𝑢 (𝑡, 𝜋) = 0. (b) mixed boundary conditions
𝑢 (𝑡, 0) = 0, 𝑢𝑥 (𝑡, 𝜋) = 0

solution

Using separation of variables, let 𝑢 (𝑡, 𝑥) = 𝑇 (𝑡) 𝑋 (𝑥). Substituting this into 𝑢𝑡 = 𝑢𝑥𝑥 gives
𝑇′𝑋 = 𝑇𝑋′′. Dividing by 𝑋𝑇 ≠ 0 results in

𝑇′

𝑇
=
𝑋′′

𝑋
= −𝜆

Where 𝜆 is the seperation constant. The above gives the following ODE’s to solve

𝑋′′ (𝑥) + 𝜆𝑋 (𝑥) = 0
𝑇′ (𝑡) + 𝜆𝑇 (𝑡) = 0

The boundary and initial conditions are transfered from the PDE to the ODE as shown
below.

2.3.1.1 Part (a)

Using 𝑢 (𝑡, 0) = 0, 𝑢 (𝑡, 𝜋) = 0. Starting with the spatial ODE, and transferring the boundary
conditions to the ODE results in

𝑋′′ (𝑥) + 𝜆𝑋 (𝑥) = 0
𝑋 (0) = 0
𝑋 (𝜋) = 0

This is an eigenvalue boundary value ODE. The solution to the spatial ODE is

𝑋 (𝑥) = 𝑐1𝑒√−𝜆𝑥 + 𝑐2𝑒−√−𝜆𝑥 (1)

case 𝜆 < 0

Since 𝜆 < 0, then −𝜆 is positive. Let 𝜇 = −𝜆, where 𝜇 is positive. The above solution
becomes

𝑋 (𝑥) = 𝑐1𝑒√𝜇𝑥 + 𝑐2𝑒−√𝜇𝑥

Which can be written as

𝑋 (𝑥) = 𝑐1 cosh �√𝜇𝑥� + 𝑐2 sinh �√𝜇𝑥�
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At 𝑥 = 0 this gives

0 = 𝑐1
The solution now reduces to 𝑋 (𝑥) = 𝑐2 sinh �√𝜇𝑥�. At 𝑥 = 𝜋 this gives

0 = 𝑐2 sinh �√𝜇𝜋�
But sinh is only zero when its argument is zero. Since 𝜇 ≠ 0, then the only choice is that
𝑐2 = 0 also. But this gives trivial solution therefore 𝜆 < 0 is not an eigenvalue.

case 𝜆 = 0

In this case the solution is 𝑋 (𝑥) = 𝑐1 + 𝑐2𝑥. At 𝑥 = 0 this gives 0 = 𝑐1. The solution becomes
𝑋 (𝑥) = 𝑐2𝑥. At 𝑥 = 𝜋, this gives 0 = 𝑐2𝜋. Therefore 𝑐2 = 0 also. This also gives the trivial
solution. Hence 𝜆 = 0 is not an eigenvalue.

case 𝜆 > 0

The solution in this case is

𝑋 (𝑥) = 𝑐1𝑒√−𝜆𝑥 + 𝑐2𝑒−√−𝜆𝑥

= 𝑐1𝑒𝑖√𝜆𝑥 + 𝑐2𝑒−𝑖√𝜆𝑥

Which can be rewritten as (the constants 𝑐1, 𝑐2 below will be di�erent than the above 𝑐1, 𝑐2,
but kept the same name for simplicity).

𝑋 (𝑥) = 𝑐1 cos �√𝜆𝑥� + 𝑐2 sin �√𝜆𝑥�

At 𝑥 = 0 this gives

0 = 𝑐1
The solution now reduces to

𝑋 (𝑥) = 𝑐2 sin �√𝜆𝑥�

At 𝑥 = 𝜋 this gives

0 = 𝑐2 sin �√𝜆𝜋�

non-trivial solution requires that sin �√𝜆𝜋� = 0 which implies that √𝜆𝜋 = 𝑛𝜋, 𝑛 = 1, 2, 3,⋯.
Hence eigenvalues are

𝜆𝑛 = 𝑛2 𝑛 = 1, 2, 3,⋯

And corresponding eigenfunctions are

𝑋𝑛 (𝑥) = sin (𝑛𝑥) 𝑛 = 1, 2, 3,⋯

Now that the eigenvalues and eigenfunction are found, the time ODE can be solved. The
time ODE now becomes

𝑇′ (𝑡) + 𝑛2𝑇 (𝑡) = 0

This is linear first order ode. The solution is 𝑇𝑛 (𝑡) = 𝐶𝑛𝑒−𝑛
2𝑡. Therefore the fundamental

solution is

𝑢𝑛 (𝑡, 𝑥) = 𝐶𝑛𝑇𝑛 (𝑡) 𝑋𝑛 (𝑥)

= 𝐶𝑛𝑒−𝑛
2𝑡 sin (𝑛𝑥)

Since this is a linear PDE, a linear combination of all fundamental solutions is a solution.
Hence the general solution is

𝑢 (𝑡, 𝑥) =
∞
�
𝑛=1

𝐶𝑛𝑒−𝑛
2𝑡 sin (𝑛𝑥)

The constant 𝐶𝑛 can be found if initial conditions are given.
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2.3.1.2 Part (b)

Using 𝑢 (𝑡, 0) = 0, 𝑢𝑥 (𝑡, 𝜋) = 0. Starting with the spatial ODE, and transferring the boundary
condition to 𝑋, it becomes

𝑋′′ (𝑥) + 𝜆𝑋 (𝑥) = 0
𝑋 (0) = 0
𝑋′ (𝜋) = 0

This is an eigenvalue boundary value problem. The solution to the spatial ODE is

𝑋 (𝑥) = 𝑐1𝑒√−𝜆𝑥 + 𝑐2𝑒−√−𝜆𝑥 (1)

case 𝜆 < 0

Since 𝜆 < 0, then −𝜆 is positive. Let 𝜇 = −𝜆, where 𝜇 is positive. The solution becomes

𝑋 (𝑥) = 𝑐1𝑒√𝜇𝑥 + 𝑐2𝑒−√𝜇𝑥

The above can be written as

𝑋 (𝑥) = 𝑐1 cosh �√𝜇𝑥� + 𝑐2 sinh �√𝜇𝑥�

At 𝑥 = 0 this gives

0 = 𝑐1
Hence the solution now becomes

𝑋 (𝑥) = 𝑐2 sinh �√𝜇𝑥�
Taking derivative gives

𝑋′ (𝑥) = 𝑐2√𝜇 cosh �√𝜇𝑥�
And at 𝑥 = 𝜋 the above gives

0 = 𝑐2√𝜇 cosh �√𝜇𝜋�
But 𝜇 ≠ 0 and cosh is never zero for any argument. Hence the only choice is that 𝑐2 = 0.
This gives the trivial solution. Hence 𝜆 < 0 is not an eigenvalue.

case 𝜆 = 0

In this case the solution is 𝑋 (𝑥) = 𝑐1 + 𝑐2𝑥. At 𝑥 = 0 this results in 0 = 𝑐1. The solution
becomes 𝑋 (𝑥) = 𝑐2𝑥. Hence 𝑋′ (𝑥) = 𝑐2. At 𝑥 = 𝜋, this implies 0 = 𝑐2𝜋. Therefore 𝑐2 = 0 also.
This gives the trivial solution. Hence 𝜆 = 0 is not an eigenvalue.

case 𝜆 > 0

The solution in this case is

𝑋 (𝑥) = 𝑐1𝑒√−𝜆𝑥 + 𝑐2𝑒−√−𝜆𝑥

= 𝑐1𝑒𝑖√𝜆𝑥 + 𝑐2𝑒−𝑖√𝜆𝑥

Which can be rewritten as (the constants 𝑐1, 𝑐2 below will be di�erent than the above 𝑐1, 𝑐2,
but kept the same name for simplicity).

𝑋 (𝑥) = 𝑐1 cos �√𝜆𝑥� + 𝑐2 sin �√𝜆𝑥�

At 𝑥 = 0 this gives

0 = 𝑐1
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The solution now reduces to

𝑋 (𝑥) = 𝑐2 sin �√𝜆𝑥�

Therefore

𝑋′ (𝑥) = √𝜆𝑐2 cos �√𝜆𝑥�

At 𝑥 = 𝜋

0 = √𝜆𝑐2 cos �√𝜆𝜋�

Non-trivial solution requires that cos �√𝜆𝜋� = 0, which implies √𝜆𝜋 =
𝑛𝜋
2 , 𝑛 = 1, 3, 5,⋯. or

√𝜆 =
𝑛
2 , 𝑛 = 1, 3, 5,⋯. Therefore the eigenvalues are

𝜆𝑛 = �
𝑛
2
�
2

𝑛 = 1, 3, 5,⋯

Or

𝜆𝑛 = �
2𝑛 − 1
2 �

2

𝑛 = 1, 2, 3,⋯

Few eigenvalues are 𝜆 = �14 ,
9
4 ,

25
4 ,⋯�. The corresponding eigenfunctions are

𝑋𝑛 (𝑥) = sin �2𝑛−12 𝑥� 𝑛 = 1, 2, 3,⋯

Now that the eigenvalues and eigenfunction are found, the time ODE is solved. The time
ODE now becomes

𝑇′ (𝑡) + �
2𝑛 − 1
2 �

2

𝑇 (𝑡) = 0

This is linear first order ode. The solution is 𝑇𝑛 (𝑡) = 𝐶𝑛𝑒
−� 2𝑛−12 �

2
𝑡
. Therefore the fundamental

solution is

𝑢𝑛 (𝑡, 𝑥) = 𝐶𝑛𝑇𝑛 (𝑡) 𝑋𝑛 (𝑥)

= 𝐶𝑛𝑒
−� 2𝑛−12 �

2
𝑡 sin �

2𝑛 − 1
2

𝑥�

A linear combination of all fundamental solution is a solution (due to linearity). Hence
the general solution is

𝑢 (𝑡, 𝑥) =
∞
�
𝑛=1

𝐶𝑛𝑒
−� 2𝑛−12 �

2
𝑡 sin �

2𝑛 − 1
2

𝑥�

2.3.2 Problem 3.1.5

(a) Find the real eigensolutions to the damped heat equation 𝑢𝑡 = 𝑢𝑥𝑥 − 𝑢. (b) Which
solutions satisfy the periodic boundary conditions 𝑢 (𝑡, −𝜋) = 𝑢 (𝑡, 𝜋) , 𝑢𝑥 (𝑡, −𝜋) = 𝑢𝑥 (𝑡, 𝜋) ?

solution

2.3.2.1 Part (a)

Using separation of variables, Let 𝑢 (𝑡, 𝑥) = 𝑇 (𝑡) 𝑋 (𝑥). Substituting this into 𝑢𝑡 + 𝑢 = 𝑢𝑥𝑥
gives 𝑇′𝑋 + 𝑇𝑋 = 𝑇𝑋′′. Dividing by 𝑋𝑇 ≠ 0 gives

𝑇′

𝑇
+ 1 =

𝑋′′

𝑋
= −𝜆

Where 𝜆 is the separation constant. This gives the following ODE’s to solve

𝑋′′ (𝑥) + 𝜆𝑋 (𝑥) = 0
𝑇′ (𝑡) + (𝜆 + 1) 𝑇 (𝑡) = 0

Eigenfunctions are solutions to the spatial ODE.

𝑋 (𝑥) = 𝑐1𝑒√−𝜆𝑥 + 𝑐2𝑒−√−𝜆𝑥 (1)
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To determine the actual eigenfunctions and eigenvalues, boundary conditions are used.
This is part b below.

2.3.2.2 Part (b)

Using 𝑢 (𝑡, −𝜋) = 𝑢 (𝑡, 𝜋) , 𝑢𝑥 (𝑡, −𝜋) = 𝑢𝑥 (𝑡, 𝜋). Starting with the spatial ODE above, and
transferring the boundary condition to 𝑋 gives

𝑋′′ (𝑥) + 𝜆𝑋 (𝑥) = 0
𝑋 (−𝜋) = 𝑋 (𝜋)
𝑋′ (−𝜋) = 𝑋′ (𝜋)

This is an eigenvalue boundary value problem. The solution is

𝑋 (𝑥) = 𝑐1𝑒√−𝜆𝑥 + 𝑐2𝑒−√−𝜆𝑥 (1)

case 𝜆 < 0

Since 𝜆 < 0, then −𝜆 is positive. Let 𝜇 = −𝜆, where 𝜇 is now positive. The solution (1)
becomes

𝑋 (𝑥) = 𝑐1𝑒√𝜇𝑥 + 𝑐2𝑒−√𝜇𝑥

The above can be written as

𝑋 (𝑥) = 𝑐1 cosh �√𝜇𝑥� + 𝑐2 sinh �√𝜇𝑥� (2)

Applying first B.C. 𝑋 (−𝜋) = 𝑋 (𝜋) using (2) gives

𝑐1 cosh �√𝜇𝜋� + 𝑐2 sinh �−√𝜇𝜋� = 𝑐1 cosh �√𝜇𝜋� + 𝑐2 sinh �√𝜇𝜋�

𝑐2 sinh �−√𝜇𝜋� = 𝑐2 sinh �√𝜇𝜋�
But sinh is only zero when its argument is zero which is not the case here. Therefore the
above implies that 𝑐2 = 0 as only possibility to satisfy the above equation. The solution (2)
now reduces to

𝑋 (𝑥) = 𝑐1 cosh �√𝜇𝑥� (3)

Taking derivative

𝑋′ (𝑥) = 𝑐1√𝜇 sinh �√𝜇𝑥� (4)

Applying the second BC 𝑋′ (−𝜋) = 𝑋′ (𝜋) gives

𝑐1√𝜇 sinh �−√𝜇𝜋� = 𝑐1√𝜇 sinh �√𝜇𝑥�
But sinh is only zero when its argument is zero which is not the case here. Therefore
the above implies that 𝑐1 = 0. This means a trivial solution. Therefore 𝜆 < 0 is not an
eigenvalue.

case 𝜆 = 0

In this case the solution is 𝑋 (𝑥) = 𝑐1 + 𝑐2𝑥. Applying first BC 𝑋 (−𝜋) = 𝑋 (𝜋) gives

𝑐1 − 𝑐2𝜋 = 𝑐1 + 𝑐2𝜋
−𝑐2𝜋 = 𝑐2𝜋

This gives 𝑐2 = 0. The solution now becomes

𝑋 (𝑥) = 𝑐1
Therefore 𝑋′ (𝑥) = 0. Applying the second boundary conditions 𝑋′ (−𝜋) = 𝑋′ (𝜋) is now
satisfied for any 𝑐1, since it gives (0 = 0). Therefore 𝜆 = 0 is an eigenvalue with eigenfunction
𝑋0 (0) = 1 (selecting 𝑐1 = 1 since any arbitrary constant will work).

case 𝜆 > 0

The solution in this case is

𝑋 (𝑥) = 𝑐1𝑒√−𝜆𝑥 + 𝑐2𝑒−√−𝜆𝑥

= 𝑐1𝑒𝑖√𝜆𝑥 + 𝑐2𝑒−𝑖√𝜆𝑥

Which can be rewritten as (the constants 𝑐1, 𝑐2 below will be di�erent than the above 𝑐1, 𝑐2,
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but kept the same name for simplicity).

𝑋 (𝑥) = 𝑐1 cos �√𝜆𝑥� + 𝑐2 sin �√𝜆𝑥� (5)

Applying first B.C. 𝑋 (−𝜋) = 𝑋 (𝜋) using the above gives

𝑐1 cos �√𝜆𝜋� + 𝑐2 sin �−√𝜆𝜋� = 𝑐1 cos �√𝜆𝜋� + 𝑐2 sin �√𝜆𝜋�

𝑐2 sin �−√𝜆𝜋� = 𝑐2 sin �√𝜆𝜋�

There are two choices here. Either 𝑐2 = 0 or √𝜆𝜋 = 𝑛𝜋, 𝑛 = 1, 2, 3,⋯. Using the second
choice for now, which implies that

𝜆𝑛 = 𝑛2 𝑛 = 1, 2, 3,⋯

And now we will now look to see what happens using the second BC with the above choice.
The solution (5) now becomes

𝑋 (𝑥) = 𝑐1 cos (𝑛𝑥) + 𝑐2 sin (𝑛𝑥) 𝑛 = 1, 2, 3,⋯

Therefore

𝑋′ (𝑥) = −𝑐1𝑛 sin (𝑛𝑥) + 𝑐2𝑛 cos (𝑛𝑥)
Applying the second BC 𝑋′ (−𝜋) = 𝑋′ (𝜋) using the above gives

𝑐1𝑛 sin (𝑛𝜋) + 𝑐2𝑛 cos (𝑛𝜋) = −𝑐1𝑛 sin (𝑛𝜋) + 𝑐2𝑛 cos (𝑛𝜋)
𝑐1𝑛 sin (𝑛𝜋) = −𝑐1𝑛 sin (𝑛𝜋)

0 = 0

Since 𝑛 is integer.

Therefore this means that using the choice 𝜆𝑛 = 𝑛2 satisfied both boundary conditions with
𝑐2 ≠ 0, 𝑐1 ≠ 0. This means the solution (5) is

𝑋𝑛 (𝑥) = 𝐴𝑛 cos (𝑛𝑥) + 𝐵𝑛 sin (𝑛𝑥) 𝑛 = 1, 2, 3,⋯

The above says that there are two eigenfunctions in this case. They are

𝑋𝑛 (𝑥) =

⎧⎪⎪⎨
⎪⎪⎩

cos (𝑛𝑥)
sin (𝑛𝑥)

Recalling that there is also a zero eigenvalue with constant as its eigenfunction, then the
complete set of eigenfunctions is

𝑋𝑛 (𝑥) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
cos (𝑛𝑥)
sin (𝑛𝑥)

Now that the eigenvalues are found, the solution to the time ODE can be found. The time
ODE from above was found to be

𝑇′ (𝑡) + (𝜆 + 1) 𝑇 (𝑡) = 0

For the zero eigenvalue case, the above reduces to 𝑇′ (𝑡) + 𝑇 (𝑡) = 0 which has the solution
𝑇0 (𝑡) = 𝐶0𝑒−𝑡. For non zero eigenvalues 𝜆𝑛 = 𝑛2, the ODE becomes 𝑇′ (𝑡) + �𝑛2 + 1� 𝑇 (𝑡) = 0,

whose solution is 𝑇0 (𝑡) = 𝐶𝑛𝑒
−�𝑛2+1�𝑡.

Putting all the above together, gives the fundamental solution as

𝑢𝑛 (𝑡, 𝑥) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

𝐶0𝑒−𝑡

𝐶𝑛 cos (𝑛𝑥) 𝑒−�𝑛
2+1�𝑡 𝑛 = 1, 2, 3,⋯

𝐵𝑛 sin (𝑛𝑥) 𝑒−�𝑛
2+1�𝑡 𝑛 = 1, 2, 3,⋯

The complete solution is the sum of the above solutions

𝑢 (𝑡, 𝑥) = 𝐶0𝑒−𝑡 +
∞
�
𝑛=1

𝑒−�𝑛
2+1�𝑡 (𝐶𝑛 cos (𝑛𝑥) + 𝐵𝑛 sin (𝑛𝑥))

The constants 𝐶0, 𝐶𝑛, 𝐵𝑛 can be found from initial conditions.
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2.3.3 Problem 3.2.1

(d) Find the Fourier series of the following functions 𝑓 (𝑥) = 𝑥2 (using −𝜋 ≤ 𝑥 ≤ 𝜋 )

solution

The Fourier series is given by

𝑥2 ∼
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos �
2𝜋
𝑇
𝑛𝑥� + 𝑎𝑛 sin �

2𝜋
𝑇
𝑛𝑥�

Where 𝑇 is the period of 𝑓 (𝑥). Taking this period to be 2𝜋, the above simplifies to

𝑥2 ∼
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos (𝑛𝑥) + 𝑏𝑛 sin (𝑛𝑥)

The function 𝑥2 is even, hence all 𝑏𝑛 are zero. The above becomes

𝑥2 ∼
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos (𝑛𝑥) (1)

But

𝑎0 =
1
𝜋 �

𝜋

−𝜋
𝑥2𝑑𝑥

=
2
𝜋 �

𝜋

0
𝑥2𝑑𝑥

=
2
𝜋 �

𝑥3

3 �
𝜋

0

=
2
3𝜋
𝜋3

=
2
3
𝜋2

And

𝑎𝑛 =
1
𝜋 �

𝜋

−𝜋
𝑥2 cos (𝑛𝑥) 𝑑𝑥

=
2
𝜋 �

𝜋

0
𝑥2 cos (𝑛𝑥) 𝑑𝑥 (1A)

Let 𝐼 = ∫𝜋
0
𝑥2 cos (𝑛𝑥) 𝑑𝑥. Using integration by parts ∫𝑢𝑑𝑣 = 𝑢𝑣 − ∫𝑣𝑑𝑢. Let 𝑢 = 𝑥2, 𝑑𝑣 =

cos (𝑛𝑥). Then 𝑑𝑢 = 2𝑥, 𝑣 = sin(𝑛𝑥)
𝑛 . Hence

𝐼 = �𝑥2
sin (𝑛𝑥)
𝑛 �

𝜋

0
− 2�

𝜋

0
𝑥

sin (𝑛𝑥)
𝑛

𝑑𝑥

=

0

�������������������1
𝑛
�𝑥2 sin (𝑛𝑥)�

𝜋

0
−
2
𝑛 �

𝜋

0
𝑥 sin (𝑛𝑥) 𝑑𝑥

= −
2
𝑛 �

𝜋

0
𝑥 sin (𝑛𝑥) 𝑑𝑥
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Integration by parts again. 𝑢 = 𝑥, 𝑑𝑣 = sin (𝑛𝑥), then 𝑑𝑢 = 1, 𝑣 = − cos(𝑛𝑥)
𝑛 . The above becomes

𝐼 = −
2
𝑛

⎛
⎜⎜⎜⎜⎝�−𝑥

cos (𝑛𝑥)
𝑛 �

𝜋

0
−�

𝜋

0
−

cos (𝑛𝑥)
𝑛

𝑑𝑥
⎞
⎟⎟⎟⎟⎠

= −
2
𝑛 �
−
1
𝑛
[𝑥 cos (𝑛𝑥)]𝜋0 +

1
𝑛 �

𝜋

0
cos (𝑛𝑥) 𝑑𝑥�

=
2
𝑛2 �

[𝑥 cos (𝑛𝑥)]𝜋0 −�
𝜋

0
cos (𝑛𝑥) 𝑑𝑥�

=
2
𝑛2

⎛
⎜⎜⎜⎜⎝[𝜋 cos (𝑛𝜋)] − �

sin (𝑛𝑥)
𝑛 �

𝜋

0

⎞
⎟⎟⎟⎟⎠

=
2𝜋
𝑛2

cos (𝑛𝜋)

=
2𝜋
𝑛2
(−1)𝑛

The above is 𝐼. Substituting this result back in (1A) gives

𝑎𝑛 =
2
𝜋
𝐼

=
2
𝜋
2𝜋
𝑛2
(−1)𝑛

=
4
𝑛2
(−1)𝑛

Therefore (1) becomes

𝑥2 ∼
1
3
𝜋2 + 4

∞
�
𝑛=1

(−1)𝑛

𝑛2
cos (𝑛𝑥)

To verify this result, the Fourier series was compared to 𝑥2 for an increasing number of
terms to see if it converged to 𝑥2. Here is the result. This shows the convergence is fast,
after 6 terms only the approximation (in red color) is almost the same as the original
function 𝑥2.
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Figure 2.10: Fourier series of 𝑥2
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fs[x_, max_] :=
1

3
π
2
+ 4 Sum

(-1)n

n2
Cos[n x], {n, 1, max}

makePlot[n_] := Plot[{x^2, fs[x, n]}, {x, -Pi, Pi},

PlotStyle → { Gray, Red}, AxesLabel → {"x", None},

PlotLabel → Row[{"Fourier series approx using ", n, " terms"}],

ImageSize → 300

];

Grid[Partition[Table[makePlot[n], {n, {1, 2, 3, 4, 5, 6}}], 2],

Frame → All]

Figure 2.11: Code used for the above plot

the following plot shows how the Fourier series approximation to 𝑥2 when it is periodically
extended to outside [−𝜋, 𝜋]. This uses the range [−3𝜋, 3𝜋] by adding one period to left and
one period to the right.

In[ ]:= fs[x_, max_] :=
1

3
π
2
+ 4 Sum

(-1)n

n2
Cos[n x], {n, 1, max}

fx[x_] := Piecewise[{

{(x + 2 Pi)^2, x < -Pi},

{x^2, -Pi < x < Pi},

{(x - 2 Pi)^2, x > Pi}}];

makePlot[n_] := Plot[{fx[x], fs[x, n]}, {x, -3 Pi, 3 Pi},

PlotStyle → { Gray, Red}, AxesLabel → {"x", None},

PlotLabel → Row[{"Fourier series approx using ", n, " terms"}],

ImageSize → 300

];

Grid[Partition[Table[makePlot[n], {n, {1, 2, 3, 4, 5, 6}}], 2],

Frame → All]

Figure 2.12: Code used for the above plot

2.3.4 Problem 3.2.2

(d) Find the Fourier series of the following function 𝑓 (𝑥) =

⎧⎪⎪⎨
⎪⎪⎩
𝑥 |𝑥| < 𝜋

2
0 otherwise

solution

This is plot showing 𝑓 (𝑥)

Out[ ]=
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f(x)

Figure 2.13: Plot of 𝑓(𝑥)

The Fourier series is given by

𝑓 (𝑥) ∼
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos �
2𝜋
𝑇
𝑛𝑥� + 𝑎𝑛 sin �

2𝜋
𝑇
𝑛𝑥�

Where 𝑇 is the period of the function to be approximated. Taking this period to be 2𝜋, the
above simplifies to

𝑓 (𝑥) ∼
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos (𝑛𝑥) + 𝑏𝑛 sin (𝑛𝑥)
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The function 𝑓 (𝑥) is odd then all 𝑎𝑛 will zero. The above simplifies to

𝑓 (𝑥) ∼
∞
�
𝑛=1

𝑏𝑛 sin (𝑛𝑥)

Where

𝑏𝑛 =
1
𝜋 �

𝜋

−𝜋
𝑓 (𝑥) sin (𝑛𝑥) 𝑑𝑥

=
1
𝜋 �

𝜋
2

−𝜋
2

𝑥 sin (𝑛𝑥) 𝑑𝑥

But 𝑥 is odd and sin (𝑥) is odd, hence the product is even. The above simplifies to

𝑏𝑛 =
2
𝜋 �

𝜋
2

0
𝑥 sin (𝑛𝑥) 𝑑𝑥

Using integration by parts ∫𝑢𝑑𝑣 = 𝑢𝑣 − ∫𝑣𝑑𝑢. Let 𝑥 = 𝑢, 𝑑𝑢 = 1, 𝑑𝑣 = sin (𝑛𝑥) , 𝑣 = − cos(𝑛𝑥)
𝑛 ,

the above gives

𝑏𝑛 =
2
𝜋

⎛
⎜⎜⎜⎝
−1
𝑛
[𝑥 cos (𝑛𝑥)]

𝜋
2
0 +

1
𝑛 �

𝜋
2

0
cos (𝑛𝑥) 𝑑𝑥

⎞
⎟⎟⎟⎠

=
2
𝜋𝑛

⎛
⎜⎜⎜⎝− [𝑥 cos (𝑛𝑥)]

𝜋
2
0 +�

𝜋
2

0
cos (𝑛𝑥) 𝑑𝑥

⎞
⎟⎟⎟⎠

=
2
𝜋𝑛 �

− �
𝜋
2

cos �𝑛𝜋
2
�� +

1
𝑛
[sin (𝑛𝑥)]

𝜋
2
0 �

=
2
𝜋𝑛 �

− �
𝜋
2

cos �𝑛𝜋
2
�� +

1
𝑛 �

sin �𝑛𝜋
2
���

=
2
𝜋𝑛2

�sin �𝑛𝜋
2
� −

𝑛𝜋
2

cos �𝑛𝜋
2
��

Therefore the Fourier series becomes

𝑓 (𝑥) ∼
∞
�
𝑛=1

2
𝜋𝑛2 �

sin �𝑛𝜋
2
� −

1
2
𝑛𝜋 cos �𝑛𝜋

2
�� sin (𝑛𝑥)

To verify this result, the Fourier series was compared to 𝑓 (𝑥) for increasing number of
terms to see if it converges to 𝑥2. Here is the result. This shows the convergence is fast, but
not as fast as last problem due to jump discontinuity in 𝑓 (𝑥). 10 terms are used below.
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Figure 2.14: Fourier series approximation of 𝑓(𝑥)

In[ ]:= fs[x_, max_] := Sum
2

n2 π
Sin

n π

2
 -

1

2
n π Cos

n π

2
 Sin[n x], {n, 1, max};

f[x_] := Piecewise[{{x, Abs[x] < Pi/ 2}, {0, True}}];

makePlot[n_] := Plot[{f[x], fs[x, n]}, {x, -Pi, Pi},

PlotStyle → {Blue, Red}, AxesLabel → {"x", None},

PlotLabel → Row[{"Fourier series approx using ", n, " terms"}],

ImageSize → 300,

Ticks → {Range[-Pi, Pi, Pi/ 2], Automatic}

];

Grid[Partition[Table[makePlot[n], {n, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}}], 2],

Frame → All]

Figure 2.15: Code used for the above plot

the following plot shows how the Fourier series approximate 𝑓 (𝑥) when it is periodically
extended to outside [−𝜋, 𝜋]. This uses the range [−3𝜋, 3𝜋] by adding one more period to
left and to the right.
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Figure 2.16: Fourier series of periodic extension 𝑓(𝑥)
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In[ ]:= fs[x_, max_] := Sum
2

n2 π
Sin

n π

2
 -

1

2
n π Cos

n π

2
 Sin[n x], {n, 1, max};

f[x_] := Piecewise[{

{0, x < -5/ 2 Pi},

{x + 2 Pi, -5/ 2 Pi < x < -3/ 2 Pi},

{0, -3/ 2 Pi < x < -Pi/ 2},

{x, -Pi/ 2 < x < Pi/ 2},

{0, Pi/ 2 < x < 3/ 2 Pi},

{x - 2 Pi, 2/ 3 Pi < x < 5/ 2 Pi},

{0, 5/ 2 Pi < x < 3 Pi}}];

makePlot[n_] := Plot[{f[x], fs[x, n]}, {x, -3 Pi, 3 Pi},

PlotStyle → { Blue, Red}, AxesLabel → {"x", None},

PlotLabel → Row[{"Fourier series approx using ", n, " terms"}],

ImageSize → 300,

Ticks → {Range[-Pi, Pi, Pi/ 2], Automatic}

];

Grid[Partition[Table[makePlot[n], {n, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}}], 2],

Frame → All]

Figure 2.17: Code used for the above plot

2.3.5 Problem 3.2.3

Find the Fourier series of sin2 𝑥 and cos2 𝑥 without directly calculating the Fourier coe�-
cients.

solution

Using the known trig identity

sin2 𝑥 = 1
2
−
1
2

cos (2𝑥) (1)

And comparing the the above to the Fourier series expansion

sin2 𝑥 = 𝑎0
2
+ (𝑎1 cos (𝑥) + 𝑎2 cos (2𝑥) + 𝑎3 cos (3𝑥) +⋯) + (𝑏1 sin (𝑥) + 𝑏2 sin (2𝑥) + 𝑏3 sin (3𝑥) +⋯)

(A)

Shows that 𝑎0
2 =

1
2 and 𝑎2 =

−1
2 and all other terms are zero. Because the Fourier series is

unique for a function, then (1) is the Fourier series for sin2 𝑥.

Similarly, Using the known trig identity

cos2 𝑥 = 1
2
+
1
2

cos (2𝑥) (2)

And comparing the the above to the Fourier series expansion (A), shows that 𝑎0
2 =

1
2 and

𝑎2 =
1
2 and all other terms are zero. Therefore (2) is the Fourier series expansion for cos2 𝑥.

2.3.6 Problem 3.2.6

Graph the 2𝜋 periodic extension of each of the following functions (h) 𝑓 (𝑥) = 1
𝑥 . Which

extension are continuous? Di�erentiable?

solution

2.3.6.1 Part (h)

The original function 𝑓 (𝑥) = 1
𝑥 is always taken from −𝜋 ≤ 𝑥 ≤ 𝜋 (before extending it

periodically). At 𝑥 = 0 the function is not defined.
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Out[ ]=
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Figure 2.18: Plot of 𝑓(𝑥) = 1
𝑥

Periodically extending it, it becomes (showing one extra period to the left and right) then
following

Out[ ]=
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Figure 2.19: Plot of periodic extension of 𝑓(𝑥) = 1
𝑥

In[ ]:= f[x_] := Piecewise[{

{1/(x + 2 Pi), x < -Pi},

{1/ x, -Pi < x < Pi},

{1/(x - 2 Pi), Pi < x}

}];

Plot[f[x], {x, -3 Pi, 3 Pi}, Ticks → {Range[-3 Pi, 3 Pi, Pi], Automatic},

AxesLabel → {"x", "1/x extended"},

GridLines → {Range[-3 Pi, 3 Pi, Pi], Automatic},

GridLinesStyle → LightGray, PlotStyle → Red, AspectRatio → Automatic]

Figure 2.20: Code for the above plot

Looking at the above plot shows the extension is not continuous and also not Di�erentiable
due to jump discontinuities.

2.3.7 Problem 3.2.9

Suppose that 𝑓 (𝑥) is periodic with period 𝑇 (using 𝑇 instead of 𝑙 as in book as it is more

clear). Prove that for any 𝑎 (a) ∫
𝑎+𝑇

𝑎
𝑓 (𝑥) 𝑑𝑥 = ∫

𝑇

0
𝑓 (𝑥) 𝑑𝑥. (b) ∫

𝑇

0
𝑓 (𝑥 + 𝑎) 𝑑𝑥 = ∫

𝑇

0
𝑓 (𝑥) 𝑑𝑥

solution

2.3.7.1 Part (a)

�
𝑎+𝑇

𝑎
𝑓 (𝑥) 𝑑𝑥 −�

𝑇

0
𝑓 (𝑥) 𝑑𝑥 =

∫𝑎+𝑇
𝑎

𝑓(𝑥)𝑑𝑥

�����������������������������������������
��

𝑇

𝑎
𝑓 (𝑥) 𝑑𝑥 +�

𝑎+𝑇

𝑇
𝑓 (𝑥) 𝑑𝑥� −

∫𝑇
0
𝑓(𝑥)𝑑𝑥

�������������������������������������
��

𝑎

0
𝑓 (𝑥) 𝑑𝑥 +�

𝑇

𝑎
𝑓 (𝑥) 𝑑𝑥�

Simplifying the RHS above gives

�
𝑎+𝑇

𝑎
𝑓 (𝑥) 𝑑𝑥 −�

𝑇

0
𝑓 (𝑥) 𝑑𝑥 = �

𝑎+𝑇

𝑇
𝑓 (𝑥) 𝑑𝑥 −�

𝑎

0
𝑓 (𝑥) 𝑑𝑥 (1)

50



2.3. HW 3 CHAPTER 2. HWS

But

�
𝑎+𝑇

𝑇
𝑓 (𝑥) 𝑑𝑥 = �

𝑎

0
𝑓 (𝑥 + 𝑇) 𝑑𝑥 (2)

To show how Eq(2) was derived: Let 𝑢 = 𝑥 − 𝑇. Then 𝑑𝑢 = 𝑑𝑥. When 𝑥 = 𝑇 then 𝑢 = 0.
When 𝑥 = 𝑎 + 𝑇 then 𝑢 = 𝑎. Hence ∫

𝑎+𝑇

𝑇
𝑓 (𝑥) 𝑑𝑥 = ∫

𝑎

0
𝑓 (𝑢 + 𝑇) 𝑑𝑢. But 𝑢 is arbitrary integral

variable. Renaming it back to 𝑥 gives that ∫
𝑎+𝑇

𝑇
𝑓 (𝑥) 𝑑𝑥 = ∫

𝑎

0
𝑓 (𝑥 + 𝑇) 𝑑𝑥.

Now, substituting (2) back into RHS of (1) gives

�
𝑎+𝑇

𝑎
𝑓 (𝑥) 𝑑𝑥 −�

𝑇

0
𝑓 (𝑥) 𝑑𝑥 = �

𝑎

0
𝑓 (𝑥 + 𝑇) 𝑑𝑥 −�

𝑎

0
𝑓 (𝑥) 𝑑𝑥

= �
𝑎

0
𝑓 (𝑥 + 𝑇) − 𝑓 (𝑥) 𝑑𝑥

But since 𝑓 (𝑥) is periodic, then 𝑓 (𝑥 + 𝑇) = 𝑓 (𝑥). Therefore the RHS above is zero.

�
𝑎+𝑇

𝑎
𝑓 (𝑥) 𝑑𝑥 −�

𝑇

0
𝑓 (𝑥) 𝑑𝑥 = 0

�
𝑎+𝑇

𝑎
𝑓 (𝑥) 𝑑𝑥 = �

𝑇

0
𝑓 (𝑥) 𝑑𝑥

Which is what the problem is asking to show.

2.3.7.2 Part (b)

Starting by rewriting ∫
𝑇

0
𝑓 (𝑥 + 𝑎) 𝑑𝑥 as the following. Let 𝑢 = 𝑥 + 𝑎. Hence 𝑑𝑢 = 𝑑𝑥. When

𝑥 = 0, 𝑢 = 𝑎 and when 𝑥 = 𝑇, 𝑢 = 𝑎 + 𝑇. The integral becomes ∫
𝑎+𝑇

𝑎
𝑓 (𝑢) 𝑑𝑢. But now 𝑢 is

arbitrary integration variable. Renaming is back to 𝑥 then we obtain that

�
𝑇

0
𝑓 (𝑥 + 𝑎) 𝑑𝑥 = �

𝑎+𝑇

𝑎
𝑓 (𝑥) 𝑑𝑥 (1)

Now, to show that main result, considering

�
𝑇

0
𝑓 (𝑥 + 𝑎) 𝑑𝑥 −�

𝑇

0
𝑓 (𝑥) 𝑑𝑥 = �

𝑎+𝑇

𝑎
𝑓 (𝑥) 𝑑𝑥 −�

𝑇

0
𝑓 (𝑥) 𝑑𝑥

Where in the above, (1) was used to obtain RHS. The above can now be written as

�
𝑇

0
𝑓 (𝑥 + 𝑎) 𝑑𝑥 −�

𝑇

0
𝑓 (𝑥) 𝑑𝑥 =

∫𝑎+𝑇
𝑎

𝑓(𝑥)𝑑𝑥

�����������������������������������������
��

𝑇

𝑎
𝑓 (𝑥) 𝑑𝑥 +�

𝑇+𝑎

𝑇
𝑓 (𝑥) 𝑑𝑥� −�

𝑇

0
𝑓 (𝑥) 𝑑𝑥

But ∫
𝑇+𝑎

𝑇
𝑓 (𝑥) 𝑑𝑥 = ∫

𝑎

0
𝑓 (𝑥) 𝑑𝑥 since 𝑓 (𝑥) is periodic with period 𝑇. The above now becomes

�
𝑇

0
𝑓 (𝑥 + 𝑎) 𝑑𝑥 −�

𝑇

0
𝑓 (𝑥) 𝑑𝑥 = ��

𝑇

𝑎
𝑓 (𝑥) 𝑑𝑥 +�

𝑎

0
𝑓 (𝑥) 𝑑𝑥� −�

𝑇

0
𝑓 (𝑥) 𝑑𝑥

= �
𝑇

0
𝑓 (𝑥) 𝑑𝑥 −�

𝑇

0
𝑓 (𝑥) 𝑑𝑥

= 0

Therefore ∫
𝑇

0
𝑓 (𝑥 + 𝑎) 𝑑𝑥 = ∫

𝑇

0
𝑓 (𝑥) 𝑑𝑥 which is what the problem is asking to show.

2.3.8 Problem 3.2.25

(a) Sketch the 2𝜋 periodic half-wave 𝑓 (𝑥) =

⎧⎪⎪⎨
⎪⎪⎩

sin 𝑥 0 < 𝑥 ≤ 𝜋
0 −𝜋 ≤ 𝑥 < 0

. (b) Find its Fourier

series. (c) Graph the first five Fourier sums and compare the function. (d) Discuss conver-
gence of the Fourier series.

solution
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2.3.8.1 Part (a)

Out[ ]=

-π -π

2

π

2
π

x

0.2

0.4

0.6

0.8

1.0

f(x)

Figure 2.21: Plot of 𝑓(𝑥)

In[ ]:= f[x_] := Piecewise[{{Sin[x], 0 < x ≤ Pi}, {0, -Pi ≤ x < 0}}];

Plot[f[x], {x, -Pi, Pi}, Ticks → {Range[-Pi, Pi, Pi/ 2], Automatic},

AxesLabel → {"x", "f(x)"},

GridLines → {Range[-Pi, Pi, Pi/ 2], Automatic},

GridLinesStyle → LightGray, PlotStyle → Red]

Figure 2.22: Code for the above plot

2.3.8.2 Part (b)

The Fourier series is given by

𝑓 (𝑥) ∼
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos �
2𝜋
𝑇
𝑛𝑥� + 𝑎𝑛 sin �

2𝜋
𝑇
𝑛𝑥�

Where 𝑇 is the period of the function to be approximated. Taking this period to be 2𝜋, the
above simplifies to

𝑓 (𝑥) ∼
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos (𝑛𝑥) + 𝑏𝑛 sin (𝑛𝑥)

Hence

𝑎0 =
1
𝜋 �

𝜋

−𝜋
𝑓 (𝑥) 𝑑𝑥

=
1
𝜋 �

𝜋

0
sin (𝑥) 𝑑𝑥

=
1
𝜋
[− cos (𝑥)]𝜋0

=
−1
𝜋
[cos (𝑥)]𝜋0

=
−1
𝜋
[cos (𝜋) − 1]

=
−1
𝜋
[−1 − 1]

=
2
𝜋

And

𝑎𝑛 =
1
𝜋 �

𝜋

−𝜋
𝑓 (𝑥) cos (𝑛𝑥) 𝑑𝑥

=
1
𝜋 �

𝜋

0
sin (𝑥) cos (𝑛𝑥) 𝑑𝑥
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For 𝑛 = 1

𝑎𝑛 =
1
𝜋 �

𝜋

0
sin (𝑥) cos (𝑥) 𝑑𝑥

= 0

And for 𝑛 > 1

𝑎𝑛 =
1
𝜋 �

𝜋

0
sin (𝑥) cos (𝑛𝑥) 𝑑𝑥

Using sin𝐴 cos𝐵 = 1
2
(sin (𝐴 − 𝐵) + sin (𝐴 + 𝑏)), then sin (𝑥) cos (𝑛𝑥) = 1

2
(sin (𝑥 − 𝑛𝑥) + sin (𝑥 + 𝑛𝑥)).

The above becomes

𝑎𝑛 =
1
2𝜋 �

𝜋

0
sin (𝑥 − 𝑛𝑥) + sin (𝑥 + 𝑛𝑥) 𝑑𝑥

=
1
2𝜋 ��

𝜋

0
sin (𝑥 − 𝑛𝑥) 𝑑𝑥 +�

𝜋

0
sin (𝑥 + 𝑛𝑥) 𝑑𝑥�

=
1
2𝜋 �

−
1

1 − 𝑛
[cos (𝑥 − 𝑛𝑥)]𝜋0 −

1
1 + 𝑛

[cos (𝑥 + 𝑛𝑥)]𝜋0 �

=
−1
2𝜋 �

1
1 − 𝑛

[cos (𝜋 − 𝑛𝜋) − 1] + 1
1 + 𝑛

[cos (𝜋 − 𝑛𝜋) − 1]�

But cos (𝜋 − 𝑛𝜋) = − cos (𝑛𝜋). The above becomes

𝑎𝑛 =
−1
2𝜋 �

1
1 − 𝑛

[− cos (𝑛𝜋) − 1] + 1
1 + 𝑛

[− cos (𝑛𝜋) − 1]�

=
1
2𝜋 �

cos (𝑛𝜋) + 1
1 − 𝑛

+
cos (𝑛𝜋) + 1

1 + 𝑛 �

=
1
2𝜋 �

(1 + 𝑛) (cos (𝑛𝜋) + 1) + (1 − 𝑛) (cos (𝑛𝜋) + 1)
(1 − 𝑛) (1 + 𝑛) �

=
1
2𝜋

⎛
⎜⎜⎜⎜⎝
(1 + 𝑛) (cos (𝑛𝜋) + 1) + (1 − 𝑛) (cos (𝑛𝜋) + 1)

�1 − 𝑛2�

⎞
⎟⎟⎟⎟⎠

=
1

2𝜋 �1 − 𝑛2�
((1 + 𝑛) (cos (𝑛𝜋) + 1) + (1 − 𝑛) (cos (𝑛𝜋) + 1))

=
1

2𝜋 �1 − 𝑛2�
(2 cos (𝜋𝑛) + 2)

=
1

𝜋 �1 − 𝑛2�
(cos (𝜋𝑛) + 1)

=
1 + (−1)𝑛

𝜋 �1 − 𝑛2�

For odd 𝑛 = 3, 5,⋯ then 𝑎𝑛 = 0. For even 𝑛 the above can be written as

𝑎𝑛 =
2

𝜋 �1 − 𝑛2�
𝑛 = 2, 4, 6,⋯

Now 𝑏𝑛 is found

𝑏𝑛 =
1
𝜋 �

𝜋

−𝜋
𝑓 (𝑥) sin (𝑛𝑥) 𝑑𝑥

=
1
𝜋 �

𝜋

0
sin (𝑥) sin (𝑛𝑥) 𝑑𝑥
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Consider case 𝑛 = 1 first. The above gives

𝑏1 =
1
𝜋 �

𝜋

0
sin2 (𝑥) 𝑑𝑥

=
1
𝜋 �

𝜋

0

1
2
−
1
2

cos (2𝑥) 𝑑𝑥

=
1
𝜋 ��

𝜋

0

1
2
𝑑𝑥 −

1
2 �

𝜋

0
cos (2𝑥) 𝑑𝑥�

=
1
𝜋

⎛
⎜⎜⎜⎜⎝
1
2
𝜋 −

1
2 �

sin (2𝑥)
2 �

𝜋

0

⎞
⎟⎟⎟⎟⎠

=
1
2

For 𝑛 > 1

𝑏𝑛 =
1
𝜋 �

𝜋

0
sin 𝑥 sin (𝑛𝑥) 𝑑𝑥

=
1
𝜋

sin (𝑛𝜋)
𝑛2 − 1

= 0

Therefore the Fourier series is

𝑓 (𝑥) ∼
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos (𝑛𝑥) + 𝑏𝑛 sin (𝑛𝑥)

=
1
𝜋
+
1
2

sin (𝑥) + 2
𝜋

∞
�

𝑛=2,4,6,⋯

1
1 − 𝑛2

cos (𝑛𝑥)

=
1
𝜋
+
1
2

sin (𝑥) + 2
𝜋

∞
�
𝑛=1

1
1 − (2𝑛)2

cos (2𝑛𝑥)

2.3.8.3 Part (c)
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Figure 2.23: Plot of Fourier series approximation and 𝑓(𝑥)
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In[ ]:= fs[x_, max_] :=
1

π
+
1

2
Sin[x] +

2

π
Sum

1

1 - (2 n)2
Cos[2 n x], {n, 1, max};

f[x_] := Piecewise[{{Sin[x], 0 < x ≤ Pi}, {0, -Pi ≤ x < 0}}];

makePlot[n_] := Plot[{f[x], fs[x, n]}, {x, -Pi, Pi},

PlotStyle → { Blue, Red}, AxesLabel → {"x", None},

PlotLabel → Row[{"Fourier series approx using ", n, " terms"}],

ImageSize → 300,

Ticks → {Range[-Pi, Pi, Pi/ 2], Automatic}

];

Grid[Partition[Table[makePlot[n], {n, 0, 5}], 2],

Frame → All]

Figure 2.24: Code for the above plot

2.3.8.4 Part (d)

The function 𝑓 (𝑥) is piecewise 𝐶1 continuous over −𝜋 ≤ 𝑥 ≤ 𝜋. Therefore the 2𝜋 periodic
extension is also piecewise 𝐶1 continuous over all 𝑥. There are no jump discontinues (only
corner points). The Fourier series converges to 𝑓 (𝑥) at each 𝑥 ∈ ℜ. (If there was a jump
discontinuity at some 𝑥, then the Fourier series will converge to the average of 𝑓 (𝑥) at that
𝑥, but this is not the case here).

2.3.9 Problem 3.2.27

(a) Find the Fourier series of 𝑓 (𝑥) = 𝑒𝑥. (b) For which values of 𝑥 does the Fourier series
converges? Is the convergence uniform? (c) Graph the function it converges to.

solution

2.3.9.1 Part (a)

For generality, the Fourier series for 𝑒𝑎𝑥 is found, then at the end 𝑎 is set to be one. It is
assumed the period is 2𝜋.

𝑒𝑎𝑥 ∼
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos �
2𝜋
𝑇
𝑛𝑥� + 𝑏𝑛 sin �

2𝜋
𝑇
𝑛𝑥�

But 𝑇 = 2𝜋 and the above becomes

𝑒𝑎𝑥 ∼
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos (𝑛𝑥) + 𝑏𝑛 sin (𝑛𝑥)

Where

𝑎0 =
1
𝑇
2

�
𝑇
2

−𝑇
2

𝑓 (𝑥) 𝑑𝑥

=
1
𝜋 �

𝜋

−𝜋
𝑒𝑎𝑥𝑑𝑥

=
1
𝜋 �

𝑒𝑎𝑥

𝑎 �
𝜋

−𝜋

=
1
𝜋𝑎

(𝑒𝑎𝜋 − 𝑒−𝑎𝜋)

But 𝑒𝑎𝜋−𝑒−𝑎𝜋

2 = sinh (𝑎𝜋) hence the above simplifies to

𝑎0 =
2
𝜋𝑎

sinh (𝑎𝜋)
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And for 𝑛 > 0

𝑎𝑛 =
1
𝑇
2

�
𝑇
2

−𝑇
2

𝑓 (𝑥) cos �
2𝜋
𝑇
𝑛𝑥� 𝑑𝑥

=
1
𝜋 �

𝜋

−𝜋
𝑒𝑎𝑥 cos (𝑛𝑥) 𝑑𝑥 (1)

Let 𝐼 = ∫
𝜋

−𝜋
𝑒𝑎𝑥 cos (𝑛𝑥) 𝑑𝑥. Using integration by parts, ∫𝑢𝑑𝑣 = 𝑢𝑣−∫𝑣𝑑𝑢. Let 𝑢 = cos 𝑛𝑥, 𝑑𝑣 =

𝑒𝑎𝑥 then 𝑣 = 𝑒𝑎𝑥

𝑎 , 𝑑𝑢 = −𝑛 sin (𝑛𝑥). Hence

𝐼 = 𝑢𝑣 −�𝑣𝑑𝑢

= �cos (𝑛𝑥) 𝑒
𝑎𝑥

𝑎 �
𝜋

−𝜋
+
𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥

= �cos (𝑛𝜋) 𝑒
𝑎𝜋

𝑎
− cos (𝑛𝜋) 𝑒

−𝑎𝜋

𝑎 � +
𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥

= (−1)𝑛 �
𝑒𝑎𝜋 − 𝑒−𝑎𝜋

𝑎 � +
𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥

=
2 (−1)𝑛

𝑎 �
𝑒𝑎𝜋 − 𝑒−𝑎𝜋

2 � +
𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥

=
2 (−1)𝑛

𝑎
sinh (𝑎𝜋) + 𝑛

𝑎 �
𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥

Applying integration by parts again on the integral above. Let 𝑢 = sin 𝑛𝑥, 𝑑𝑣 = 𝑒𝑎𝑥 then
𝑣 = 𝑒𝑎𝑥

𝑎 , 𝑑𝑢 = 𝑛 cos (𝑛𝑥) and the above becomes

𝐼 =
2 (−1)𝑛

𝑎
sinh (𝑎𝜋) + 𝑛

𝑎

⎛
⎜⎜⎜⎜⎝�sin 𝑛𝑥

𝑒𝑎𝑥

𝑎 �
𝜋

−𝜋
−
𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 cos (𝑛𝑥) 𝑑𝑥

⎞
⎟⎟⎟⎟⎠

=
2 (−1)𝑛

𝑎
sinh (𝑎𝜋) + 𝑛

𝑎

⎛
⎜⎜⎜⎜⎜⎝
1
𝑎

0

���������������������������������������(sin (𝑛𝜋) 𝑒𝑎𝜋 + sin (𝑛𝜋) 𝑒−𝑎𝜋) − 𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 cos (𝑛𝑥) 𝑑𝑥

⎞
⎟⎟⎟⎟⎟⎠

=
2 (−1)𝑛

𝑎
sinh (𝑎𝜋) − 𝑛

2

𝑎2 �
𝜋

−𝜋
𝑒𝑎𝑥 cos (𝑛𝑥) 𝑑𝑥

But ∫
𝜋

−𝜋
𝑒𝑎𝑥 cos (𝑛𝑥) 𝑑𝑥 = 𝐼, the original integral we are solving for. Hence solving for 𝐼 from

the above gives gives

𝐼 =
2 (−1)𝑛

𝑎
sinh (𝑎𝜋) − 𝑛

2

𝑎2
𝐼

𝐼 +
𝑛2

𝑎2
𝐼 =

2 (−1)𝑛

𝑎
sinh (𝑎𝜋)

𝐼 �1 +
𝑛2

𝑎2 �
=
2 (−1)𝑛

𝑎
sinh (𝑎𝜋)

𝐼 =
2(−1)𝑛

𝑎 sinh (𝑎𝜋)

1 + 𝑛2

𝑎2

=
2𝑎 (−1)𝑛 sinh (𝑎𝜋)

𝑎2 + 𝑛2
(2)

Using (2) in (1) gives

𝑎𝑛 =
1
𝜋 �

𝜋

−𝜋
𝑒𝑎𝑥 cos (𝑛𝑥) 𝑑𝑥

=
𝑎
𝜋
2 (−1)𝑛 sinh (𝑎𝜋)

𝑎2 + 𝑛2
(3)

Now we will do the same to find 𝑏𝑛

𝑏𝑛 =
1
𝑇
2

�
𝑇
2

−𝑇
2

𝑓 (𝑥) sin �
2𝜋
𝑇
𝑛𝑥� 𝑑𝑥

=
1
𝜋 �

𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥 (4)

56



2.3. HW 3 CHAPTER 2. HWS

Let 𝐼 = ∫
𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥. Using integration by parts, ∫𝑢𝑑𝑣 = 𝑢𝑣−∫𝑣𝑑𝑢. Let 𝑢 = sin (𝑛𝑥) , 𝑑𝑣 =

𝑒𝑎𝑥 then 𝑣 = 𝑒𝑎𝑥

𝑎 , 𝑑𝑢 = 𝑛 cos (𝑛𝑥). Hence

𝐼 = 𝑢𝑣 −�𝑣𝑑𝑢

= �sin (𝑛𝑥)
𝑒𝑎𝑥

𝑎 �
𝜋

−𝜋
−
𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 cos (𝑛𝑥) 𝑑𝑥

=

0

�����������������������������������������
�sin (𝑛𝜋)

𝑒𝑎𝜋

𝑎
− sin (𝑛𝜋) 𝑒

−𝑎𝜋

𝑎 � −
𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 cos (𝑛𝑥) 𝑑𝑥

= −
𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 cos (𝑛𝑥) 𝑑𝑥

Now we apply integration by parts again on the integral above. Let 𝑢 = cos 𝑛𝑥, 𝑑𝑣 = 𝑒𝑎𝑥

then 𝑣 = 𝑒𝑎𝑥

𝑎 , 𝑑𝑢 = −𝑛 sin (𝑛𝑥) and the above becomes

𝐼 = −
𝑛
𝑎

⎛
⎜⎜⎜⎜⎝�cos (𝑛𝑥) 𝑒

𝑎𝑥

𝑎 �
𝜋

−𝜋
+
𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥

⎞
⎟⎟⎟⎟⎠

= −
𝑛
𝑎 �

1
𝑎
(cos (𝑛𝜋) 𝑒𝑎𝜋 − cos (𝑛𝜋) 𝑒−𝑎𝜋) + 𝑛

𝑎 �
𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥�

= −
𝑛
𝑎 �

1
𝑎

cos (𝑛𝜋) (𝑒𝑎𝜋 − 𝑒−𝑎𝜋) + 𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥�

= −
𝑛
𝑎 �

2
𝑎

cos (𝑛𝜋) �
𝑒𝑎𝜋 − 𝑒−𝑎𝜋

2 � +
𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥�

= −
𝑛
𝑎 �

2
𝑎

cos (𝑛𝜋) sinh (𝑎𝜋) + 𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥�

= −
2𝑛
𝑎2
(−1)𝑛 sinh (𝑎𝜋) − 𝑛

2

𝑎2 �
𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥

But ∫
𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥 = 𝐼. Hence solving for 𝐼 gives

𝐼 = −
2𝑛
𝑎2
(−1)𝑛 sinh (𝑎𝜋) − 𝑛

2

𝑎2
𝐼

𝐼 +
𝑛2

𝑎2
𝐼 = −

2𝑛
𝑎2
(−1)𝑛 sinh (𝑎𝜋)

𝐼 �1 +
𝑛2

𝑎2 �
= −

2𝑛
𝑎2
(−1)𝑛 sinh (𝑎𝜋)

𝐼 = −
2𝑛
𝑎2
(−1)𝑛 sinh (𝑎𝜋)

1 + 𝑛2

𝑎2

𝐼 = −
2𝑛 (−1)𝑛

𝑎2 + 𝑛2
sinh (𝑎𝜋) (5)

Using (5) in (4) gives

𝑏𝑛 =
1
𝜋 �

𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥

= −
1
𝜋
2𝑛 (−1)𝑛

𝑎2 + 𝑛2
sinh (𝑎𝜋)
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Now that we found 𝑎0, 𝑎𝑛, 𝑏𝑛 then the Fourier series is

𝑒𝑎𝑥 ∼
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos (𝑛𝑥) + 𝑏𝑛 sin (𝑛𝑥)

∼
2
𝜋𝑎 sinh (𝑎𝜋)

2
+

∞
�
𝑛=1

𝑎
𝜋
2 (−1)𝑛 sinh (𝑎𝜋)

𝑎2 + 𝑛2
cos (𝑛𝑥) − 1

𝜋
2𝑛 (−1)𝑛

𝑎2 + 𝑛2
sinh (𝑎𝜋) sin (𝑛𝑥)

∼
sinh (𝑎𝜋)

𝜋𝑎
+
1
𝜋

sinh (𝑎𝜋)
∞
�
𝑛=1

2 (−1)𝑛

𝑎2 + 𝑛2
(𝑎 cos (𝑛𝑥) − 𝑛 sin (𝑛𝑥))

∼ sinh (𝑎𝜋) �
1
𝜋𝑎

+
1
𝜋

∞
�
𝑛=1

2 (−1)𝑛

𝑎2 + 𝑛2
(𝑎 cos (𝑛𝑥) − 𝑛 sin (𝑛𝑥))�

∼
2 sinh (𝑎𝜋)

𝜋 �
1
2𝑎
+

∞
�
𝑛=1

(−1)𝑛

𝑎2 + 𝑛2
(𝑎 cos (𝑛𝑥) − 𝑛 sin (𝑛𝑥))�

When 𝑎 = 1 the above becomes

𝑒𝑥 ∼
2 sinh (𝜋)

𝜋 �
1
2
+

∞
�
𝑛=1

(−1)𝑛

1 + 𝑛2
(cos (𝑛𝑥) − 𝑛 sin (𝑛𝑥))�

2.3.9.2 Part (b)

The 2𝜋 periodic extended function shows it piecewise 𝐶1 over all points except at the
points 𝑥 = ⋯ ,−5𝜋, −3𝜋, 𝜋, 3𝜋, 5𝜋,⋯. These are points at the ends of the original domain.
At these points, there is a jump discontinuity. Therefore the Fourier series at these points
will converge to the average of the 2𝜋 periodic extended 𝑒𝑥. Due to the jump discontinuity
Gibbs phenomena shows up at these points. This also means that the convergence is
not uniform.

2.3.9.3 Part (c)

The following is a plot showing the convergence using di�erent number of terms in the
above sum. This shows the Fourier series converges to 𝑒𝑥 at all points inside the interval,
except at the end points 𝑥 = −𝜋, 𝜋 where it converges to the average of 𝑓 (𝑥).
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Figure 2.25: Plot of Fourier series approximation and 𝑓(𝑥)
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In[ ]:= padIt2[v_, f_List] := AccountingForm[v, f, NumberSigns → {"", ""},

NumberPadding → {" ", " "}, SignPadding → True];

fs[x_, max_] :=
2 Sinh[Pi]

Pi

1

2
+ Sum

(-1)n

1 + n2
(Cos[n x] - n Sin[n x]), {n, 1, max} ;

f[x_] := Exp[x];

fp[x_] := Piecewise[{{f[x + 2 Pi], x ≤ -Pi}, {f[x], -Pi < x < Pi}, {f[x - 2 Pi], x > Pi}}];

makePlot[n_] := Plot[{f[x], fs[x, n]}, {x, -Pi, Pi},

PlotStyle → { Blue, Red}, AxesLabel → {"x", None},

PlotLabel → Row[{"Fourier series approx using ", n, " terms"}],

ImageSize → 300,

Ticks → {Range[-Pi, Pi, Pi], Automatic},

PlotRange → {{-1.1 Pi, 1.1 Pi}, {-4, 25}},

GridLines → {Range[-Pi, Pi, Pi], Automatic}, GridLinesStyle → LightGray

];

Grid[Partition[Table[makePlot[n], {n, {0, 3, 6, 9, 12, 15}}], 2],

Frame → All]

Figure 2.26: Code for the above plot

2.3.10 Problem 3.2.30

Suppose 𝑎𝑘, 𝑏𝑘 are the Fourier coe�cients of the function 𝑓 (𝑥). (a) To which function does
the Fourier series

𝑎0
2
+

∞
�
𝑘=1

𝑎𝑘 cos (2𝑘𝑥) + 𝑏𝑘 sin (2𝑘𝑥)

Converge? (b) Test your answer with the Fourier series (3.37) for 𝑓 (𝑥) = 𝑥.

𝑥 ∼ 2 �sin 𝑥 −
sin 2𝑥
2

+
sin 3𝑥
3

−
sin 4𝑥
4

+⋯� (3.37)

solution

2.3.10.1 Part (a)

Let

𝑔 (𝑥) ∼
𝑎0
2
+

∞
�
𝑘=1

𝑎𝑘 cos (2𝑘𝑥) + 𝑏𝑘 sin (2𝑘𝑥)

𝑓 (𝑥) ∼
𝑎0
2
+

∞
�
𝑘=1

𝑎𝑘 cos (𝑘𝑥) + 𝑏𝑘 sin (𝑘𝑥)

Then 𝑔 (𝑥) has as its period half the period of 𝑓 (𝑥). This is because when 2𝑘𝑥 = 2𝜋
𝑇 𝑘𝑥 then

𝑇 = 𝜋 and when 𝑘𝑥 = 2𝜋
𝑇 𝑘𝑥 then 𝑇 = 2𝜋.

Therefore, if 𝑓 (𝑥) has fundamental period as −𝜋 < 𝑥 < 𝜋, then 𝑔 (𝑥) has a fundamental
period as −𝜋2 < 𝑥 <

𝜋
2 . And since 𝑓 (𝑥) , 𝑔 (𝑥) have the same Fourier series coe�cients, then

𝑔 (𝑥) converges to 2𝑓 (𝑥) but only over −𝜋2 < 𝑥 <
𝜋
2 .

2.3.10.2 Part (b)

Let 𝑓 (𝑥) = 𝑥 whose we are given that its Fourier series is

𝑓 (𝑥) ∼ 2 �sin 𝑥 −
sin 2𝑥
2

+
sin 3𝑥
3

−
sin 4𝑥
4

+⋯�

= 2 sin 𝑥 − sin 2𝑥 + 2
3

sin 3𝑥 − 1
2

sin 4𝑥 +⋯

The above says that 𝑎𝑘 = 0 and 𝑏𝑘 =
2(−1)𝑘+1

𝑘 . Hence

𝑓 (𝑥) ∼
∞
�
𝑘=1

2 (−1)𝑘+1

𝑘
sin (𝑘𝑥)
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Therefore 𝑔 (𝑥) will converge to

𝑔 (𝑥) ∼
𝑎0
2
+

∞
�
𝑘=1

𝑎𝑘 cos (2𝑘𝑥) + 𝑏𝑘 sin (2𝑘𝑥)

=
∞
�
𝑘=1

2 (−1)𝑘+1

𝑘
sin (2𝑘𝑥)

= 2 (+1) sin (2𝑥) + −2
2

sin (4𝑥) + 2
(+1)
3

sin (6𝑥) + −2
4

sin (8𝑥) +⋯

= 2 sin (2𝑥) − sin (4𝑥) + 2
3

sin (6𝑥) − 1
2

sin (8𝑥) +⋯

Over −𝜋2 < 𝑥 <
𝜋
2 . To verify the above, we will now find 𝑎𝑘, 𝑏𝑘 directly for 𝑥 but using 𝑇 = 𝜋

and not 𝑇 = 2𝜋 to see if the above Fourier series is obtained.

𝑎0 =
2
𝜋 �

𝜋
2

−𝜋
2

𝑥𝑑𝑥

= 0

And

𝑎𝑘 =
2
𝜋 �

𝜋
2

−𝜋
2

𝑥 cos (2𝑘𝑥) 𝑑𝑥

Since 𝑥 is odd function and cos is even, the product is odd. Hence 𝑎𝑘 = 0.

𝑏𝑘 =
2
𝜋 �

𝜋
2

−𝜋
2

𝑥 sin (2𝑘𝑥) 𝑑𝑥

=
4
𝜋 �

𝜋
2

0
𝑥 sin (2𝑘𝑥) 𝑑𝑥

=
4
𝜋 �

−𝑘𝜋 cos (𝑘𝜋) + sin (𝑘𝜋)
4𝑘2 �

=
1
𝜋𝑘2

(−𝑘𝜋 cos (𝑘𝜋))

=
−1
𝑘

cos (𝑘𝜋)

=
−1
𝑘
(−1)𝑘

=
(−1)𝑘+1

𝑘
Therefore

𝑔 (𝑥) ∼
𝑎0
2
+

∞
�
𝑘=1

𝑎𝑘 cos (2𝑘𝑥) + 𝑏𝑘 sin (2𝑘𝑥)

=
∞
�
𝑘=1

(−1)𝑘

𝑘
sin (2𝑘𝑥)
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2.3.11 Key solution for HW 3
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2.4 HW 4
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2.4.1 Problem 3.2.34

If 𝑓 (𝑥) is odd, is 𝑓′ (𝑥) (i) even? (ii) odd? (iii) neither? (iv) could be either?

solution

Answer is (i), even.

Proof: Since 𝑓 (𝑥) is odd, then by definition

𝑓 (𝑥) = −𝑓 (−𝑥)

For all 𝑥 in the domain of 𝑓 (𝑥). Taking derivatives w.r.t. gives

�𝑓 (𝑥)�
′
= �−𝑓 (−𝑥)�

′

Applying the chain rule to RHS gives −𝑓′ (−𝑥) (−1) = 𝑓′ (−𝑥) and the LHS gives 𝑓′ (𝑥). Hence
the above becomes

𝑓′ (𝑥) = 𝑓′ (−𝑥)

But by definition 𝑔 (−𝑥) = 𝑔 (𝑥) implies an even function. Hence the says that 𝑓′ (𝑥) is an
even function.

2.4.2 Problem 3.2.37

True or False. (a) If 𝑓 (𝑥) is odd, its 2𝜋 periodic extension is odd. (b) if the 2𝜋 periodic
extension of 𝑓 (𝑥) is odd, then 𝑓 (𝑥) is odd.

solution

2.4.2.1 Part a

True.

To show this, will use an illustration. In this illustration, and to reduce confusion, let 𝑓 (𝑥)
represents the original odd function defined over −𝜋 ≤ 𝑥 ≤ 𝜋 and let 𝑔 (𝑥) represents the
2𝜋 periodic extension of 𝑓 (𝑥). For illustration, used the odd function 𝑓 (𝑥) = 𝑥.

x axis
0 π 2π 3π−π−2π−3π

x

f(x) g(x) (periodic extension of f(x)

Figure 2.27: Showing 𝑓(𝑥) and its 2𝜋 extension
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To show that 𝑔 (𝑥) is odd, we pick any point 𝑥 and now we need to show that 𝑔 (−𝑥) = −𝑔 (𝑥)
or 𝑔 (𝑥) = −𝑔 (−𝑥).

On the right side of the 𝑥 axis, 𝑔 (𝑥) = 𝑓 (𝑥 − 𝑛 (2𝜋)) where 𝑛 is positive integer due to the
2𝜋 extension. In the above illustration 𝑛 = 1 but it can be any positive 𝑛. Let the point
𝑥 − 𝑛 (2𝜋) = 𝑧. Hence now we have the following diagram

x axis
0 π 2π 3π−π−2π−3π

x
z

z = x− n(2π)

2nπ

g(x)
f(z)

f(z) = g(x)

Figure 2.28: showing 𝑔(𝑥) = 𝑓(𝑥 − 2𝑛𝜋)

Where 𝑓 (𝑧) = 𝑔 (𝑥). But we are given that 𝑓 (𝑥) is odd. Hence 𝑓 (𝑧) = −𝑓 (−𝑧). On the negative
side of the 𝑥 axis, we do the same we did on the positive side. Since the left side of 𝑓 (𝑥)
was also 2𝜋 extended, then 𝑔 (−𝑥) = 𝑓 (−𝑥 + 𝑛 (2𝜋)) = 𝑓 (−𝑧)

x axis
0 π 2π 3π−π−2π−3π x

z

z = x− n(2π)

2nπ

g(x)
f(z)

f(z) = g(x)

−z

f(−z)

−x

g(−x)

f(−z) = g(−x)

2nπ

Figure 2.29: showing 𝑔(−𝑥) = 𝑓(−𝑧)

In conclusion, from the above we see that

𝑔 (−𝑥) = 𝑓 (−𝑧)

But 𝑓 (−𝑧) = −𝑓 (𝑧) since 𝑓 is odd. Hence the above becomes

𝑔 (−𝑥) = −𝑓 (𝑧)

But 𝑓 (𝑧) = 𝑔 (𝑥) as shown in the first illustration, hence the above becomes

𝑔 (−𝑥) = −𝑔 (𝑥)

Which shows that 𝑔 (𝑥) is odd.

Since 𝑔 (𝑥) is the 2𝜋 periodic extension of 𝑓 (𝑥). This is what we asked to show.

2.4.2.2 Part b

(b) True. Proof by contradiction. Since 𝑔 (𝑥) is odd, then we know that

𝑔 (−𝑥) = −𝑔 (𝑥)

We also know that by the 2𝜋 extension of 𝑓 (𝑥) that

𝑓 (𝑧) = 𝑔 (𝑥)

Where we are using the same diagrams from part (a). Where 𝑧 = 𝑥 − 2𝑛𝜋. Now, let us
assume that 𝑓 (𝑥) is even. Then this means that

𝑓 (𝑧) = 𝑓 (−𝑧)
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But the 2𝜋 extension on the left side of the 𝑥 axis, then we conclude that

𝑔 (−𝑥) = 𝑓 (−𝑧)

Which means that

𝑔 (−𝑥) = 𝑓 (𝑧)
= 𝑔 (𝑥)

But this means 𝑔 (𝑥) is even, which is a contradiction, since 𝑔 (𝑥) is odd. Hence 𝑓 (𝑥) can
now now be even.

Only other choice is that 𝑓 (𝑥) is neither odd or even, or an odd function. Let us now

assume is neither. For example, take 𝑓 (𝑥) =

⎧⎪⎪⎨
⎪⎪⎩
𝑥 0 < 𝑥 < 𝜋
0 −𝜋 < 𝑥 < 0

. Then following the above

argument, we see that

𝑔 (𝑥) = 𝑓 (𝑧)

But now 𝑓 (−𝑧) = 0, then by 2𝜋 extension of the left, then 𝑔 (−𝑥) = 𝑓 (−𝑧) = 0. But this means
that 𝑔 (−𝑥) ≠ −𝑔 (𝑥) which is not possible since 𝑔 (𝑥) is odd. The only other choice left is
that 𝑓 (𝑥) is odd. Which is what we are asked to show.

2.4.3 Problem 3.2.40a

Find the Fourier series and discuss convergence for (a) the box function 𝑏 (𝑥) =

⎧⎪⎪⎨
⎪⎪⎩
1 |𝑥| < 1

2𝜋
0 1

2𝜋 < |𝑥| < 𝜋

solution

-π -π

2

π

2
π

0.2

0.4

0.6

0.8

1.0

Figure 2.30: plot of 𝑏(𝑥)

𝑏 (𝑥) ∼
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos 𝑛𝑥 + 𝑏𝑛 sin 𝑛𝑥

But 𝑎0
2 is the average of the function over its 2𝜋 domain. Hence 𝑎0

2 =
area
2𝜋 = 𝜋

2𝜋 =
1
2 , and

𝑎𝑛 =
1
𝜋 �

𝜋

−𝜋
𝑓 (𝑥) cos (𝑛𝑥) 𝑑𝑥

=
1
𝜋 �

1
2𝜋

− 1
2𝜋

cos (𝑛𝑥) 𝑑𝑥

=
2
𝜋 �

1
2𝜋

0
cos (𝑛𝑥) 𝑑𝑥

=
2
𝜋𝑛

[sin (𝑛𝑥)]
𝜋
2
0

=
2
𝜋𝑛

sin �𝑛𝜋
2
�
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And since the function is even, then all 𝑏𝑛 = 0. Hence

𝑏 (𝑥) ∼
1
2
+

∞
�
𝑛=1

2
𝜋𝑛

sin �𝑛𝜋
2
� cos 𝑛𝑥

To verify the above solution, it is plotted against 𝑏 (𝑥) for increasing number of terms.
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Figure 2.31: plot of Fourier series approximation to 𝑏(𝑥)

In[ ]:= p = Table[

Plot[{f[x], fs[x, max]}, {x, -Pi, Pi}, PlotStyle → {Blue, Red},

Ticks → {Range[-Pi, Pi, Pi/ 2], Automatic},

GridLines → {Range[-Pi, Pi, Pi/ 4], Automatic},

GridLinesStyle → LightGray,

PlotRange → {Automatic, {-.2, 1.2}},

PlotLabel → Row[{"Terms = ", max}]

]

,

{max, 0, 16, 2}

];

p = Grid[Partition[p, 3], Frame → All]

Figure 2.32: Code used for the above plot

Since there are jump discontinuities in the function 𝑏 (𝑥), this will cause Gibbs e�ect at
those points. This also implies that the convergence is not uniform. Fourier series will
converge to each 𝑥 where the function is continuous, but it will converge to the average of
𝑏 (𝑥) at those points where there is a jump discontinuity.

In this case at −𝜋2 and 𝜋
2 in the fundamental domain given as shown in the plots above. At

those points, Fourier series converges to 1
2 .

2.4.4 Problem 3.2.54

Prove that coth𝜋 = 1
𝜋 +

2
𝜋
� 1
1+12 +

1
1+22 +

1
1+32 +⋯�, where coth 𝑥 = cosh 𝑥

sinh 𝑥 =
𝑒𝑥+𝑒−𝑥

𝑒𝑥−𝑒−𝑥

solution

The complex Fourier series of 𝑒𝑥 is

𝑒𝑥 = lim
𝑁→∞

𝑁
�
𝑛=−𝑁

𝑐𝑛𝑒𝑖𝑛𝑥 (1)
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Where

𝑐𝑛 =
1
2𝜋 �

𝜋

−𝜋
𝑒𝑥𝑒−𝑖𝑛𝑥𝑑𝑥

=
1
2𝜋 �

𝜋

−𝜋
𝑒𝑥(1−𝑖𝑛)𝑑𝑥

=
1
2𝜋 �

𝑒𝑥(1−𝑖𝑛)

1 − 𝑖𝑛 �
𝜋

−𝜋

=
1
2𝜋

1
1 − 𝑖𝑛

�𝑒𝑥𝑒−𝑖𝑛𝑥�
𝜋

−𝜋

=
1
2𝜋

1
1 − 𝑖𝑛

�𝑒𝜋𝑒−𝑖𝑛𝜋 − 𝑒−𝜋𝑒𝑖𝑛𝜋�

But 𝑒𝑖𝑛𝜋 = cos (𝑛𝜋) and also 𝑒−𝑖𝑛𝜋 = cos (𝑛𝜋) since 𝑛 is integer. The above simplifies to

𝑐𝑛 =
1
2𝜋

cos (𝑛𝜋)
1 − 𝑖𝑛

[𝑒𝜋 − 𝑒−𝜋]

But 𝑒𝜋 − 𝑒−𝜋 = 2 sinh (𝜋). Therefore

𝑐𝑛 =
1
2𝜋

cos (𝑛𝜋)
1 − 𝑖𝑛

[2 sinh (𝜋)]

=
1
𝜋

cos (𝑛𝜋) sinh (𝜋)
1 − 𝑖𝑛

=
1
𝜋

cos (𝑛𝜋) sinh (𝜋)
1 − 𝑖𝑛

(1 + 𝑖𝑛)
1 + 𝑖𝑛

=
1
𝜋

cos (𝑛𝜋) sinh (𝜋)
(1 + 𝑖𝑛)
1 + 𝑛2

=
(−1)𝑛

𝜋
sinh (𝜋)

(1 + 𝑖𝑛)
1 + 𝑛2

Substituting this back into (1) gives

𝑒𝑥 = lim
𝑁→∞

𝑁
�
𝑛=−𝑁

(−1)𝑛

𝜋
sinh (𝜋)

(1 + 𝑖𝑛)
1 + 𝑛2

𝑒𝑖𝑛𝑥

=
sinh (𝜋)

𝜋
lim
𝑁→∞

𝑁
�
𝑛=−𝑁

(−1)𝑛
(1 + 𝑖𝑛)
1 + 𝑛2

𝑒𝑖𝑛𝑥

At 𝑥 = 𝜋
1
2
(𝑒𝜋 + 𝑒−𝜋) = cosh (𝜋)

1
2 �

sinh (𝜋)
𝜋

lim
𝑁→∞

𝑁
�
𝑛=−𝑁

(−1)𝑛
(1 + 𝑖𝑛)
1 + 𝑛2

𝑒𝑖𝑛𝜋 +
sinh (𝜋)

𝜋
lim
𝑁→∞

𝑁
�
𝑛=−𝑁

(−1)𝑛
(1 + 𝑖𝑛)
1 + 𝑛2

𝑒−𝑖𝑛𝜋� = cosh (𝜋)

1
2

sinh (𝜋)
𝜋 � lim

𝑁→∞

𝑁
�
𝑛=−𝑁

(−1)𝑛
(1 + 𝑖𝑛)
1 + 𝑛2

𝑒𝑖𝑛𝜋 + lim
𝑁→∞

𝑁
�
𝑛=−𝑁

(−1)𝑛
(1 + 𝑖𝑛)
1 + 𝑛2

𝑒−𝑖𝑛𝜋� = cosh (𝜋)

But 𝑒𝑖𝑛𝜋 = cos 𝑛𝜋 = (−1)𝑛 and 𝑒−𝑖𝑛𝜋 = cos𝜋 = (−1)𝑛. The above becomes

1
2

sinh (𝜋)
𝜋 � lim

𝑁→∞

𝑁
�
𝑛=−𝑁

(−1)2𝑛
(1 + 𝑖𝑛)
1 + 𝑛2

+ lim
𝑁→∞

𝑁
�
𝑛=−𝑁

(−1)2𝑛
(1 + 𝑖𝑛)
1 + 𝑛2 �

= cosh (𝜋)

1
2

sinh (𝜋)
𝜋 � lim

𝑁→∞

𝑁
�
𝑛=−𝑁

(1 + 𝑖𝑛)
1 + 𝑛2

+ lim
𝑁→∞

𝑁
�
𝑛=−𝑁

(1 + 𝑖𝑛)
1 + 𝑛2 �

= cosh (𝜋)

sinh (𝜋)
𝜋

lim
𝑁→∞

𝑁
�
𝑛=−𝑁

(1 + 𝑖𝑛)
1 + 𝑛2

= cosh (𝜋)

sinh (𝜋)
𝜋 � lim

𝑁→∞

𝑁
�
𝑛=−𝑁

1
1 + 𝑛2

+ 𝑖 lim
𝑁→∞

𝑁
�
𝑛=−𝑁

𝑛
1 + 𝑛2 �

= cosh (𝜋)

But lim𝑁→∞∑
𝑁
𝑛=−𝑁

𝑛
1+𝑛2 = 0 by symmetry. The above simplifies to

sinh (𝜋)
𝜋

lim
𝑁→∞

𝑁
�
𝑛=−𝑁

1
1 + 𝑛2

= cosh (𝜋)

1
𝜋

∞
�
𝑛=−∞

1
1 + 𝑛2

=
cosh (𝜋)
sinh (𝜋)

= coth (𝜋)
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Therefore

coth (𝜋) = 1
𝜋

∞
�
𝑛=−∞

1
1 + 𝑛2

=
1
𝜋 �

1 +
−1
�
𝑛=−∞

1
1 + 𝑛2

+
∞
�
𝑛=1

1
1 + 𝑛2 �

=
1
𝜋 �

1 + 2
−∞
�
𝑛=1

1
1 + 𝑛2 �

=
1
𝜋
+
2
𝜋

−∞
�
𝑛=1

1
1 + 𝑛2

=
1
𝜋
+
2
𝜋 �

1
1 + 12

+
1

1 + 22
+

1
1 + 32

+⋯�

Which is what the problem asked to show.

2.4.5 Problem 3.2.60

Can you recognize whether a function is real by looking at its complex Fourier coe�cients?

solution

Yes. If complex Fourier coe�cients come in conjugate pairs such that 𝑐−𝑛 = 𝑐𝑛 and 𝑐0 is
real. (𝑐0 should always be real, since this represents the average energy at the zero (D.C.)
frequency, hence must be real quantity).

𝑓 (𝑥) =
∞
�
𝑛=−∞

𝑐𝑛𝑒𝑖𝑛𝑥

= 𝑐0 +
−1
�
𝑛=−∞

𝑐𝑛𝑒𝑖𝑛𝑥 +
∞
�
𝑛=1

𝑐𝑛𝑒𝑖𝑛𝑥

= 𝑐0 +
∞
�
𝑛=1

𝑐−𝑛𝑒−𝑖𝑛𝑥 +
∞
�
𝑛=1

𝑐𝑛𝑒𝑖𝑛𝑥

= 𝑐0 +
∞
�
𝑛=1

�𝑐−𝑛𝑒−𝑖𝑛𝑥 + 𝑐𝑛𝑒𝑖𝑛𝑥�

Now, If 𝑐−𝑛 = 𝑐𝑛 then the above becomes

𝑓 (𝑥) = 𝑐0 +
∞
�
𝑛=1

𝑐𝑛𝑒−𝑖𝑛𝑥 + 𝑐𝑛𝑒𝑖𝑛𝑥

But �𝑐𝑛𝑒−𝑖𝑛𝑥 + 𝑐𝑛𝑒𝑖𝑛𝑥� is real. (This could also be written as 𝑐𝑛𝑒−𝑖𝑛𝑥 + 𝑐𝑛𝑒𝑖𝑛𝑥 which now looks
like standard 𝑧 + 𝑧 in complex numbers). Hence 𝑓 (𝑥) is real.

To show this, here is an example. Let 𝑐𝑛 = 𝑎 + 𝑖𝑏, then 𝑐−𝑛 = 𝑎 − 𝑖𝑏. Therefore

𝑐𝑛𝑒−𝑖𝑛𝑥 + 𝑐𝑛𝑒𝑖𝑛𝑥 = (𝑎 + 𝑖𝑏)𝑒−𝑖𝑛𝑥 + (𝑎 + 𝑖𝑏) 𝑒𝑖𝑛𝑥

= (𝑎 − 𝑖𝑏) 𝑒−𝑖𝑛𝑥 + (𝑎 + 𝑖𝑏) 𝑒𝑖𝑛𝑥

= �𝑎𝑒−𝑖𝑛𝑥 − 𝑖𝑏𝑒−𝑖𝑛𝑥� + �𝑎𝑒𝑖𝑛𝑥 + 𝑖𝑏𝑒𝑖𝑛𝑥�

= 𝑎 �𝑒𝑖𝑛𝑥 + 𝑒−𝑖𝑛𝑥� + 𝑏𝑖 �𝑒𝑖𝑛𝑥 − 𝑒−𝑖𝑛𝑥�

= 𝑎 (cos 𝑛𝑥 + 𝑖 sin 𝑛𝑥 + cos 𝑛𝑥 − 𝑖 sin 𝑛𝑥) + 𝑏𝑖 (cos 𝑛𝑥 + 𝑖 sin 𝑛𝑥 − cos 𝑛𝑥 + 𝑖 sin 𝑛𝑥)
= 𝑎 (2 cos 𝑛𝑥) + 𝑏𝑖 (2𝑖 sin 𝑛𝑥)
= 2𝑎 cos 𝑛𝑥 − 2𝑏 sin 𝑛𝑥

Which is real value. Therefore if each 𝑐𝑛 is a complex conjugate of 𝑐−𝑛 (with 𝑐0 real)
then 𝑓 (𝑥) will be a real function.

2.4.6 Problem 3.3.2

Find the Fourier series for the function 𝑓 (𝑥) = 𝑥3. If you di�erentiate your series, do you
recover the Fourier series for 𝑓′ (𝑥) = 3𝑥2? If not, explain why not.

solution

The function 𝑓 (𝑥) over −𝜋 ≤ 𝑥 ≤ 𝜋 is
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Figure 2.33: Plot of 𝑥3

We see right away that di�erentiating term by term the Fourier series for the above function
could not be justified. Even though the function 𝑥3 has no jump discontinuity inside −𝜋 ≤
𝑥 ≤ 𝜋, which is good, it still fails the other test which requires that 𝑓 (−𝜋) = 𝑓 (𝜋) for the
term by term di�erentiation to be justified. This is because the 2𝜋 extension will now have
jump discontinuities in it. The conditions under which the Fourier series for a function
can be term by term di�erentiated are

1. 𝑓 (𝑥) is piecewise continuous between −𝜋 ≤ 𝑥 ≤ 𝜋 with no jump discontinuities.

2. 𝑓 (−𝜋) = 𝑓 (𝜋)

The function given fails condition (2) above. This explains why di�erentiating the Fourier
series of 𝑥3 will not give the Fourier series of 3𝑥2. Now we will show this as required by the
problem.

To find the Fourier series of 𝑥3, since it is an odd function, then we only need to find 𝑏𝑛

𝑏𝑛 =
1
𝜋 �

𝜋

−𝜋
𝑥3 sin (𝑛𝑥) 𝑑𝑥

Since 𝑥3 is odd, and sin is odd, then the product is even, and the above simplifies to

𝑏𝑛 =
2
𝜋 �

𝜋

0
𝑥3 sin (𝑛𝑥) 𝑑𝑥

Integration by parts., Let 𝑢 = 𝑥3, sin (𝑛𝑥) = 𝑑𝑣. Then 𝑑𝑢 = 3𝑥2, 𝑣 = − 1𝑛 cos (𝑛𝑥). Then
∫𝑢𝑑𝑣 = 𝑢𝑣 − ∫𝑣𝑑𝑢 gives

𝑏𝑛 =
2
𝜋 �

−
1
𝑛
�𝑥3 cos (𝑛𝑥)�

𝜋

0
+
1
𝑛 �

𝜋

0
3𝑥2 cos (𝑛𝑥) 𝑑𝑥�

=
2
𝜋 �

−
1
𝑛
�𝜋3 cos (𝑛𝜋)� + 3

𝑛 �
𝜋

0
𝑥2 cos (𝑛𝑥) 𝑑𝑥�

=
2
𝜋 �

−
1
𝑛
�𝜋3 (−1)𝑛� +

3
𝑛 �

𝜋

0
𝑥2 cos (𝑛𝑥) 𝑑𝑥�

= −
2 (−1)𝑛 𝜋2

𝑛
+

6
𝑛𝜋 �

𝜋

0
𝑥2 cos (𝑛𝑥) 𝑑𝑥

Integration by parts again. Let 𝑢 = 𝑥2, cos (𝑛𝑥) = 𝑑𝑣. Then 𝑑𝑢 = 2𝑥, 𝑣 = 1
𝑛 sin (𝑛𝑥). Then

using ∫𝑢𝑑𝑣 = 𝑢𝑣 − ∫𝑣𝑑𝑢 the above becomes

𝑏𝑛 = −
2 (−1)𝑛 𝜋2

𝑛
+

6
𝑛𝜋 �

1
𝑛
�𝑥2 sin (𝑛𝑥)�

𝜋

0
−
2
𝑛 �

𝜋

0
𝑥 sin (𝑛𝑥) 𝑑𝑥�

= −
2 (−1)𝑛 𝜋2

𝑛
+

6
𝑛𝜋 �

−
2
𝑛 �

𝜋

0
𝑥 sin (𝑛𝑥) 𝑑𝑥�

= −
2 (−1)𝑛 𝜋2

𝑛
−
12
𝑛2𝜋 �

𝜋

0
𝑥 sin (𝑛𝑥) 𝑑𝑥

Integration by parts again. Let 𝑢 = 𝑥, sin (𝑛𝑥) = 𝑑𝑣. Then 𝑑𝑢 = 1, 𝑣 = −1
𝑛 cos (𝑛𝑥). Then using
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∫𝑢𝑑𝑣 = 𝑢𝑣 − ∫𝑣𝑑𝑢 the above becomes

𝑏𝑛 = −
2 (−1)𝑛 𝜋2

𝑛
−
12
𝑛2𝜋 �

−1
𝑛
[𝑥 cos (𝑛𝑥)]𝜋0 +

1
𝑛 �

𝜋

0
cos (𝑛𝑥)�

= −
2 (−1)𝑛 𝜋2

𝑛
−
12
𝑛2𝜋

⎛
⎜⎜⎜⎜⎝
−1
𝑛
[𝜋 cos (𝑛𝜋)] + 1

𝑛 �
sin 𝑛𝑥
𝑛 �

𝜋

0

⎞
⎟⎟⎟⎟⎠

= −
2 (−1)𝑛 𝜋2

𝑛
−
12
𝑛2𝜋 �

−1
𝑛
�𝜋 (−1)𝑛��

= −
2 (−1)𝑛 𝜋2

𝑛
+
12
𝑛3𝜋

𝜋 (−1)𝑛

=
−2 (−1)𝑛 𝑛2𝜋2 + 12 (−1)𝑛

𝑛3

=
−2 (−1)𝑛 �−6 + 𝑛2𝜋2�

𝑛3
Hence

𝑥3 ∼
∞
�
𝑛=1

−
2 (−1)𝑛 �−6 + 𝑛2𝜋2�

𝑛3
sin (𝑛𝑥) (1)

Now we apply Term by term di�erentiation to the RHS above and obtain
⎛
⎜⎜⎜⎜⎝
∞
�
𝑛=1

−
2 (−1)𝑛 �−6 + 𝑛2𝜋2�

𝑛3
sin (𝑛𝑥)

⎞
⎟⎟⎟⎟⎠

′

=
∞
�
𝑛=1

−
2 (−1)𝑛 �−6 + 𝑛2𝜋2�

𝑛2
cos (𝑛𝑥)

=
∞
�
𝑛=1

12 (−1)𝑛 − 2 (−1)𝑛 𝑛2𝜋2

𝑛2
cos (𝑛𝑥)

=
∞
�
𝑛=1

�
12 (−1)𝑛

𝑛2
− 2 (−1)𝑛 𝜋2� cos (𝑛𝑥) (2)

And di�erentiation of LHS of (1) gives

�𝑥3�
′
= 3𝑥2

Let us now find the Fourier series for 3𝑥2 and see if it matches (2). Since 𝑥2 is even, it will
only have 𝑎𝑛 terms

𝑎0 =
1
𝜋 �

𝜋

−𝜋
3𝑥2𝑑𝑥

=
3
𝜋 �

𝑥3

3 �
𝜋

−𝜋

=
1
𝜋
�𝑥3�

𝜋

−𝜋

=
1
𝜋
�𝜋3 − (−𝜋)3�

=
1
𝜋
�𝜋3 + 𝜋3�

= 2𝜋2

And

𝑎𝑛 =
3
𝜋 �

𝜋

−𝜋
𝑥2 cos (𝑛𝑥) 𝑑𝑥

=
12 (−1)𝑛

𝑛2
Therefore the Fourier series for 3𝑥2 is

3𝑥2 ∼ 𝜋2 +
∞
�
𝑛=1

12 (−1)𝑛

𝑛2
cos (𝑛𝑥) (3)

Comparing (2,3) shows they are not the same. (2) has an extra term −2 (−1)𝑛 𝜋2 inside the
sum and it also do not have the added 𝜋2 term outside the sum. The explanation of why
that is, is given earlier in the solution.
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2.4.7 Problem 3.4.3 (b,d)

Find the Fourier series for the following functions on the indicated intervals, and graph
the functions that it converges to. (b) 𝑥2 − 4 over −2 ≤ 𝑥 ≤ 2. (d) sin 𝑥 over −1 ≤ 𝑥 ≤ 1.

solution

2.4.7.1 Part (b)

-2 -1 1 2
x

-4

-3

-2

-1

f(x)

Figure 2.34: Plot of 𝑥2 − 4

The function 𝑥2 − 4 is even. Hence all 𝑏𝑛 terms are zero. The period now is 𝑇 = 4.

𝑎0 =
1
2 �

2

−2
�𝑥2 − 4� 𝑑𝑥

= �
2

0
�𝑥2 − 4� 𝑑𝑥

= �
𝑥3

3
− 4𝑥�

2

0

=
8
3
− 8

= −
16
3

And

𝑎𝑛 =
1
2 �

2

−2
�𝑥2 − 4� cos �

2𝜋
𝑇
𝑛𝑥� 𝑑𝑥

But 𝑇 = 4, hence the above becomes

𝑎𝑛 =
1
2 �

2

−2
�𝑥2 − 4� cos �𝜋

2
𝑛𝑥� 𝑑𝑥

= �
2

0
�𝑥2 − 4� cos �𝜋

2
𝑛𝑥� 𝑑𝑥

= �
2

0
𝑥2 cos �𝜋

2
𝑛𝑥� 𝑑𝑥 −�

2

0
4 cos �𝜋

2
𝑛𝑥� (1A)

Looking at the term ∫2
0
𝑥2 cos �𝜋2𝑛𝑥� 𝑑𝑥, applying integration by parts. Let 𝑢 = 𝑥2, 𝑑𝑣 =

cos �𝜋2𝑛𝑥�. Then 𝑑𝑢 = 2𝑥, 𝑣 =
2
𝜋𝑛 sin �𝜋2𝑛𝑥�. Then using ∫𝑢𝑑𝑣 = 𝑢𝑣 − ∫𝑣𝑑𝑢 gives

�
2

0
𝑥2 cos �𝜋

2
𝑛𝑥� 𝑑𝑥 = �𝑥2

2
𝜋𝑛

sin �𝜋
2
𝑛𝑥��

2

0
−�

2

0
2𝑥

2
𝜋𝑛

sin �𝜋
2
𝑛𝑥� 𝑑𝑥

=
2
𝑛𝜋

⎡
⎢⎢⎢⎢⎢⎣

0

�����������4 sin (𝜋𝑛) − 0

⎤
⎥⎥⎥⎥⎥⎦ −

4
𝜋𝑛 �

2

0
𝑥 sin �𝜋

2
𝑛𝑥� 𝑑𝑥

= −
4
𝜋𝑛 �

2

0
𝑥 sin �𝜋

2
𝑛𝑥� 𝑑𝑥
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Applying integration by parts again. Let 𝑢 = 𝑥, 𝑑𝑣 = sin �𝜋2𝑛𝑥�. Then 𝑑𝑢 = 1, 𝑣 =
−2
𝜋𝑛 cos �𝜋2𝑛𝑥�

then the above becomes

�
2

0
𝑥2 cos �𝜋

2
𝑛𝑥� 𝑑𝑥 = −

4
𝜋𝑛 �

−2
𝜋𝑛 �

𝑥 cos �𝜋
2
𝑛𝑥��

2

0
−�

2

0

−2
𝜋𝑛

cos �𝜋
2
𝑛𝑥� 𝑑𝑥�

= −
4
𝜋𝑛 �

−2
𝜋𝑛

[2 cos (𝜋𝑛) − 0] + 2
𝜋𝑛 �

2

0
cos �𝜋

2
𝑛𝑥� 𝑑𝑥�

= −
4
𝜋𝑛

−4
𝜋𝑛

(−1)𝑛 +
2
𝜋𝑛 �

2
𝜋𝑛�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

�������������
sin �𝜋

2
𝑛𝑥�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2

0

= −
4
𝜋𝑛 �

−4
𝜋𝑛

(−1)𝑛�

=
16
𝜋2𝑛2

(−1)𝑛 (1B)

The above takes care of the first term in (1A). The second term in (1A) is

4�
2

0
cos �𝜋

2
𝑛𝑥� = 4 �

2
𝑛𝜋

sin �𝜋
2
𝑛𝑥��

2

0

=
8
𝑛𝜋 �

sin �𝜋
2
𝑛𝑥��

2

0

= 0 (1C)

Using (1B,1C) results back in (1A) gives 𝑎𝑛 as

𝑎𝑛 =
16
𝜋2𝑛2

(−1)𝑛

Therefore the Fourier series is

𝑥2 − 4 ∼ −
8
3
+

∞
�
𝑛=1

16
𝑛2𝜋2

(−1)𝑛 cos �𝜋
2
𝑛𝑥�

∼ −
8
3
+
16
𝜋2

∞
�
𝑛=1

(−1)𝑛

𝑛2
cos �𝜋

2
𝑛𝑥�

The following shows how the above Fourier series converges for increasing number of
terms. The convergence is uniform convergence.
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Figure 2.35: Plot of Fourier series for 𝑥2 − 4
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In[ ]:= ClearAll[f, x, n, max];

f[x_] := x^2 - 4

fs[x_, max_] := -8/ 3 +
16

π2
Sum

(-1)n

n2
Cos

π

2
n x, {n, 1, max}

p = Table[

Plot[{f[x], fs[x, max]}, {x, -2, 2},

PlotStyle → {Blue, Red},

GridLines → {Range[-2, 2, 1/ 4], Automatic},

GridLinesStyle → LightGray,

PlotRange → {Automatic, {-4.4, .2}},

PlotLabel → Row[{"Terms = ", max}]

]

,

{max, 0, 6, 1}

];

p = Grid[Partition[p, 3], Frame → All]

Figure 2.36: Code used for the above Plot

2.4.7.2 Part d

The function sin 𝑥 is odd. Hence all 𝑎𝑛 terms are zero. The period now is 𝑇 = 2.

𝑏𝑛 =
1
𝑇
2

�
𝑇
2

−𝑇
2

sin (𝑥) sin �
2𝜋
𝑇
𝑛𝑥� 𝑑𝑥

= �
1

−1
sin (𝑥) sin (𝜋𝑛𝑥) 𝑑𝑥

But the integrand is even, then the above becomes

𝑏𝑛 = 2�
1

0
sin (𝑥) sin (𝜋𝑛𝑥) 𝑑𝑥

Integration by parts. Let 𝑢 = sin 𝑥, 𝑑𝑣 = sin (𝜋𝑛𝑥) , then 𝑑𝑢 = cos 𝑥, 𝑣 = − 1
𝜋𝑛 cos (𝜋𝑛𝑥) and the

above becomes

𝑏𝑛 = 2 �−
1
𝜋𝑛

[sin 𝑥 cos (𝜋𝑛𝑥)]10 +
1
𝜋𝑛 �

1

0
cos 𝑥 cos (𝜋𝑛𝑥) 𝑑𝑥�

= 2 �−
1
𝜋𝑛

[sin (1) cos (𝜋𝑛)] + 1
𝜋𝑛 �

1

0
cos 𝑥 cos (𝜋𝑛𝑥) 𝑑𝑥�

=
2
𝜋𝑛 �

− sin (1) (−1)𝑛 +�
1

0
cos 𝑥 cos (𝜋𝑛𝑥) 𝑑𝑥�

=
2
𝜋𝑛 �

sin (1) (−1)𝑛+1 +�
1

0
cos 𝑥 cos (𝜋𝑛𝑥) 𝑑𝑥�

Integration by parts again. Let 𝑢 = cos 𝑥, 𝑑𝑣 = cos (𝜋𝑛𝑥) , then 𝑑𝑢 = − sin 𝑥, 𝑣 = 1
𝜋𝑛 sin (𝜋𝑛𝑥)

and the above becomes

𝑏𝑛 =
2
𝜋𝑛

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
sin (1) (−1)𝑛+1 +

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
1
𝜋𝑛

⎡
⎢⎢⎢⎢⎢⎣

0

�������������������cos 𝑥 sin (𝜋𝑛𝑥)

⎤
⎥⎥⎥⎥⎥⎦

1

0

+
1
𝜋𝑛 �

1

0
sin 𝑥 sin (𝜋𝑛𝑥)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=
2
𝜋𝑛 �

sin (1) (−1)𝑛+1 + 1
𝜋𝑛 �

1

0
sin 𝑥 sin (𝜋𝑛𝑥)�

=
2
𝜋𝑛

sin (1) (−1)𝑛+1 + 2
𝜋2𝑛2 �

1

0
sin 𝑥 sin (𝜋𝑛𝑥)
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But 2∫
1

0
sin 𝑥 sin (𝜋𝑛𝑥) = 𝑏𝑛. Hence the above simplifies to

𝑏𝑛 −
𝑏𝑛
𝜋2𝑛2

=
2
𝜋𝑛

sin (1) (−1)𝑛+1

𝑏𝑛 �1 −
1

𝜋2𝑛2 �
=

2
𝜋𝑛

sin (1) (−1)𝑛+1

𝑏𝑛 =
2
𝜋𝑛 sin (1) (−1)𝑛+1

1 − 1
𝜋2𝑛2

=
�𝜋2𝑛2� 2

𝜋𝑛 sin (1) (−1)𝑛+1

𝜋2𝑛2 − 1

=
2𝑛𝜋 sin (1) (−1)𝑛+1

𝜋2𝑛2 − 1
Hence the Fourier series is

sin 𝑥 ∼
∞
�
𝑛=1

𝑏𝑛 sin (𝜋𝑛𝑥)

∼
∞
�
𝑛=1

2𝑛𝜋 sin (1) (−1)𝑛+1

𝜋2𝑛2 − 1
sin (𝜋𝑛𝑥)

The following shows how the above Fourier series converges for increasing number of
terms. The convergence is not uniform since the function is odd. Hence there will be a
jump discontinuity when periodic extended leading to Gibbs e�ect at the edges.
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Figure 2.37: Plot of Fourier series for sin(𝑥)
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In[ ]:= ClearAll[f, x, n, max];

f[x_] := Sin[x]

fs[x_, max_] := Sum-
2 (-1)n n π Sin[1]

n2 π2 - 1
Sin[π n x], {n, 1, max}

p = Table[

Plot[{f[x], fs[x, max]}, {x, -1, 1},

PlotStyle → {Blue, Red},

GridLines → {Range[-1, 1, 1/ 4], Automatic},

GridLinesStyle → LightGray,

PlotRange → {Automatic, {-1, 1}},

PlotLabel → Row[{"Terms = ", max}], AspectRatio -> Automatic

]

,

{max, 0, 18, 2}

];

p = Grid[Partition[p, 3], Frame → All]

Figure 2.38: Code used for the above Plot

2.4.8 Problem 3.4.4

For (b) 𝑥2 − 4 over −2 ≤ 𝑥 ≤ 2. (d) sin 𝑥 over −1 ≤ 𝑥 ≤ 1 write out the di�erentiated Fourier
series and determine whether it converges to the derivative of the original function.

solution

2.4.8.1 Part b

From Problem 3.4.3

𝑥2 − 4 ∼ −
8
3
+
16
𝜋2

∞
�
𝑛=1

(−1)𝑛

𝑛2
cos �𝜋

2
𝑛𝑥� (1)

Since the function 𝑥2−4 is uniform convergent, then we expect that the di�erentiated Fourier
series will converge to the derivative of the original function. The following calculations
confirms this.

Taking derivative of the RHS of (1) gives

�−
8
3
+
16
𝜋2

∞
�
𝑛=1

(−1)𝑛

𝑛2
cos �𝜋

2
𝑛𝑥��

′

=
16
𝜋2

∞
�
𝑛=1

− �
𝜋
2
𝑛�
(−1)𝑛

𝑛2
sin �𝜋

2
𝑛𝑥�

=
8
𝜋

∞
�
𝑛=1

(−1)𝑛+1

𝑛
sin �𝜋

2
𝑛𝑥� (2)

And taking derivative of the LHS of (1) gives

�𝑥2 − 4�
′
= 2𝑥 (3)

We now need to show if the Fourier series of 2𝑥 gives the RHS of (2). Let us now find the
Fourier series for 𝑥, over −2 ≤ 𝑥 ≤ 2 (period 𝑇 = 4). Since 𝑥 is odd, then all 𝑎𝑛 = 0.

𝑏𝑛 =
1
2 �

2

−2
𝑥 sin �

2𝜋
𝑇
𝑛𝑥� 𝑑𝑥

=
1
2 �

2

−2
𝑥 sin �𝜋

2
𝑛𝑥� 𝑑𝑥

But 𝑥 sin �𝜋2𝑛𝑥� is even. The above becomes

𝑏𝑛 = �
2

0
𝑥 sin �𝜋

2
𝑛𝑥� 𝑑𝑥

Integration by parts. Let 𝑢 = 𝑥, 𝑑𝑣 = sin �𝜋2𝑛𝑥�, then 𝑑𝑢 = 1, 𝑣 =
−2
𝑛𝜋 cos �𝜋2𝑛𝑥� and the above
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becomes

𝑏𝑛 =
−2
𝑛𝜋 �

𝑥 cos �𝜋
2
𝑛𝑥��

2

0
+

2
𝑛𝜋 �

2

0
cos �𝜋

2
𝑛𝑥� 𝑑𝑥

=
−2
𝑛𝜋

[2 cos (𝑛𝜋)] + 2
𝑛𝜋 �

2

0
cos �𝜋

2
𝑛𝑥� 𝑑𝑥

=
2
𝑛𝜋 �

−2 cos (𝑛𝜋) +�
2

0
cos �𝜋

2
𝑛𝑥� 𝑑𝑥�

=
2
𝑛𝜋

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−2 cos (𝑛𝜋) + 2

𝑛𝜋

0

�����������������
�sin �

𝜋
2
𝑛𝑥��

2

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
2
𝑛𝜋

(−2 cos (𝑛𝜋))

=
−4
𝑛𝜋

(−1)𝑛

Hence the Fourier series for 𝑥 over −2 ≤ 𝑥 ≤ 2 is

𝑥 ∼
4
𝜋

∞
�
𝑛=1

(−1)𝑛+1

𝑛
sin �𝜋

2
𝑛𝑥�

Therefore the Fourier series for 2𝑥 is

2𝑥 ∼
8
𝜋

∞
�
𝑛=1

(−1)𝑛+1

𝑛
sin �𝜋

2
𝑛𝑥� (4)

Comparing (4) and (2) shows they are the same. Hence term by term di�erentiation is
valid in this case.

2.4.8.2 Part d

From Problem 3.4.3, the Fourier series for sin 𝑥 over −1 ≤ 𝑥 ≤ 1 is

sin 𝑥 ∼
∞
�
𝑛=1

−
2𝑛𝜋 (−1)𝑛

𝑛2𝜋2 − 1
sin (1) sin (𝜋𝑛𝑥) (1)

Since the Fourier series for sin 𝑥 over −1 ≤ 𝑥 ≤ 1 is not uniform convergent, then we expect
that the di�erentiated Fourier series will not converge to the derivative of the original
function. The following calculations confirms this.

Taking derivative of the RHS of (1) gives

�
∞
�
𝑛=1

−
2𝑛𝜋 (−1)𝑛

𝑛2𝜋2 − 1
sin (1) sin (𝜋𝑛𝑥)�

′

=
∞
�
𝑛=1

−𝜋𝑛
2𝑛𝜋 (−1)𝑛

𝑛2𝜋2 − 1
sin (1) cos (𝜋𝑛𝑥)

=
∞
�
𝑛=1

2𝑛2𝜋2 (−1)𝑛+1

𝑛2𝜋2 − 1
sin (1) cos (𝜋𝑛𝑥) (2)

And Taking derivative of the LHS of (1) gives

(sin 𝑥)′ = cos 𝑥 (3)

So now we need to show that the Fourier series for cos 𝑥, over −1 ≤ 𝑥 ≤ 1 (period 𝑇 = 2)
agrees with (2).

Since cos 𝑥 is even, then all 𝑏𝑛 = 0.

𝑎0 =
1
𝑇
2

�
𝑇
2

−𝑇
2

cos (𝑥) 𝑑𝑥

= �
1

−1
cos (𝑥) 𝑑𝑥

= 2�
1

0
cos 𝑥𝑑𝑥

= 2 [sin (𝑥)]10
= 2 sin (1)
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And

𝑎𝑛 =
1
𝑇
2

�
𝑇
2

−𝑇
2

cos 𝑥 cos �
2𝜋
𝑇
𝑛𝑥� 𝑑𝑥

= �
1

−1
cos 𝑥 cos (𝜋𝑛𝑥) 𝑑𝑥

= 2�
1

0
cos 𝑥 cos (𝜋𝑛𝑥) 𝑑𝑥

Integration by parts. Let 𝑢 = cos 𝑥, 𝑑𝑣 = cos (𝑛𝜋𝑥), then 𝑑𝑢 = − sin 𝑥, 𝑣 = 1
𝜋𝑛 sin (𝑛𝜋𝑥) and the

above becomes

𝑎𝑛 = 2 �
1
𝜋𝑛

[cos 𝑥 sin (𝑛𝜋𝑥)]10 +
1
𝜋𝑛 �

1

0
sin 𝑥 sin (𝑛𝜋𝑥) 𝑑𝑥�

=
2
𝜋𝑛 �

[cos 𝑥 sin (𝑛𝜋𝑥)]10 +�
1

0
sin 𝑥 sin (𝑛𝜋𝑥) 𝑑𝑥�

=
2
𝜋𝑛 �

[cos (1) sin (𝑛𝜋)] +�
1

0
sin 𝑥 sin (𝑛𝜋𝑥) 𝑑𝑥�

=
2
𝜋𝑛 �

1

0
sin 𝑥 sin (𝑛𝜋𝑥) 𝑑𝑥

Integration by parts again. Let 𝑢 = sin 𝑥, 𝑑𝑣 = sin (𝑛𝜋𝑥), then 𝑑𝑢 = cos 𝑥, 𝑣 = −1
𝜋𝑛 cos (𝑛𝜋𝑥)

and the above becomes

𝑎𝑛 =
2
𝜋𝑛 �

−1
𝜋𝑛

[sin 𝑥 cos (𝑛𝜋𝑥)]10 +
1
𝜋𝑛 �

1

0
cos 𝑥 cos (𝑛𝜋𝑥) 𝑑𝑥�

=
2

𝜋2𝑛2 �
− [sin (1) cos (𝑛𝜋)] +�

1

0
cos 𝑥 cos (𝑛𝜋𝑥) 𝑑𝑥�

= −
2

𝜋2𝑛2
�sin (1) (−1)𝑛� + 2

𝜋2𝑛2 �
1

0
cos 𝑥 cos (𝑛𝜋𝑥) 𝑑𝑥

But 2∫
1

0
cos 𝑥 cos (𝑛𝜋𝑥) 𝑑𝑥 = 𝑎𝑛. Hence the above becomes

𝑎𝑛 −
𝑎𝑛
𝜋2𝑛2

= −
2

𝜋2𝑛2
�sin (1) (−1)𝑛�

𝑎𝑛 �1 −
1

𝜋2𝑛2 �
=
2 sin (1) (−1)𝑛+1

𝜋2𝑛2

𝑎𝑛 �
𝜋2𝑛2 − 1
𝜋2𝑛2 � =

2 sin (1) (−1)𝑛+1

𝜋2𝑛2

𝑎𝑛 =
2 sin (1) (−1)𝑛+1

𝜋2𝑛2 − 1
Hence the Fourier series for cos (𝑥) over −1 ≤ 𝑥 ≤ 1 is

cos 𝑥 ∼ 𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos (𝜋𝑛𝑥)

∼ sin (1) +
∞
�
𝑛=1

2 sin (1) (−1)𝑛+1

𝜋2𝑛2 − 1
cos (𝜋𝑛𝑥) (4)

Comparing (4) and (2) shows they are not the same. Hence taking derivatives term by
term of the Fourier series was not justified as expected.

2.4.9 Problem 3.4.5

For (b) 𝑥2 − 4 over −2 ≤ 𝑥 ≤ 2. (d) sin 𝑥 over −1 ≤ 𝑥 ≤ 1 find the Fourier series for the
integral of the function.

solution
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2.4.9.1 Part b

From Problem 3.4.3

𝑥2 − 4 ∼ −
8
3
+
16
𝜋2

∞
�
𝑛=1

(−1)𝑛

𝑛2
cos �𝜋

2
𝑛𝑥� (1)

Integrating the RHS of (1) gives

�
𝑥

0
�−
8
3
+
16
𝜋2

∞
�
𝑛=1

(−1)𝑛

𝑛2
cos �𝜋

2
𝑛𝑠�� 𝑑𝑠 = −

8
3 �

𝑥

0
𝑑𝑠 +

16
𝜋2

∞
�
𝑛=1

(−1)𝑛

𝑛2 �
𝑥

0
cos �𝜋

2
𝑛𝑠� 𝑑𝑠

= −
8
3
𝑥 +

16
𝜋2

∞
�
𝑛=1

(−1)𝑛

𝑛2

⎡
⎢⎢⎢⎢⎢⎣
sin �𝜋2𝑛𝑠�

𝜋
2𝑛

⎤
⎥⎥⎥⎥⎥⎦

𝑥

0

= −
8
3
𝑥 +

16
𝜋2

∞
�
𝑛=1

2
𝑛𝜋

(−1)𝑛

𝑛2 �sin �
𝜋
2
𝑛𝑠��

𝑥

0

= −
8
3
𝑥 +

32
𝜋3

∞
�
𝑛=1

(−1)𝑛

𝑛3
sin �𝜋

2
𝑛𝑥� (2)

Integrating the LHS of (1) gives

�
𝑥

0
�𝑠2 − 4� 𝑑𝑠 = �

𝑠3

2
− 4𝑠�

𝑥

0

=
𝑥3

2
− 4𝑥 (3)

Now we find Fourier series for 𝑥3

2 − 4𝑥 and compare it with the (2) to see they match in
order to see if term by term integration was justified or not above.

Let 𝑓 (𝑥) = 𝑥3

2 − 4𝑥 for −2 ≤ 𝑥 ≤ 2. This is an odd function. Hence only 𝑏𝑛 exist.

𝑏𝑛 =
1
2 �

2

−2
�
𝑥3

2
− 4𝑥� sin �𝜋

2
𝑛𝑥� 𝑑𝑥

=
1
4 �

2

−2
𝑥3 sin �𝜋

2
𝑛𝑥� 𝑑𝑥 − 2�

2

−2
𝑥 sin �𝜋

2
𝑛𝑥� 𝑑𝑥 (4)

Looking at the first integral above, 14 ∫
2

−2
𝑥3 sin �𝜋2𝑛𝑥� 𝑑𝑥. Since the integrand is even, then

1
4
∫2
−2
𝑥3 sin �𝜋2𝑛𝑥� 𝑑𝑥 =

1
2
∫2
0
𝑥3 sin �𝜋2𝑛𝑥� 𝑑𝑥. Integration by parts. 𝑢 = 𝑥3, 𝑑𝑣 = sin �𝜋2𝑛𝑥� then

𝑑𝑢 = 3𝑥2, 𝑣 = − 2
𝑛𝜋 cos �𝜋2𝑛𝑥�. Therefore

1
2 �

2

0
𝑥3 sin �𝜋

2
𝑛𝑥� 𝑑𝑥 =

1
2 �
−
2
𝑛𝜋 �

𝑥3 cos �𝜋
2
𝑛𝑥��

2

0
+

2
𝑛𝜋 �

2

0
3𝑥2 cos �𝜋

2
𝑛𝑥� 𝑑𝑥�

=
1
𝑛𝜋 �

− [8 cos (𝜋𝑛)] + 3�
2

0
𝑥2 cos �𝜋

2
𝑛𝑥� 𝑑𝑥�

=
1
𝑛𝜋 �

8 (−1)𝑛+1 + 3�
2

0
𝑥2 cos �𝜋

2
𝑛𝑥� 𝑑𝑥�

Integration by parts again. 𝑢 = 𝑥2, 𝑑𝑣 = cos �𝜋2𝑛𝑥� then 𝑑𝑢 = 2𝑥, 𝑣 = 2
𝑛𝜋 sin �𝜋2𝑛𝑥� and the

above becomes
1
2 �

2

0
𝑥3 sin �𝜋

2
𝑛𝑥� 𝑑𝑥 =

1
𝑛𝜋 �

8 (−1)𝑛+1 + 3 �
2
𝑛𝜋 �

𝑥2 sin �𝜋
2
𝑛𝑥��

2

0
−
2
𝑛𝜋 �

2

0
2𝑥 sin �𝜋

2
𝑛𝑥� 𝑑𝑥��

=
1
𝑛𝜋

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
8 (−1)𝑛+1 +

6
𝑛𝜋

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

���������������[4 sin (𝜋𝑛)]20 − 2�
2

0
𝑥 sin �𝜋

2
𝑛𝑥� 𝑑𝑥

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=
1
𝑛𝜋 �

8 (−1)𝑛+1 −
12
𝑛𝜋 �

2

0
𝑥 sin �𝜋

2
𝑛𝑥� 𝑑𝑥�

Integration by parts again. 𝑢 = 𝑥, 𝑑𝑣 = sin �𝜋2𝑛𝑥� then 𝑑𝑢 = 1, 𝑣 =
−2
𝑛𝜋 cos �𝜋2𝑛𝑥� and the above
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becomes
1
2 �

2

0
𝑥3 sin �𝜋

2
𝑛𝑥� 𝑑𝑥 =

1
𝑛𝜋 �

8 (−1)𝑛+1 −
12
𝑛𝜋 �

−2
𝑛𝜋 �

𝑥 cos �𝜋
2
𝑛𝑥��

2

0
−�

2

0

−2
𝑛𝜋

cos �𝜋
2
𝑛𝑥� 𝑑𝑥��

=
1
𝑛𝜋 �

8 (−1)𝑛+1 −
12
𝑛𝜋 �

−2
𝑛𝜋

[2 cos (𝜋𝑛)] + 2
𝑛𝜋 �

2

0
cos �𝜋

2
𝑛𝑥� 𝑑𝑥��

=
1
𝑛𝜋 �

8 (−1)𝑛+1 −
24
𝑛2𝜋2 �

−2 (−1)𝑛 +�
2

0
cos �𝜋

2
𝑛𝑥� 𝑑𝑥��

=
1
𝑛𝜋

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
8 (−1)𝑛+1 −

24
𝑛2𝜋2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−2 (−1)𝑛 +

2
𝑛𝜋

0

�����������������
�sin �

𝜋
2
𝑛𝑥��

2

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
1
𝑛𝜋 �

8 (−1)𝑛+1 +
48
𝑛2𝜋2

(−1)𝑛�

=
1
𝑛𝜋 �

−8 (−1)𝑛 +
48
𝑛2𝜋2

(−1)𝑛�

=
−8
𝑛𝜋

(−1)𝑛 +
48
𝑛3𝜋3

(−1)𝑛 (5)

The above takes care of the first term in (4). The second integral 2∫
2

−2
𝑥 sin �𝜋2𝑛𝑥� 𝑑𝑥 in (4)

is now found. Since integrand is even then

2�
2

−2
𝑥 sin �𝜋

2
𝑛𝑥� 𝑑𝑥 = 4�

2

0
𝑥 sin �𝜋

2
𝑛𝑥� 𝑑𝑥

Integration by parts. Let 𝑢 = 𝑥, 𝑑𝑣 = sin �𝜋2𝑛𝑥�, then 𝑑𝑢 = 1, 𝑣 =
−2
𝑛𝜋 cos �𝜋2𝑛𝑥�, therefore

4�
2

0
𝑥 sin �𝜋

2
𝑛𝑥� 𝑑𝑥 = 4 �

−2
𝑛𝜋 �

𝑥 cos �𝜋
2
𝑛𝑥��

2

0
+

2
𝑛𝜋 �

2

0
cos �𝜋

2
𝑛𝑥� 𝑑𝑥�

= 4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2
𝑛𝜋

[2 cos (𝜋𝑛)] + 4
𝑛2𝜋2

0

�����������������
�sin �

𝜋
2
𝑛𝑥��

2

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 4 �
−2
𝑛𝜋

�2 (−1)𝑛��

=
−16
𝑛𝜋

(−1)𝑛

=
16
𝑛𝜋

(−1)𝑛+1 (6)

Substituting (5,6) back into (4) gives

𝑏𝑛 =
1
4 �

2

−2
𝑥3 sin �𝜋

2
𝑛𝑥� 𝑑𝑥 − 2�

2

−2
𝑥 sin �𝜋

2
𝑛𝑥� 𝑑𝑥

= �
−8
𝑛𝜋

(−1)𝑛 +
48
𝑛3𝜋3

(−1)𝑛� −
16
𝑛𝜋

(−1)𝑛+1

= �
−8
𝑛𝜋

(−1)𝑛 +
48
𝑛3𝜋3

(−1)𝑛� +
16
𝑛𝜋

(−1)𝑛

=
48
𝑛3𝜋3

(−1)𝑛 +
8
𝑛𝜋

(−1)𝑛

Hence the Fourier series for 𝑥3

2 − 4𝑥 is

𝑥3

2
− 4𝑥 ∼

∞
�
𝑛=1

𝑏𝑛 sin �𝜋
2
𝑛𝑥�

∼
∞
�
𝑛=1

�
48
𝑛3𝜋3

(−1)𝑛 +
8
𝑛𝜋

(−1)𝑛� sin �𝜋
2
𝑛𝑥�

∼
∞
�
𝑛=1

⎛
⎜⎜⎜⎜⎝
48 + 8 �𝑛2𝜋2�

𝑛3𝜋3

⎞
⎟⎟⎟⎟⎠ (−1)

𝑛 sin �𝜋
2
𝑛𝑥�

∼
∞
�
𝑛=1

⎛
⎜⎜⎜⎜⎝
8 �6 + 𝑛2𝜋2�

𝑛3𝜋3

⎞
⎟⎟⎟⎟⎠ (−1)

𝑛 sin �𝜋
2
𝑛𝑥� (7)
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Comparing (7,2) shows they are not the same. Hence integration term by term was not
justified. This is because the function 𝑥2 − 4 is not odd, hence its mean is not zero.

2.4.9.2 Part d

From Problem 3.4.3, the Fourier series for sin 𝑥 over −1 ≤ 𝑥 ≤ 1 is

sin 𝑥 ∼
∞
�
𝑛=1

−
2𝑛𝜋 (−1)𝑛

𝑛2𝜋2 − 1
sin (1) sin (𝜋𝑛𝑥) (1)

Integrating the LHS of (1) gives

�
𝑥

0
sin (𝑠) 𝑑𝑠 = − [cos (𝑠)]𝑥0

= − [cos (𝑥) − 1]
= 1 − cos 𝑥 (2)

Integrating the RHS of (1) gives

�
𝑥

0

∞
�
𝑛=1

−
2𝑛𝜋 (−1)𝑛

𝑛2𝜋2 − 1
sin (1) sin (𝜋𝑛𝑠) 𝑑𝑠 =

∞
�
𝑛=1

2𝑛𝜋 (−1)𝑛

𝑛2𝜋2 − 1
sin (1) �

cos (𝑛𝜋𝑠)
𝑛𝜋 �

𝑥

0

=
∞
�
𝑛=1

2 (−1)𝑛

𝑛2𝜋2 − 1
sin (1) [cos (𝑛𝜋𝑠)]𝑥0

=
∞
�
𝑛=1

2 (−1)𝑛 sin (1)
𝑛2𝜋2 − 1

(cos (𝑛𝜋𝑥) − 1)

=
∞
�
𝑛=1

2 (−1)𝑛 sin (1)
𝑛2𝜋2 − 1

cos (𝑛𝜋𝑥) − sin (1)
∞
�
𝑛=1

2 (−1)𝑛

𝑛2𝜋2 − 1
(3)

Let − sin (1)∑∞
𝑛=1

2(−1)𝑛

𝑛2𝜋2−1 = 𝑚, which is a constant. The above becomes

�
𝑥

0

∞
�
𝑛=1

−
2𝑛𝜋 (−1)𝑛

𝑛2𝜋2 − 1
sin (1) sin (𝜋𝑛𝑠) 𝑑𝑠 =

∞
�
𝑛=1

2 (−1)𝑛 sin (1)
𝑛2𝜋2 − 1

cos (𝑛𝜋𝑥) + 𝑚 (4)

But 𝑚 is the average of the integral of (2) which is, where 𝑇 the period is 2, gives

𝑚 =
1
𝑇 �

𝑇
2

−𝑇
2

(1 − cos 𝑥) 𝑑𝑥

=
1
2 �

1

−1
(1 − cos 𝑥) 𝑑𝑥

=
1
2
(𝑥 − sin 𝑥)1−1

=
1
2
(1 − sin (1) − (−1 − sin (−1)))

=
1
2
(1 − sin (1) − (−1 + sin (1)))

=
1
2
(2 − 2 sin (1))

= 1 − sin (1)
Substituting this value for 𝑚 back into (4) gives

�
𝑥

0

∞
�
𝑛=1

−
2𝑛𝜋 (−1)𝑛

𝑛2𝜋2 − 1
sin (1) sin (𝜋𝑛𝑠) 𝑑𝑠 = (1 − sin (1)) +

∞
�
𝑛=1

2 (−1)𝑛 sin (1)
𝑛2𝜋2 − 1

cos (𝑛𝜋𝑥) (5)

Now the Fourier series for (2) which is 1 − cos (𝑥) is found to compare it to (5) above to
see they match in order to see if term by term integration was justified or not above. Since
1 − cos (𝑥) is even, then only 𝑎𝑛 are not zero.

𝑎0 =
1
𝑇
2

�
𝑇
2

−𝑇
2

1 − cos (𝑥) 𝑑𝑥

= �
1

−1
1 − cos (𝑥) 𝑑𝑥

= 2 − 2 sin (1)
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And

𝑎𝑛 = �
1

−1
(1 − cos (𝑥)) cos (𝑛𝜋𝑥) 𝑑𝑥

= �
1

−1
cos (𝑛𝜋𝑥) 𝑑𝑥 −�

1

−1
cos (𝑥) cos (𝑛𝜋𝑥) 𝑑𝑥

= 2�
1

0
cos (𝑛𝜋𝑥) 𝑑𝑥 − 2�

1

0
cos (𝑥) cos (𝑛𝜋𝑥) 𝑑𝑥 (6)

The first integral in (6)

2�
1

0
cos (𝑛𝜋𝑥) 𝑑𝑥 = �

sin (𝑛𝜋𝑥)
𝑛𝜋 �

1

0

=
1
𝑛𝜋

sin (𝑛𝜋)

= 0 (7)

The second integral in (6) is 2∫
1

0
cos (𝑥) cos (𝑛𝜋𝑥) 𝑑𝑥. Integration by parts. 𝑢 = cos 𝑥, 𝑑𝑣 =

cos (𝑛𝜋𝑥) , 𝑑𝑢 = − sin 𝑥, 𝑣 = sin(𝑛𝜋𝑥)
𝑛𝜋 . Therefore

2�
1

0
cos (𝑥) cos (𝑛𝜋𝑥) 𝑑𝑥 = 2

⎛
⎜⎜⎜⎜⎝�cos 𝑥sin (𝑛𝜋𝑥)

𝑛𝜋 �
1

0
+�

1

0
sin 𝑥sin (𝑛𝜋𝑥)

𝑛𝜋
𝑑𝑥
⎞
⎟⎟⎟⎟⎠

= 2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
1
𝑛𝜋

0

�����������������������[cos 𝑥 sin (𝑛𝜋𝑥)]10 +
1
𝑛𝜋 �

1

0
sin 𝑥 sin (𝑛𝜋𝑥) 𝑑𝑥

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=
2
𝑛𝜋 �

1

0
sin 𝑥 sin (𝑛𝜋𝑥) 𝑑𝑥

Integration by parts. 𝑢 = sin 𝑥, 𝑑𝑣 = sin (𝑛𝜋𝑥) , 𝑑𝑢 = cos 𝑥, 𝑣 = − cos(𝑛𝜋𝑥)
𝑛𝜋 . The above becomes

2�
1

0
cos (𝑥) cos (𝑛𝜋𝑥) 𝑑𝑥 = 2

𝑛𝜋 �
−1
𝑛𝜋

[sin 𝑥 cos (𝑛𝜋𝑥)]10 +
1
𝑛𝜋 �

1

0
cos 𝑥 cos (𝑛𝜋𝑥) 𝑑𝑥�

=
2
𝑛𝜋 �

−1
𝑛𝜋

[sin (1) cos (𝑛𝜋)] + 1
𝑛𝜋 �

1

0
cos 𝑥 cos (𝑛𝜋𝑥) 𝑑𝑥�

=
−2
𝑛2𝜋2

�sin (1) (−1)𝑛� + 2
𝑛2𝜋2 �

1

0
cos 𝑥 cos (𝑛𝜋𝑥) 𝑑𝑥

Moving the integral in the RHS to the left side gives

2�
1

0
cos (𝑥) cos (𝑛𝜋𝑥) 𝑑𝑥 − 2

𝑛2𝜋2 �
1

0
cos 𝑥 cos (𝑛𝜋𝑥) = −2

𝑛2𝜋2
�sin (1) (−1)𝑛�

�2 −
2

𝑛2𝜋2 ��
1

0
cos (𝑥) cos (𝑛𝜋𝑥) 𝑑𝑥 = −2

𝑛2𝜋2
�sin (1) (−1)𝑛�

�
1

0
cos (𝑥) cos (𝑛𝜋𝑥) 𝑑𝑥 =

−1
𝑛2𝜋2

�sin (1) (−1)𝑛�

�1 − 1
𝑛2𝜋2

�

=
− �sin (1) (−1)𝑛�

𝑛2𝜋2 − 1
(8)

Substituting (7,8) back into (6) gives

𝑎𝑛 =
2 sin (1) (−1)𝑛

𝑛2𝜋2 − 1
Hence the Fourier series for 1 − cos (𝑥) over −1 ≤ 𝑥 ≤ 1 is

1 − cos (𝑥) ∼ 𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos (𝑛𝜋𝑥)

∼
(2 − 2 sin (1))

2
+

∞
�
𝑛=1

2 (−1)𝑛 sin (1)
𝑛2𝜋2 − 1

cos (𝑛𝜋𝑥)

∼ (1 − sin (1)) +
∞
�
𝑛=1

2 (−1)𝑛 sin (1)
𝑛2𝜋2 − 1

cos (𝑛𝜋𝑥) (9)
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Comparing (9) and (5), shows they are the same. This shows that integration term by term
was justified. This is because sin 𝑥 is continuous and odd, hence its mean is zero. Then by
Theorem 3.20 it can be integrated term by term.

2.4.10 Problem 3.5.5 (a,f,i)

Which of the following sequence of functions converge pointwise to the zero function for
all 𝑥 ∈ ℜ ? Which converges uniformly ?

(a) − 𝑥
2

𝑛2 (f) |𝑥 − 𝑛| (i)

⎧⎪⎪⎨
⎪⎪⎩

𝑥
𝑛 |𝑥| < 1
1
𝑛𝑥 |𝑥| ≥ 1

solution

2.4.10.1 Part a

Let 𝑓𝑛 (𝑥) = − 𝑥
2

𝑛2 . At 𝑥 = 0 then 𝑓𝑛 (0) = 0. And for 𝑥 ≠ 0 then, if we fix 𝑥 at say 𝑥∗ and
increase 𝑛, then lim𝑛→∞ 𝑓𝑛 (𝑥∗) = 0. Hence it converges pointwise for the zero function for
all 𝑥 because for any 𝑥 , we fix it and do the same as above, which goes to zero for that 𝑥.

For uniform convergence, it means that for any 𝑥 we can find large enough 𝑛 such that all
𝑓𝑛 (𝑥) are inside a tube, of some diameter < 𝜀 around the zero function. But since 𝑥 is not
bounded, then 𝑓𝑛 (𝑥) can be as large as we want. So not possible to find 𝑛 larger enough
to bound all 𝑓𝑛 (𝑥) for all 𝑥 𝑥 ∈ ℜ to be < 𝜀 from the zero function.

Hence not uniform convergent. The di�erence between this and the pointwise case earlier,
is that here 𝑛 we find, should work for all 𝑥 at the same time.

2.4.10.2 Part f

Let 𝑓𝑛 (𝑥) = |𝑥 − 𝑛|. At any 𝑥, lim𝑛→∞ |𝑥 − 𝑛| is positive. By fixing 𝑥 = 𝑥∗, then 𝑓𝑛 (𝑥∗) this
will keep increasing as 𝑛 increases. Hence not pointwise convergent to the zero function.
Therefore also not uniform convergent since uniform convergence implies pointwise con-
vergence.

2.4.10.3 Part i

At 𝑥 = 0, 𝑓𝑛 (𝑥) = 0. And for |𝑥| < 1, lim𝑛→∞
𝑥
𝑛 → 0 since |𝑥| < 1. Hence for |𝑥| < 1 it

converges pointwise to zero. For |𝑥| ≥ 1, by fixing 𝑥 = 𝑥∗, then lim𝑛→∞
1
𝑛𝑥∗ → 0 also. Hence

converges pointwise to zero for all 𝑥 ∈ ℜ.

For uniform convergence, max �𝑓𝑛 (𝑥)� =
1
𝑛 which is at 𝑥 = 1. And max �𝑓𝑛 (𝑥)� → 0 as 𝑛 → ∞.

Hence we could always find 𝑛 which will make all 𝑓𝑛 (𝑥) within 𝜀 from each others at any 𝑥
by increasing 𝑛. Hence uniform convergent

2.4.11 Problem 3.5.7 (b,d,f)

Does the convergence of 𝑣𝑛 (𝑥) converges pointwise to the zero function for all 𝑥 ∈ ℜ ? Does
it converge uniformly?

(b) 𝑣𝑛 (𝑥) =

⎧⎪⎪⎨
⎪⎪⎩
1 𝑛 < 𝑥 < 𝑛 + 1
0 otherwise

(d) 𝑣𝑛 (𝑥) =

⎧⎪⎪⎨
⎪⎪⎩

1
𝑛 𝑛 < 𝑥 < 2𝑛
0 otherwise

(f) 𝑣𝑛 (𝑥) =

⎧⎪⎪⎨
⎪⎪⎩
𝑛2𝑥2 − 1 − 1𝑛 < 𝑥 <

1
𝑛

0 otherwise

solution
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2.4.11.1 Part b

This is a pulse width 1 that keeps moving to the right as 𝑛 increases. All other values are
zero. Hence as 𝑛 → ∞, the pulse will move to ∞ and all values will be zero. Therefore
converges pointwise. Since Max of 𝑣𝑛 (𝑥) is 1, then it is not not uniform convergent since
for 𝜀 < 1, we can not bound 𝑣𝑛 (𝑥) for all values for all 𝑥 to be inside the tube around zero
function with width 𝜀 < 1.

2.4.11.2 Part d

𝑛 < 𝑥 < 2𝑛 is a pulse that moves to the right, but its width also increases as it moves. It
height also decreases as it moves, keeping the area of the pulse 1 all the time. Fixing 𝑥 at
𝑥∗ the pulse will eventually become zero height at that 𝑥. Therefore converges pointwise to
the zero function.

For uniform convergence, max |𝑣𝑛 (𝑥)| =
1
𝑛 and max |𝑣𝑛 (𝑥)| → 0 as 𝑛 → ∞. Hence we could

always find 𝑛 which will make all 𝑓𝑛 (𝑥) within 𝜀 from each others at any 𝑥 by increasing 𝑛.
Hence uniform convergent

2.4.11.3 Part f

As 𝑛 increases, the range where 𝑥 is not zero becomes smaller around 𝑥 = 0. The value of
𝑣𝑛 (𝑥) can be written as

𝑣𝑛 (𝑥) = 𝑛2𝑒2 ln 𝑥 − 1

As 𝑥 → 0 from either side, which what happens when 𝑛 → ∞, then 𝑣𝑛 (𝑥) → −1. Hence it
does not go to zero at 𝑥 = 0. Therefore not pointwise convergent. It follows that not uniform convergent
since uniform convergent implies pointwise convergent.
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2.4.12 Key solution for HW 4
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3.4.3 b,d 

 
 

3.4.4 (for 3.4.3 b,d) 

 
 

3.4.5 (for 3.4.3 b,d) 

 
 

3.5.5a,f,i 

 
 

3.5.7b,d,f 
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2.5.1 Problem 3.5.11(e,f)

Which of the following series satisfy the M–test and hence converge uniformly on the
interval 𝐼 = [0, 1]?

(e) ∑∞
𝑘=1

𝑒𝑘𝑥

𝑘2 , (f) ∑
∞
𝑘=1

𝑒−𝑘𝑥

𝑘2

Solution

2.5.1.1 Part e

Using theorem 3.27, we need to find |𝑢𝑘 (𝑥)| ≤ 𝑚𝑘 for all 𝑥 ∈ 𝐼 such that ∑∞
𝑘=1𝑚𝑘 < ∞ to show

that series ∑∞
𝑘=1 𝑢𝑘 (𝑥) converges uniformly. In this case 𝑢𝑘 (𝑥) =

𝑒𝑘𝑥

𝑘2 . At 𝑥 = 0, 𝑢𝑘 (0) =
1
𝑘2 and

at 𝑥 = 1, 𝑢𝑘 (1) =
𝑒𝑘

𝑘2 . Hence if we pick 𝑚𝑘 =
𝑒𝑘

𝑘2 then this will satisfy the condition |𝑢𝑘 (𝑥)| ≤ 𝑚𝑘.
But

∞
�
𝑘=1

𝑚𝑘 =
∞
�
𝑘=1

𝑒𝑘

𝑘2

does not converge. This can be shown by ratio test. 𝑚𝑘+1
𝑚𝑘

=
𝑒𝑘+1

(𝑘+1)2

𝑒𝑘

𝑘2

= 𝑒𝑘+1𝑘2

𝑒𝑘(𝑘+1)2
= 𝑒 𝑘2

(𝑘+1)2
and as

𝑘 → ∞ this goes to 𝑒. Which is larger than 1. Therefore ∑∞
𝑘=1

𝑒𝑘𝑥

𝑘2 is not uniform convergent.

2.5.1.2 Part e

In this case 𝑢𝑘 (𝑥) =
𝑒−𝑘𝑥

𝑘2 . At 𝑥 = 0, 𝑢𝑘 (0) =
1
𝑘2 and at 𝑥 = 1, 𝑢𝑘 (1) =

1
𝑒𝑘𝑘2

. Hence if we pick

𝑚𝑘 =
1
𝑒𝑘𝑘2

then this will satisfy the condition |𝑢𝑘 (𝑥)| ≤ 𝑚𝑘.
∞
�
𝑘=1

𝑚𝑘 =
∞
�
𝑘=1

1
𝑒𝑘𝑘2

Using the ratio test 𝑚𝑘+1
𝑚𝑘

=
1

𝑒𝑘+1(𝑘+1)2

1
𝑒𝑘𝑘2

= 𝑒𝑘𝑘2

𝑒𝑘+1(𝑘+1)2
= 1

𝑒
𝑘2

(𝑘+1)2
and as 𝑘 → ∞ this goes to 1

𝑒 .

Which is smaller than 1. Hence by the ratio test ∑∞
𝑘=1𝑚𝑘 converges. Therefore ∑

∞
𝑘=1

𝑒−𝑘𝑥

𝑘2 is
uniform convergent.

2.5.2 Problem 3.5.21(a,c,e)

First, without explicitly evaluating them, how fast do you expect the Fourier coe�cients
of the following functions to go to zero as 𝑘 → ∞ ? Then prove your claim by evaluating
the coe�cients. (a) 𝑥 − 𝜋, (c) 𝑥2, (e) sin2 𝑥.

Solution
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2.5.2.1 Part a

𝑓 (𝑥) = 𝑥 − 𝜋. This is an odd function. Hence 𝑓 (−𝜋) ≠ 𝑓 (𝜋). Because of this, there will be a
jump discontinuity in the 2𝜋 periodic extension. This also implies that the Fourier series
is not uniform convergent.

Due to the jump discontinuity the convergence will be slow relative to a Fourier series
which converges uniformly, and therefore we expect the 𝑏𝑛 terms to be of the form 1

𝑛 instead

of 1
𝑛𝑟 with 𝑟 > 1, as would be the case with the faster uniform convergence.

Now we will find the Fourier series to confirm this.

𝑏𝑛 =
1
𝜋 �

𝜋

−𝜋
(𝑥 − 𝜋) sin 𝑛𝑥𝑑𝑥

=
1
𝜋 �

𝜋

−𝜋
𝑥 sin 𝑛𝑥𝑑𝑥 − 1

𝜋 �
𝜋

−𝜋
𝜋 sin 𝑛𝑥𝑑𝑥

But ∫
𝜋

−𝜋
𝜋 sin 𝑛𝑥𝑑𝑥 = 0 since this is an integration over one period. Therefore the above

becomes

𝑏𝑛 =
1
𝜋 �

𝜋

−𝜋
𝑥 sin 𝑛𝑥𝑑𝑥

=
1
𝜋 �

−
1
𝑛
[𝑥 cos 𝑛𝑥]𝜋−𝜋 +

1
𝑛 �

𝜋

−𝜋
cos 𝑛𝑥𝑑𝑥�

But ∫
𝜋

−𝜋
cos 𝑛𝑥𝑑𝑥 = 0 since this is an integration over one period. The above becomes

𝑏𝑛 =
−1
𝑛𝜋

[𝑥 cos 𝑛𝑥]𝜋−𝜋

=
−1
𝑛𝜋

[𝜋 cos 𝑛𝜋 + 𝜋 cos 𝑛𝜋]

=
−1
𝑛𝜋

�2𝜋 (−1)𝑛�

=
−2 (−1)𝑛

𝑛
Hence the Fourier series is

𝑥 − 𝜋 ∼
∞
�
𝑛=1

−2 (−1)𝑛

𝑛
sin 𝑛𝑥

The coe�cient is 𝑏𝑛 =
−2(−1)𝑛

𝑛 . We see now that
∞
�
𝑛=1

�𝑏2𝑛 = 4
∞
�
𝑛=1

1
𝑛

But ∑∞
𝑛=1

1
𝑛 does not converge, which implies it is not uniform convergent as expected.

Piecewise convergence is of order 𝑂� 1𝑛� (slow).

2.5.2.2 Part c

𝑓 (𝑥) = 𝑥2. This is an even function and 𝑓 (−𝜋) = 𝑓 (𝜋). Hence there will be no jump
discontinuity in the 2𝜋 periodic extension. Therefore this is uniform convergent. Hence
we expect the coe�cient to have 1

𝑛𝑟 where 𝑟 > 1. For example 1
𝑛2 . This is because ∑

∞
𝑛=1�𝑎

2
𝑛

should now converge. This is considered fast convergence. Now we will find the Fourier
series to confirm this. Since 𝑓 (𝑥) is an even function then only 𝑎𝑛 exist.

𝑎0 =
1
𝜋 �

𝜋

−𝜋
𝑥2𝑑𝑥 =

1
𝜋 �

𝑥3

3 �
𝜋

−𝜋
=

1
3𝜋

�𝜋3 + 𝜋3� =
2
3
𝜋2

And

𝑎𝑛 =
1
𝜋 �

𝜋

−𝜋
𝑥2 cos 𝑛𝑥𝑑𝑥
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Integration by parts. Let 𝑢 = 𝑥2, cos (𝑛𝑥) = 𝑑𝑣. Then 𝑑𝑢 = 2𝑥, 𝑣 = 1
𝑛 sin (𝑛𝑥). Then using

∫𝑢𝑑𝑣 = 𝑢𝑣 − ∫𝑣𝑑𝑢 the above becomes

𝑏𝑛 =
1
𝜋 �

1
𝑛
�𝑥2 sin (𝑛𝑥)�

𝜋

0
−
2
𝑛 �

𝜋

0
𝑥 sin (𝑛𝑥) 𝑑𝑥�

=
1
𝜋 �

−
2
𝑛 �

𝜋

0
𝑥 sin (𝑛𝑥) 𝑑𝑥�

= −
2
𝑛𝜋 �

𝜋

0
𝑥 sin (𝑛𝑥) 𝑑𝑥

Integration by parts again. Let 𝑢 = 𝑥, sin (𝑛𝑥) = 𝑑𝑣. Then 𝑑𝑢 = 1, 𝑣 = −1
𝑛 cos (𝑛𝑥). Then using

∫𝑢𝑑𝑣 = 𝑢𝑣 − ∫𝑣𝑑𝑢 the above becomes

𝑏𝑛 = −
2
𝑛𝜋 �

−1
𝑛
[𝑥 cos (𝑛𝑥)]𝜋0 +

1
𝑛 �

𝜋

0
cos (𝑛𝑥)�

= − −
2
𝑛𝜋

⎛
⎜⎜⎜⎜⎝
−1
𝑛
[𝜋 cos (𝑛𝜋)] + 1

𝑛 �
sin 𝑛𝑥
𝑛 �

𝜋

0

⎞
⎟⎟⎟⎟⎠

= −
2
𝑛𝜋 �

−1
𝑛
�𝜋 (−1)𝑛��

=
2
𝑛2𝜋

�𝜋 (−1)𝑛�

=
2
𝑛2
(−1)𝑛

Hence

𝑥2 ∼
1
3
𝜋2 +

∞
�
𝑛=1

2
𝑛2
(−1)𝑛 cos (𝑛𝑥) (1)

We see that the coe�cient is 𝑎𝑛 =
2
𝑛2
(−1)𝑛, therefore
∞
�
𝑛=1

�𝑎2𝑛 = 4
∞
�
𝑛=1

1
𝑛2

But now∑∞
𝑛=1

1
𝑛2 now converges since the power on 𝑛 is larger than 1, which implies uniform

convergent. Piecewise convergence is of order 𝑂� 1𝑛2 � (fast).

2.5.2.3 Part e

𝑓 (𝑥) = sin2 𝑥. This is an even function and 𝑓 (−𝜋) = 𝑓 (𝜋). This is the same as part c.
There will be no jump discontinuity in the 2𝜋 periodic extension. Therefore this is uniform
convergent. Hence we expect the coe�cient to have 1

𝑛𝑟 where 𝑟 > 1. For example 1
𝑛2 this is

because ∑∞
𝑛=1�𝑎

2
𝑛 should converge. This is fast convergence. Now we will find the Fourier

series to confirm this.

But sin2 𝑥 = 1
2 −

1
2 cos 2𝑥, hence this is the Fourier series for sin2 𝑥. If we need to show this

explicitly, then since even function only 𝑎𝑛 exist.

𝑎0 =
1
𝜋 �

𝜋

−𝜋
sin2 𝑥𝑑𝑥

=
1
𝜋 �

𝜋

−𝜋
�
1
2
−
1
2

cos 2𝑥� 𝑑𝑥

=
1
2𝜋

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
�

𝜋

−𝜋
𝑑𝑥 −

0

�����������������
�

𝜋

−𝜋
cos 2𝑥𝑑𝑥

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
1
2𝜋
2𝜋

= 1
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And

𝑎𝑛 =
1
𝜋 �

𝜋

−𝜋
sin2 𝑥 cos 𝑛𝑥𝑑𝑥

=
1
𝜋 �

𝜋

−𝜋
�
1
2
−
1
2

cos 2𝑥� cos 𝑛𝑥𝑑𝑥

=
1
2𝜋 ��

𝜋

−𝜋
cos 𝑛𝑥𝑑𝑥 −�

𝜋

−𝜋
cos 2𝑥 cos 𝑛𝑥𝑑𝑥�

But ∫
𝜋

−𝜋
cos 𝑛𝑥𝑑𝑥 = 0 since integration over one period, and ∫𝜋

−𝜋
cos 2𝑥 cos 𝑛𝑥𝑑𝑥 = 0 for all

values other than 𝑛 = 2 by orthogonality. Hence the above simplifies to

𝑎2 =
1
2𝜋 �

−�
𝜋

−𝜋
cos2 2𝑥𝑑𝑥�

=
1
2𝜋

(−𝜋)

= −
1
2

Hence

sin2 𝑥 = 𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos 𝑛𝑥

=
1
2
−
1
2

cos 2𝑥

We see that ∑∞
𝑛=1�𝑎

2
𝑛 =

1
2 < ∞. Uniform convergence. Only 2 terms are needed. Very fast

convergence.

2.5.3 Problem 3.5.22(a,f)

Using the criteria of Theorem 3.31, determine how many continuous derivatives the func-

tions represented by the following Fourier series have (a)∑∞
𝑘=−∞

𝑒𝑖𝑘𝑥

1+𝑘4
, (f)∑∞

𝑘=1 �1 − cos 1
𝑘2
� 𝑒𝑖𝑘𝑥

Theorem 3.31. Let 0 ≤ 𝑛 ∈ ℤ. If the Fourier coe�cients of 𝑓(𝑥) satisfy
∞
�
𝑘=−∞

|𝑘|𝑚 |𝑐𝑘| < ∞

Then the Fourier series 𝑓 (𝑥) = ∑∞
𝑘=−∞ 𝑐𝑘𝑒

𝑖𝑘𝑥 converges uniformly to an 𝑛–times continuously
di�erentiable function ̃𝑓 (𝑥) ∈ 𝐶𝑛, which is the 2𝜋 periodic extension of 𝑓(𝑥).

Solution

2.5.3.1 Part a

𝑓 (𝑥) ∼
∞
�
𝑘=−∞

𝑒𝑖𝑘𝑥

1 + 𝑘4

Therefore 𝑐𝑘 =
1

1+𝑘4
, hence the series to consider is

∞
�
𝑘=−∞

|𝑘|𝑛 |𝑐𝑘| =
∞
�
𝑘=−∞

�
𝑘𝑛

1 + 𝑘4
�

=
∞
�
𝑘=−∞

�
1

1
𝑘𝑛 + 𝑘

4−𝑛
�

As 𝑘 → ∞ the term 1
𝑘𝑛 → 0. Then we just need to consider 𝑘4−𝑛. We want 4 − 𝑛 > 1 for

uniform convergence. Hence

4 − 𝑛 > 1
𝑛 < 4

Therefore 𝑛 = 3. The Fourier series converges uniformly to an 3–times continuously di�er-
entiable function
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2.5.3.2 Part f

𝑓 (𝑥) ∼
∞
�
𝑘=1

�1 − cos 1
𝑘2 �

𝑒𝑖𝑘𝑥

Therefore 𝑐𝑘 = 1 − cos 1
𝑘2 , hence the series to consider is

∞
�
𝑘=−∞

|𝑘|𝑚 |𝑐𝑘| =
∞
�
𝑘=−∞

|𝑘𝑚| ��1 − cos 1
𝑘2 �

�

But �cos 1
𝑘2 � ≤ 1, hence

∞
�
𝑘=−∞

|𝑘𝑚| ��1 − cos 1
𝑘2 �

� ≤ 2
∞
�
𝑘=−∞

|𝑘𝑚|

There is no 𝑛 ≥ 0which will make∑∞
𝑘=−∞ |𝑘

𝑛| < ∞. The Fourier series does not converges uniformly
to any continuously di�erentiable function.

2.5.4 Problem 3.5.26(c,e)

Which of the following sequences converge in norm to the zero function for 𝑥 ∈ ℝ? (c)

𝑣𝑛 (𝑥) =

⎧⎪⎪⎨
⎪⎪⎩
1 𝑛 < 𝑥 < 𝑛 + 1

𝑛
0 otherwise

, (e) 𝑣𝑛 (𝑥) =

⎧⎪⎪⎨
⎪⎪⎩

1

√𝑛
𝑛 < 𝑥 < 2𝑛

0 otherwise

solution

2.5.4.1 Part c

Using definition 3.35: A sequence 𝑣𝑛 (𝑥) is said to converge in the norm to 𝑓 if �𝑣𝑛 − 𝑓� → 0
as 𝑛 → ∞. Therefore, we need to show, since 𝑓 = 0 here, that

lim
𝑛→∞

‖𝑣𝑛‖ → 0

The norm is 𝐿2 which is defined as ‖𝑣𝑛‖ = �
1
2𝜋
∫𝜋
−𝜋
|𝑣𝑛 (𝑥)|

2 𝑑𝑥, hence

‖𝑣𝑛‖ =

�
⃓
⃓
⃓
⎷

1
2𝜋 �

𝜋

−𝜋
�

⎧⎪⎪⎨
⎪⎪⎩
1 𝑛 < 𝑥 < 𝑛 + 1

𝑛
0 otherwise

�

2

𝑑𝑥

=
�
⃓⃓
⃓
⎷

1
2𝜋 �

𝜋

−𝜋

⎧⎪⎪⎨
⎪⎪⎩
1 𝑛 < 𝑥 < 𝑛 + 1

𝑛
0 otherwise

𝑑𝑥

Let us look at the integral ∫
𝜋

−𝜋

⎧⎪⎪⎨
⎪⎪⎩
1 𝑛 < 𝑥 < 𝑛 + 1

𝑛
0 otherwise

𝑑𝑥. The maximum value of top branch

integral is ∫
𝜋

−𝜋
𝑑𝑥 which will occur when 𝑥 = 𝑛 > 0 and 𝑥 = 𝑛 + 1

𝑛 < 𝜋. As this is when the

whole pulse is between [−𝜋, 𝜋]. When 𝑥 = 𝑛 + 1
𝑛 > 𝜋 the area will be smaller as part of the

above will be outside [−𝜋, 𝜋] . So we could now consider the integral (its maximum) to be

�
𝜋

−𝜋
𝑑𝑥 ≤ �

𝑛+ 1
𝑛

𝑛
𝑑𝑥

= �𝑛 +
1
𝑛�
− 𝑛

=
1
𝑛

Therefore

lim
𝑛→∞

‖𝑣𝑛‖ ≤
�
⃓⃓
⃓
⎷

1
2𝜋

⎧⎪⎪⎨
⎪⎪⎩

1
𝑛 0 < 𝑛, 𝑛

2+1
𝑛 < 𝜋

0 otherwise

=

⎧⎪⎪⎨
⎪⎪⎩
�

1
2𝜋𝑛 0 < 𝑛, 𝑛

2+1
𝑛 < 𝜋

0 otherwise

= 0
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Hence this sequence converges to 0 function in the norm

2.5.4.2 Part e

Using definition 3.35: A sequence 𝑣𝑛 (𝑥) is said to converge in the norm to 𝑓 if �𝑣𝑛 − 𝑓� → 0
as 𝑛 → ∞. Therefore, we need to show, since 𝑓 = 0 here, that

lim
𝑛→∞

‖𝑣𝑛‖ → 0

The norm is 𝐿2 which is defined as ‖𝑣𝑛‖ = �
1
2𝜋
∫𝜋
−𝜋
|𝑣𝑛 (𝑥)|

2 𝑑𝑥, hence

‖𝑣𝑛‖ =

�
⃓
⃓
⃓
⎷

1
2𝜋 �

𝜋

−𝜋
�

⎧⎪⎪⎨
⎪⎪⎩

1

√𝑛
𝑛 < 𝑥 < 2𝑛

0 otherwise
�

2

𝑑𝑥

=
�
⃓⃓
⃓
⎷

1
2𝜋 �

𝜋

−𝜋

⎧⎪⎪⎨
⎪⎪⎩

1
𝑛 𝑛 < 𝑥 < 2𝑛
0 otherwise

𝑑𝑥

Let us look at the integral ∫
𝜋

−𝜋

⎧⎪⎪⎨
⎪⎪⎩

1
𝑛 𝑛 < 𝑥 < 2𝑛
0 otherwise

𝑑𝑥. The maximum value of this integral

is 1
𝑛
∫𝜋
−𝜋
𝑑𝑥 which will occur when 𝑥 = 𝑛 > 0 and 𝑥 = 2𝑛 < 𝜋 As this is when the whole pulse

is between [−𝜋, 𝜋]. So we could now consider the integral (its maximum) to be

�
𝜋

−𝜋

1
𝑛
𝑑𝑥 ≤

1
𝑛 �

2𝑛

𝑛
𝑑𝑥

=
1
𝑛
(2𝑛 − 𝑛)

=
𝑛
𝑛

= 1

Therefore

‖𝑣𝑛‖ ≤ �
1
2𝜋

⎧⎪⎪⎨
⎪⎪⎩
1 0 < 𝑛, 2𝑛 < 𝜋
0 otherwise

=

⎧⎪⎪⎨
⎪⎪⎩
�

1
2𝜋 0 < 𝑛 < 𝜋

2
0 otherwise

Therefore as 𝑛 → ∞ then ‖𝑣𝑛‖ → 0 as the top branch will not be consider as it is limited to
0 < 𝑛, 2𝑛 < 𝜋 or 0 < 𝑛 < 𝜋

2 only. Hence this sequence converges to 0 function in the norm

2.5.5 Problem 3.5.43

For each 𝑛 = 1, 2,⋯, define the function 𝑓𝑛 (𝑥) =

⎧⎪⎪⎨
⎪⎪⎩
1 𝑘

𝑚 ≤ 𝑥 ≤
𝑘+1
𝑚

0 otherwise
, where 𝑛 = 1

2𝑚 (𝑚 + 1)+

𝑘 and 0 ≤ 𝑘 ≤ 𝑚. (a) Show first that 𝑚, 𝑘 are uniquely determined by 𝑛. (b) Then prove
that, on the interval [0, 1] the sequence 𝑓𝑛 (𝑥) converges in norm to 0 but does not converge
pointwise anywhere.

solution

2.5.5.1 Part a

Proof by contradiction. Assuming there exist 𝑚1, 𝑚2 ≥ 0 where 𝑚1 ≠ 𝑚2 such that

𝑛 =
1
2
𝑚1 (𝑚1 + 1) + 𝑘

𝑛 =
1
2
𝑚2 (𝑚2 + 1) + 𝑘
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Therefore
1
2
𝑚1 (𝑚1 + 1) + 𝑘 =

1
2
𝑚2 (𝑚2 + 1) + 𝑘

1
2
𝑚1 (𝑚1 + 1) =

1
2
𝑚2 (𝑚2 + 1)

𝑚1 (𝑚1 + 1) = 𝑚2 (𝑚2 + 1)

The above is true if 𝑚1 = 𝑚2 or if 𝑚2 = −𝑚1 − 1. But 𝑚 has to be positive. Hence we take
the case 𝑚1 = 𝑚2. Therefore assumption is not valid. Hence 𝑚 is unique.

Same proof for 𝑘. Assuming there exist 𝑘1, 𝑘2 ≥ 0 where 𝑘1 ≠ 𝑘2 such that

𝑛 =
1
2
𝑚 (𝑚 + 1) + 𝑘1

𝑛 =
1
2
𝑚 (𝑚 + 1) + 𝑘2

Then
1
2
𝑚 (𝑚 + 1) + 𝑘1 =

1
2
𝑚 (𝑚 + 1) + 𝑘2

Hence 𝑘1 = 𝑘2. Therefore assumption is not valid. Hence 𝑘 is unique.

2.5.5.2 Part b

𝑓𝑛 (𝑥) =

⎧⎪⎪⎨
⎪⎪⎩
1 𝑘

𝑚 ≤ 𝑥 ≤
𝑘+1
𝑚

0 otherwise

On the interval [0, 1], the norm is 𝐿2 which is defined as �𝑓𝑛� =
�

1
1
2

∫1
0
|𝑣𝑛 (𝑥)|

2 𝑑𝑥, hence

�𝑓𝑛� =

�
⃓
⃓
⃓
⎷
2�

1

0
�

⎧⎪⎪⎨
⎪⎪⎩
1 𝑘

𝑚 ≤ 𝑥 ≤
𝑘+1
𝑚

0 otherwise
�

2

𝑑𝑥

=
�
⃓⃓
⃓
⎷
2�

1

0

⎧⎪⎪⎨
⎪⎪⎩
1 𝑘

𝑚 ≤ 𝑥 ≤
𝑘+1
𝑚

0 otherwise
𝑑𝑥

Let us look at few values of 𝑛 and see what happens.

For 𝑛 = 1, 𝑛 = 1
2𝑚 (𝑚 + 1) + 𝑘. Hence if 𝑚 = 1 then 𝑛 = 1

2
(2) + 0 = 1, Hence 𝑚 = 1, 𝑘 = 0.

Therefore 𝑘
𝑚 ≤ 𝑥 ≤

𝑘+1
𝑚 becomes 0 ≤ 𝑥 ≤ 1.

For 𝑛 = 2, 𝑛 = 1
2𝑚 (𝑚 + 1) + 𝑘. Hence if 𝑚 = 1 then 𝑛 = 1

2
(2) + 1 = 1, Hence 𝑚 = 1, 𝑘 = 1.

Therefore 𝑘
𝑚 ≤ 𝑥 ≤

𝑘+1
𝑚 becomes 1 ≤ 𝑥 ≤ 2.

For 𝑛 = 3, 𝑛 = 1
2𝑚 (𝑚 + 1) + 𝑘. Hence if 𝑚 = 1 then 𝑛 = 1

2
(2) + 2 = 1, But 𝑘 ≤ 𝑚. Try 𝑚 = 2

then 𝑛 = 1
2
(2) (3) + 0 = 1. Hence 𝑚 = 2, 𝑘 = 0. Therefore 𝑘

𝑚 ≤ 𝑥 ≤
𝑘+1
𝑚 becomes 0 ≤ 𝑥 ≤ 1

2 .

It looks like the width is becoming smaller as 𝑛 increases. To verify this, I wrote a small
program which determines the width (we only need the width which remains inside [0, 1].
Here is the code
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� �
1 #problem 3.5.43
2

3 f:= proc(num_terms)
4 local data,m,k,n;
5 data:=Array(1..num_terms);
6 for n from 1 to num_terms do
7 for m from 1 to num_terms do
8 if (m/2)*(m+1) = n then
9 k:=0;
10 data(n):=[m,k];
11 break;
12 else
13 for k from 1 to m do
14 if (m/2)*(m+1)+k=n then
15 data(n):=[m,k];
16 break;
17 fi;
18 od;
19 fi;
20 od;
21 od;
22 return data;
23 end proc:
24

25 data:=f(50):
26 #process the k,m found to see how the width changes as n increases.
27 out_file_name := cat(currentdir(),"/output.txt"):
28 file_id := fopen(out_file_name,WRITE):
29 for n from 1 to numelems(data) do
30 item:=data(n);
31 if item[2]/item[1]<1 then
32 the_width:=(item[2]+1)/item[1] - item[2]/item[1];
33 the_values:=cat("k=",convert(item[2],string),
34 " m=",convert(item[1],string));
35 the_string:=cat(convert(item[2]/item[1],string),
36 "<= x <=",convert((item[2]+1)/item[1],string)
37 );
38 the_width:=cat("Width=",convert(the_width,string));
39 print(the_string);
40 fprintf(file_id,"n=%-5d%-10s%-15s%-20s\n",
41 n,the_values,the_string,the_width);
42 fi;
43 od:
44 fclose(file_id);� �

And the output obtained
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� �
1 n=1 k=0 m=1 0<= x <=1 Width=1
2 n=3 k=0 m=2 0<= x <=1/2 Width=1/2
3 n=4 k=1 m=2 1/2<= x <=1 Width=1/2
4 n=6 k=0 m=3 0<= x <=1/3 Width=1/3
5 n=7 k=1 m=3 1/3<= x <=2/3 Width=1/3
6 n=8 k=2 m=3 2/3<= x <=1 Width=1/3
7 n=10 k=0 m=4 0<= x <=1/4 Width=1/4
8 n=11 k=1 m=4 1/4<= x <=1/2 Width=1/4
9 n=12 k=2 m=4 1/2<= x <=3/4 Width=1/4
10 n=13 k=3 m=4 3/4<= x <=1 Width=1/4
11 n=15 k=0 m=5 0<= x <=1/5 Width=1/5
12 n=16 k=1 m=5 1/5<= x <=2/5 Width=1/5
13 n=17 k=2 m=5 2/5<= x <=3/5 Width=1/5
14 n=18 k=3 m=5 3/5<= x <=4/5 Width=1/5
15 n=19 k=4 m=5 4/5<= x <=1 Width=1/5
16 n=21 k=0 m=6 0<= x <=1/6 Width=1/6
17 n=22 k=1 m=6 1/6<= x <=1/3 Width=1/6
18 n=23 k=2 m=6 1/3<= x <=1/2 Width=1/6
19 n=24 k=3 m=6 1/2<= x <=2/3 Width=1/6
20 n=25 k=4 m=6 2/3<= x <=5/6 Width=1/6
21 n=26 k=5 m=6 5/6<= x <=1 Width=1/6
22 n=28 k=0 m=7 0<= x <=1/7 Width=1/7
23 n=29 k=1 m=7 1/7<= x <=2/7 Width=1/7
24 n=30 k=2 m=7 2/7<= x <=3/7 Width=1/7
25 n=31 k=3 m=7 3/7<= x <=4/7 Width=1/7
26 n=32 k=4 m=7 4/7<= x <=5/7 Width=1/7
27 n=33 k=5 m=7 5/7<= x <=6/7 Width=1/7
28 n=34 k=6 m=7 6/7<= x <=1 Width=1/7
29 n=36 k=0 m=8 0<= x <=1/8 Width=1/8
30 n=37 k=1 m=8 1/8<= x <=1/4 Width=1/8
31 n=38 k=2 m=8 1/4<= x <=3/8 Width=1/8
32 n=39 k=3 m=8 3/8<= x <=1/2 Width=1/8
33 n=40 k=4 m=8 1/2<= x <=5/8 Width=1/8
34 n=41 k=5 m=8 5/8<= x <=3/4 Width=1/8
35 n=42 k=6 m=8 3/4<= x <=7/8 Width=1/8
36 n=43 k=7 m=8 7/8<= x <=1 Width=1/8
37 n=45 k=0 m=9 0<= x <=1/9 Width=1/9
38 n=46 k=1 m=9 1/9<= x <=2/9 Width=1/9
39 n=47 k=2 m=9 2/9<= x <=1/3 Width=1/9
40 n=48 k=3 m=9 1/3<= x <=4/9 Width=1/9
41 n=49 k=4 m=9 4/9<= x <=5/9 Width=1/9
42 n=50 k=5 m=9 5/9<= x <=2/3 Width=1/9� �

We see from the above that as 𝑛 increases the range 𝑘
𝑚 ≤ 𝑥 ≤ 𝑘+1

𝑚 either goes outside the
[0, 1] domain as in the case of 𝑛 = 2, 5, 9 or stays inside [0, 1] but it becomes smaller with
𝑛 = 10 giving 0 ≤ 𝑥 ≤ 1

4 while 𝑛 = 1 it was 0 ≤ 𝑥 ≤ 1.

Since we are integrating 1 over this range, and the width of integration is getting smaller
and smaller, then for very large 𝑛 the integral goes to zero as the width goes to zero.

In other words, we can bound the integral from above as
�
⃓⃓
⃓
⎷
2�

1

0

⎧⎪⎪⎨
⎪⎪⎩
1 𝑘

𝑚 ≤ 𝑥 ≤
𝑘+1
𝑚

0 otherwise
𝑑𝑥 ≤ lim

𝑛→∞�
2�

1
𝑛

0
𝑑𝑥

= lim
𝑛→∞

√2
1
𝑛

= 0

Hence the sequence 𝑓𝑛 (𝑥) converges in norm to 0. For piecewise convergence. The definition
is that for any 𝜀 > 0, there exist 𝑁 (𝜀, 𝑥) such that �𝑓𝑛 (𝑥)� < 𝜀 for all 𝑛 ≥ 𝑁 for 𝑥 ∈ [0, 1]. This
means if we fix 𝑥 then lim𝑛→∞ �𝑓𝑛 (𝑥)� = 0. But this does not happen here. Since the pulse
shifts left and right all the time as the width gets smaller as 𝑛 increases. For example, if we
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look at 𝑥 = 1
2 and then increase 𝑛, we see that 𝑓𝑛 �

1
2
� do not go to zero there as the function

moves around due to changing of the domain. Hence it is not piecewise convergent.

2.5.6 Problem 4.1.7

The convection-di�usion equation 𝑢𝑡 + 𝑐𝑢𝑥 = 𝛾𝑢𝑥𝑥 is a simple model for the di�usion of a
pollutant in a fluid flow moving with constant speed 𝑐. Show that 𝑣 (𝑡, 𝑥) = 𝑢 (𝑡, 𝑥 + 𝑐𝑡) solves
the heat equation. What is the physical interpretation of this change of variables?

solution

𝜕𝑣
𝜕𝑡

=
𝜕𝑢
𝜕𝑡

+
𝜕𝑢
𝜕𝑥

𝑑𝑥
𝑑𝑡

But 𝑑𝑥
𝑑𝑡 = 𝑐, the speed of fluid. Hence the above becomes

𝜕𝑣
𝜕𝑡

=
𝜕𝑢
𝜕𝑡

+ 𝑐
𝜕𝑢
𝜕𝑥

But 𝜕𝑢
𝜕𝑡 + 𝑐

𝜕𝑢
𝜕𝑥 = 𝛾𝑢𝑥𝑥, hence the above becomes

𝜕𝑣
𝜕𝑡

= 𝛾𝑢𝑥𝑥

But 𝜕𝑢
𝜕𝑥 =

𝜕𝑣
𝜕𝑡

𝑑𝑡
𝑑𝑥 +

𝜕𝑣
𝜕𝑥

𝑑𝑥
𝑑𝑥 =

𝜕𝑣
𝜕𝑥 and

𝜕2𝑢
𝜕𝑥2 =

𝜕2𝑣
𝜕2𝑡

𝑑𝑡
𝑑𝑥 +

𝜕2𝑣
𝜕𝑥2

𝑑𝑥
𝑑𝑥 =

𝜕2𝑣
𝜕𝑥2 . Hence the above gives

𝜕𝑣
𝜕𝑡

= 𝛾𝑣𝑥𝑥

Which is the heat equation. The change of variable puts the observer as moving with the
same speed as fluid instead of stationary observer. It is a coordinates transformation.

2.5.7 Problem 4.1.10(a,c)

For each of the following initial temperature distributions, (i ) write out the Fourier series
solution to the heated ring (4.30–32), and (ii ) find the resulting equilibrium temperature
(a) 𝑓 (𝑥) = cos 𝑥, (c) 𝑓 (𝑥) = |𝑥|.

The heated ring problem (4.30–32) is: Solve for 𝑢 (𝑥, 𝑡) in
𝜕𝑢
𝜕𝑡

=
𝜕2𝑢
𝜕𝑥2

− 𝜋 < 𝑥 < 𝜋, 𝑡 > 0

With periodic BC 𝑢 (−𝜋, 𝑡) = 𝑢 (𝜋, 𝑡) , 𝑢𝑥 (−𝜋, 𝑡) = 𝑢𝑥 (𝜋, 𝑡) for 𝑡 ≥ 0. With initial conditions
𝑢 (𝑥, 0) = 𝑓 (𝑥)

solution

2.5.7.1 Part a

Starting with the series solution as given in (4.34)

𝑢 (𝑥, 𝑡) =
𝑎0
2
+

∞
�
𝑛=1

𝑒−𝑛2𝑡 (𝑎𝑛 cos 𝑛𝑥 + 𝑏𝑛 sin 𝑛𝑥) (1)

At 𝑡 = 0 the above becomes (using 𝑢 (𝑥, 0) = cos 𝑥)

cos 𝑥 = 𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos 𝑛𝑥 + 𝑏𝑛 sin 𝑛𝑥

Hence 𝑎𝑛, 𝑏𝑛 are the Fourier series coe�cients of cos 𝑥. Therefore 𝑎1 = 1 and all other 𝑎𝑛, 𝑏𝑛
are zero in order to match the left side with the right side.

The solution in (1) now becomes

𝑢 (𝑥, 𝑡) = 𝑒−𝑡 cos 𝑥
The above is the Fourier series solution. To answer (ii), we let 𝑡 → ∞ in the above. This
shows that equilibrium temperature will be zero.
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2.5.7.2 Part b

Starting with the series solution as given in (4.34)

𝑢 (𝑥, 𝑡) =
𝑎0
2
+

∞
�
𝑛=1

𝑒−𝑛2𝑡 (𝑎𝑛 cos 𝑛𝑥 + 𝑏𝑛 sin 𝑛𝑥) (1)

At 𝑡 = 0 the above becomes (using 𝑢 (𝑥, 0) = |𝑥|)

|𝑥| =
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos 𝑛𝑥 + 𝑏𝑛 sin 𝑛𝑥

Hence 𝑎𝑛, 𝑏𝑛 are the Fourier series coe�cients of |𝑥|. But |𝑥| is even. Hence 𝑏𝑛 = 0. So we
only need to find 𝑎0, 𝑎𝑛

𝑎0 =
1
𝜋 �

𝜋

−𝜋
𝑓 (𝑥) 𝑑𝑥

Because 𝑓 (𝑥) is even the above simplifies to

𝑎0 =
2
𝜋 �

𝜋

0
𝑓 (𝑥) 𝑑𝑥

=
2
𝜋 �

𝜋

0
𝑥𝑑𝑥

=
1
𝜋
�𝑥2�

𝜋

0

=
1
𝜋
�𝜋2�

= 𝜋

And

𝑎𝑛 =
1
𝜋 �

𝜋

−𝜋
𝑓 (𝑥) cos 𝑛𝑥𝑑𝑥

But 𝑓 (𝑥) is even and cos 𝑛𝑥 is even, hence product is even. The above simplifies to

𝑎𝑛 =
2
𝜋 �

𝜋

0
𝑓 (𝑥) cos 𝑛𝑥𝑑𝑥

=
2
𝜋 �

𝜋

0
𝑥 cos 𝑛𝑥𝑑𝑥

Integration by parts gives

𝑎𝑛 =
2
𝜋

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

�������������
�𝑥

sin 𝑛𝑥
𝑛 �

𝜋

0
−�

𝜋

0

sin 𝑛𝑥
𝑛

𝑑𝑥

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
2
𝜋 �

1
𝑛 �

cos 𝑛𝑥
𝑛 �

𝜋

0
�

=
2
𝜋𝑛2

(cos 𝑛𝜋 − 1)

=
2
𝜋𝑛2

�(−1)𝑛 − 1�

Therefore (1) becomes

𝑢 (𝑥, 𝑡) =
𝜋
2
+

∞
�
𝑛=1

𝑒−𝑛2𝑡 �
2
𝜋𝑛2

�(−1)𝑛 − 1� cos 𝑛𝑥� (1A)

The above is the Fourier series solution. To answer (ii), we let 𝑡 → ∞ in the above. This
shows that equilibrium temperature will become

𝑢𝑒𝑞 (𝑥, 𝑡) =
𝜋
2

2.5.8 Problem 4.1.16(a,b)

The cable equation 𝑣𝑡 = 𝛾𝑣𝑥𝑥 − 𝛼𝑣 with 𝛾, 𝑣 > 0, also known as the lossy heat equation,was
derived by the nineteenth-century Scottish physicist William Thomson to model propaga-
tion of signals in a transatlantic cable. Later, in honor of his work on thermodynamics,
including determining the value of absolute zero temperature, he was named Lord Kelvin
by Queen Victoria. The cable equation was later used to model the electrical activity of neu-
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rons. (a) Show that the general solution to the cable equation is given by 𝑣 (𝑥, 𝑡) = 𝑒−𝛼𝑡𝑢 (𝑥, 𝑡)
where 𝑢 (𝑥, 𝑡) solves the heat equation 𝑢𝑡 = 𝛾𝑢𝑥𝑥.

(b) Find a Fourier series solution to the Dirichlet initial-boundary value problem 𝑣𝑡 =
𝛾𝑣𝑥𝑥−𝛼𝑣, with initial conditions 𝑣 (𝑥, 0) = 𝑓 (𝑥) and boundary conditions 𝑣 (0, 𝑡) = 0, 𝑣 (1, 𝑡) = 0
for 0 ≤ 𝑥 ≤ 1, 𝑡 > 0. Does your solution approach an equilibrium value? If so, how fast?

solution

2.5.8.1 Part a

Given

𝑣 (𝑥, 𝑡) = 𝑒−𝛼𝑡𝑢 (𝑥, 𝑡) (1)

Hence
𝜕𝑣
𝜕𝑡

= −𝛼𝑒−𝛼𝑡𝑢 + 𝑒−𝛼𝑡
𝜕𝑢
𝜕𝑡

(2)

And
𝜕𝑣
𝜕𝑥

= 𝑒−𝛼𝑡
𝜕𝑢
𝜕𝑥

𝜕2𝑣
𝜕𝑥2

= 𝑒−𝛼𝑡
𝜕2𝑢
𝜕𝑥2

(3)

Substituting (1,2,3) into 𝑣𝑡 = 𝛾𝑣𝑥𝑥 − 𝛼𝑣 gives

−𝛼𝑒−𝛼𝑡𝑢 + 𝑒−𝛼𝑡
𝜕𝑢
𝜕𝑡

= 𝛾𝑒−𝛼𝑡
𝜕2𝑢
𝜕𝑥2

− 𝛼𝑒−𝛼𝑡𝑢

Canceling 𝑒−𝛼𝑡 ≠ 0 from all the terms gives

−𝛼𝑢 +
𝜕𝑢
𝜕𝑡

= 𝛾
𝜕2𝑢
𝜕𝑥2

− 𝛼𝑢

𝜕𝑢
𝜕𝑡

= 𝛾
𝜕2𝑢
𝜕𝑥2

Which is what problem asked to show.

2.5.8.2 Part b

Now we need to solve

𝑣𝑡 = 𝛾𝑣𝑥𝑥 − 𝛼𝑣 (1)

With initial and boundary conditions given. Using separation of variable, let 𝑣 = 𝑇 (𝑡) 𝑋 (𝑥)
where 𝑇 (𝑡) is function that depends on time only and 𝑋 (𝑥) is a function that depends on 𝑥
only. Using this substitution in (1) gives

𝑇′𝑋 = 𝛾𝑋′′𝑇 − 𝛼𝑋𝑇

Dividing by 𝑋𝑇 ≠ 0 gives
1
𝛾
𝑇′

𝑇
+
𝛼
𝛾
=
𝑋′′

𝑋
= −𝜆

Where 𝜆 is the separation constant. The above gives two ODE’s to solve

𝑋′′ + 𝜆𝑋 = 0
𝑋 (0) = 0
𝑋 (1) = 0 (2)

And
1
𝛾
𝑇′

𝑇
+
𝛼
𝛾
= −𝜆

𝑇′ + 𝛼𝑇 = −𝜆𝛾𝑇
𝑇′ + 𝛼𝑇 + 𝜆𝛾𝑇 = 0

𝑇′ + �𝛼 + 𝜆𝛾� 𝑇 = 0 (3)

ODE (2) is the boundary value ODE which will generate the eigenvalues and eigenfunc-
tions.
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case 𝜆 < 0

Let −𝜆 = 𝜇2. The solution to (2) becomes

𝑋 = 𝑐1 cosh �𝜇𝑥� + 𝑐2 sinh �𝜇𝑥�
At 𝑥 = 0

0 = 𝑐1
Hence the solution becomes 𝑋 = 𝑐2 sinh �𝜇𝑥�. At 𝑥 = 1 this gives 0 = 𝑐2 sinh �𝜇�. But
sinh �𝜇� = 0 only when 𝜇 = 0 which is not the case here. Hence 𝑐2 = 0 leading to trivial
solution. Therefore 𝜆 < 0 is not eigenvalue.

case 𝜆 = 0

The solution is 𝑋 (𝑥) = 𝑐1𝑥 + 𝑐2. At 𝑥 = 0 this becomes 0 = 𝑐2. Hence solution is 𝑋 = 𝑐1𝑥. At
𝑥 = 1 this gives 0 = 𝑐1. Therefore trivial solution. Hence 𝜆 = 0 is not eigenvalue.

case 𝜆 > 0

Solution is

𝑋 (𝑥) = 𝑐1 cos �√𝜆𝑥� + 𝑐2 sin �√𝜆𝑥�

At 𝑥 = 0 this results in 0 = 𝑐1. The above now becomes

𝑋 (𝑥) = 𝑐2 sin �√𝜆𝑥�

At 𝑥 = 1

0 = 𝑐2 sin �√𝜆�

For non-trivial solution we want sin �√𝜆� = 0 or √𝜆 = 𝑛𝜋, 𝑛 = 1, 2,⋯. Hence

𝜆𝑛 = 𝑛2𝜋2 𝑛 = 1, 2,⋯

And the corresponding eigenfunctions

𝑋𝑛 (𝑥) = sin (𝑛𝜋𝑥) (4)

Now we can solve (3)

𝑇′ + �𝛼 + 𝜆𝛾� 𝑇 = 0

𝑇′𝑛 + �𝛼 + 𝑛2𝜋2𝛾� 𝑇𝑛 = 0

The solution is

𝑇𝑛 (𝑡) = 𝑏𝑛𝑒
−�𝛼+𝑛2𝜋2𝛾�𝑡 (5)

Where 𝑏𝑛 is arbitrary constant of integration that depends on 𝑏. From (4,5) we obtain the
fundamental solution

𝑣𝑛 (𝑥, 𝑡) = 𝑏𝑛𝑒
−�𝛼+𝑛2𝜋2𝛾�𝑡 sin (𝑛𝜋𝑥)

The general solution is linear combination of the above

𝑣 (𝑥, 𝑡) =
∞
�
𝑛=1

𝑏𝑛𝑒
−�𝛼+𝑛2𝜋2𝛾�𝑡 sin (𝑛𝜋𝑥) (6)

At 𝑡 = 0 the above becomes

𝑓 (𝑥) =
∞
�
𝑛=1

𝑏𝑛 sin (𝑛𝜋𝑥)

We see that 𝑏𝑛 are the Fourier coe�cients of 𝑓 (𝑥), after odd extending it from [−1, 1].
Therefore, the period of 𝑓 (𝑥) becomes 2.

𝑏𝑛 = �
1

−1
𝑓 (𝑥) sin (𝑛𝜋𝑥) 𝑑𝑥

Since 𝑓 (𝑥) is odd (we did odd extension) and since sin is odd, then the product is even,
and the above becomes

𝑏𝑛 = 2�
1

0
𝑓 (𝑥) sin (𝑛𝜋𝑥) 𝑑𝑥
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Using the above in (6) gives

𝑣 (𝑥, 𝑡) =
∞
�
𝑛=1

2 ��
1

0
𝑓 (𝑥) sin (𝑛𝜋𝑥) 𝑑𝑥� 𝑒−�𝛼+𝑛

2𝜋2𝛾�𝑡 sin (𝑛𝜋𝑥)

To find equilibrium, we let 𝑡 → ∞ then 𝑒−�𝛼+𝑛
2𝜋2𝛾�𝑡 → 0 because 𝛼, 𝛾 > 0 and the above

becomes

𝑣𝑒𝑞 (𝑥, 𝑡) = 0

2.5.9 Key solution for HW 5

3.5.11e,f  

 
 

3.5.21   a,c,e  

 
 

3.5.22   a,f  
 

 
3.5.26   c,e  

 
 

3.5.43  
 

 
4.1.7  
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4.1.10   a,   c  

 
 

4.1.16   a,   b  
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2.6 HW 6
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2.6.1 Problem 4.1.4

Find a series solution to the initial-boundary value problem for the heat equation 𝑢𝑡 = 𝑢𝑥𝑥
for 0 < 𝑥 < 1 when one the end of the bar is held at 0 degree and the other is insulated.
Discuss the asymptotic behavior of the solution as 𝑡 → ∞

Solution

The problem did not say which end is insulated. So assuming the left end is at 0 degree
and the right end is the one that is insulated.

Using 𝐿 for the length to make the solution more general and at the end 𝐿 is replaced by 1.
Assuming the initial conditions is 𝑢 (𝑥, 0) = 𝑓 (𝑥). Therefore the problem to solve is to solve
for 𝑢 (𝑥, 𝑡) in

𝑢𝑡 = 𝑢𝑥𝑥 0 < 𝑥 < 𝐿, 𝑡 > 0

With boundary conditions

𝑢 (0, 𝑡) = 0
𝑢𝑥 (𝐿, 𝑡) = 0

And initial conditions

𝑢 (𝑥, 0) = 𝑓 (𝑥)

Let 𝑢 (𝑥, 𝑡) = 𝑇 (𝑡) 𝑋 (𝑥), then the PDE becomes

𝑇′𝑋 = 𝑋′′𝑇

Dividing by 𝑋𝑇
𝑇′

𝑇
=
𝑋′′

𝑋
Since each side depends on di�erent independent variable and both are equal, they must
be both equal to same constant, say −𝜆. Where 𝜆 is real.

𝑇′

𝑇
=
𝑋′′

𝑋
= −𝜆

The two ODE’s are

𝑇′ + 𝜆𝑇 = 0 (1)

And the eigenvalue ODE

𝑋′′ + 𝜆𝑋 = 0 (2)

𝑋 (0) = 0
𝑋′ (𝐿) = 0

Now we solve (2) to find the eigenvalues and eigenfunctions.

Case 𝜆 < 0

Let −𝜆 = 𝜔2. Hence the ODE is 𝑋′′ − 𝜔2𝑋 = 0 and the solution becomes

𝑋 (𝑥) = 𝐶1 cosh (𝜔𝑥) + 𝐶2 sinh (𝜔𝑥)
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At 𝑥 = 0 the above gives

0 = 𝐶1
Hence the solution now becomes

𝑋 (𝑥) = 𝐶2 sinh (𝜔𝑥)
Taking derivative gives

𝑋′ (𝑥) = 𝜔𝐶2 sinh (𝜔𝑥)
At 𝑥 = 𝐿

0 = 𝜔𝐶2 cosh (𝜔𝐿)
But cosh (𝜔𝐿) is never zero. Therefore 𝐶2 = 0 which leads to trivial solution. Therefore
𝜆 < 0 is not eigenvalue.

Case 𝜆 = 0

The space equation becomes 𝑋′′ = 0 with the solution

𝑋 = 𝐴𝑥 + 𝐵

At 𝑥 = 0 the above gives 0 = 𝐵. Therefore the solution is 𝑋 = 𝐴𝑥. Taking derivative
gives 𝑋′ = 𝐴. At 𝑥 = 𝐿 this gives 0 = 𝐴. Which leads to trivial solutions. Therefore
𝜆 = 0 is not an eigenvalue.

Case 𝜆 > 0

Starting with the space ODE, the solution is

𝑋 (𝑥) = 𝐴 cos �√𝜆𝑥� + 𝐵 sin �√𝜆𝑥�

Left B.C. gives

0 = 𝐴

The solution becomes

𝑋 (𝑥) = 𝐵 sin �√𝜆𝑥�

Taking derivative gives

𝑋′ (𝑥) = √𝜆𝐵 cos �√𝜆𝑥�

Applying right B.C. gives

0 = √𝜆𝐵 cos �√𝜆𝐿�

For non trivial solution we want cos �√𝜆𝐿� = 0 or

√𝜆 =
𝑛𝜋
2𝐿

𝑛 = 1, 3, 5,⋯

Hence the eigenvalues are

𝜆𝑛 = �
𝑛𝜋
2𝐿
�
2

𝑛 = 1, 3, 5,⋯

Therefore the eigenfunctions are

𝑋𝑛 (𝑥) = sin �𝑛𝜋
2𝐿
𝑥� 𝑛 = 1, 3, 5,⋯

Now that we found the eigenvalues, we can solve the time ODE (1).

𝑇′𝑛 + 𝜆𝑛𝑇 = 0
𝑇𝑛 = 𝐵𝑛𝑒−𝜆𝑛𝑡

= 𝐵𝑛𝑒
−� 𝑛𝜋2𝐿 �

2
𝑡

Hence the fundamental solution is

𝑢𝑛 (𝑥, 𝑡) = 𝑋𝑛𝑇𝑛

𝑢 (𝑥, 𝑡) =
∞
�

𝑛=1,3,5,⋯
𝐵𝑛 sin �𝑛𝜋

2𝐿
𝑥� 𝑒−�

𝑛𝜋
2𝐿 �

2
𝑡 (3)

103



2.6. HW 6 CHAPTER 2. HWS

From initial conditions

𝑓 (𝑥) =
∞
�

𝑛=1,3,5,⋯
𝐵𝑛 sin �𝑛𝜋

2𝐿
𝑥�

Multiplying both sides by sin �𝑚𝜋2𝐿 𝑥� and integrating

�
𝐿

0
𝑓 (𝑥) sin �𝑚𝜋

2𝐿
𝑥� 𝑑𝑥 = �

𝐿

0

⎛
⎜⎜⎜⎝

∞
�

𝑛=1,3,5,⋯
𝐵𝑛 sin �𝑚𝜋

2𝐿
𝑥𝑥� sin �𝑛𝜋

2𝐿
𝑥�
⎞
⎟⎟⎟⎠ 𝑑𝑥

Interchanging order of summation and integration and applying orthogonality between
cos functions results in

�
𝐿

0
𝑓 (𝑥) sin �𝑚𝜋

2𝐿
𝑥� 𝑑𝑥 = �

𝐿

0
𝐵𝑚 sin2 �𝑚𝜋

2𝐿
𝑥� 𝑑𝑥

= 𝐵𝑚
𝐿
2

Therefore

𝐵𝑛 =
2
𝐿 �

𝐿

0
𝑓 (𝑥) sin �𝑛𝜋

2𝐿
𝑥� 𝑑𝑥

Therefore the solution is (3) becomes

𝑢 (𝑥, 𝑡) =
2
𝐿

∞
�

𝑛=1,3,5,⋯
��

𝐿

0
𝑓 (𝑥) sin �𝑛𝜋

2𝐿
𝑥� 𝑑𝑥� sin �𝑛𝜋

2𝐿
𝑥� 𝑒−�

𝑛𝜋
2𝐿 �

2
𝑡

For 𝐿 = 1 the above becomes

𝑢 (𝑥, 𝑡) = 2
∞
�

𝑛=1,3,5,⋯
��

1

0
𝑓 (𝑥) sin �𝑛𝜋

2
𝑥� 𝑑𝑥� sin �𝑛𝜋

2
𝑥� 𝑒−�

𝑛𝜋
2 �

2
𝑡

The above can be rewritten as

𝑢 (𝑥, 𝑡) = 2
∞
�
𝑛=0

��
1

0
𝑓 (𝑥) sin �

(2𝑛 + 1) 𝜋
2

𝑥� 𝑑𝑥� sin �
(2𝑛 + 1) 𝜋

2
𝑥� 𝑒

−� (2𝑛+1)𝜋2 �
2
𝑡

As 𝑡 → ∞ and since � (2𝑛−1)𝜋2
�
2
is positive and assuming the integral is finite which is valid for

well behaved 𝑓 (𝑥) the solution then lim𝑡→∞ 𝑒
−� (2𝑛−1)𝜋2 �

2
𝑡
→ 0 and the solution above becomes

lim
𝑡→∞

𝑢 (𝑥, 𝑡) = 0

This makes sense, since the right side of the bar is insulated, meaning no heat will escape
from that side, and the left side is at kept a zero temperature. Therefore after long time
the initial temperature distribution given by 𝑓 (𝑥) will reach equilibrium which is zero
temperature due to the left side kept at zero and since there are no external heat sources
or heat sinks.

2.6.2 Problem 4.1.7

A metal bar of length 𝐿 = 1 and thermal di�usivity 𝛾 = 1 is fully insulated, including its
ends. Suppose the initial temperature distribution is

𝑢 (𝑥, 0) = 𝑓 (𝑥) =

⎧⎪⎪⎨
⎪⎪⎩

𝑥 0 ≤ 𝑥 ≤ 1
2

1 − 𝑥 1
2 ≤ 𝑥 ≤ 1

(a) Use Fourier series to write down the temperature distribution at time 𝑡 > 0. (b) What is
the equilibrium temperature distribution in the bar, i.e., for 𝑡 ≫ 0 ? (c) How fast does the
solution go to equilibrium? (d) Just before the temperature distribution reaches equilibrium,
what does it look like? Sketch a picture and discuss

Solution
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2.6.2.1 Part (a)

Using 𝐿 for the length to make the solution more general and at the end 𝐿 is replaced 1.
𝜕𝑢
𝜕𝑡

= 𝛾
𝜕2𝑢
𝜕𝑥2

𝑢𝑥 (0, 𝑡) = 0
𝑢𝑥 (𝐿, 𝑡) = 0
𝑢 (𝑥, 0) = 𝑓 (𝑥)

Let 𝑢 (𝑥, 𝑡) = 𝑇 (𝑡) 𝑋 (𝑥), then the PDE becomes
1
𝛾
𝑇′𝑋 = 𝑋′′𝑇

Dividing by 𝑋𝑇 ≠ 0
1
𝛾
𝑇′

𝑇
=
𝑋′′

𝑋
Since each side depends on di�erent independent variable and both are equal, they must
be both equal to same constant, say −𝜆. Where 𝜆 is assumed real.

1
𝛾
𝑇′

𝑇
=
𝑋′′

𝑋
= −𝜆

The two ODE’s generated are

𝑇′ + 𝛾𝜆𝑇 = 0 (1)

And the eigenvalue ODE

𝑋′′ + 𝜆𝑋 = 0 (2)

𝑋′ (0) = 0
𝑋′ (𝐿) = 0

Starting with the eigenvalue ODE equation (2). The following cases are considered.

case 𝜆 < 0

In this case, −𝜆 is positive. Let −𝜆 = 𝜔2. Hence the ODE is 𝑋′′ − 𝜔2𝑋 = 0 and the solution
becomes

𝑋 (𝑥) = 𝐶1 cosh (𝜔𝑥) + 𝐶2 sinh (𝜔𝑥)
Therefore

𝑋′ = 𝐶1 sinh (𝜔𝑥) + 𝐶2 cosh (𝜔𝑥)
Applying the left B.C. gives

0 = 𝐶2
Therefore the solution becomes 𝑋 (𝑥) = 𝐶1 cosh (𝜔𝑥) and 𝑋′ (𝑥) = 𝐶1 sinh (𝜔𝑥). Applying
the right B.C. gives

0 = 𝐶1 sinh (𝜔𝐿)
For non-trivial solution we want sinh (𝜔𝐿) = 0. But this is not possible since sinh is zero
when its argument is zero, which is not the case here. Hence only trivial solution results
from this case. 𝜆 < 0 is not an eigenvalue.

case 𝜆 = 0

The solution is

𝑋 (𝑥) = 𝑐1𝑥 + 𝑐2
𝑋′ (𝑥) = 𝑐1

Applying left boundary conditions gives

0 = 𝑐1
Hence the solution becomes 𝑋 (𝑥) = 𝑐2. Therefore

𝑑𝑋
𝑑𝑥 = 0. Applying the right B.C. provides

no information. Any 𝑐2 will work. Therefore this case leads to the solution 𝑋 (𝑥) = 𝑐2.
Associated with this one eigenvalue, the time equation becomes 𝑇′0 (𝑡) = 0 hence 𝑇0 (𝑡) is a

105



2.6. HW 6 CHAPTER 2. HWS

constant. Hence the solution 𝑢0 (𝑥, 𝑡) associated with this 𝜆 = 0 is

𝑢0 (𝑥, 𝑡) = 𝑋0𝑇0
= 𝐴0

where constant 𝑐2𝑇0 was renamed to 𝐴0
2 to indicate it is associated with 𝜆 = 0. 𝜆 = 0 is an eigenvalue

with eigenfunction constant 𝐴0
2 .

case 𝜆 > 0

The solution is

𝑋 (𝑥) = 𝑐1 cos �√𝜆𝑥� + 𝑐2 sin �√𝜆𝑥�

𝑋′ (𝑥) = −𝑐1√𝜆 sin �√𝜆𝑥� + 𝑐2√𝜆 cos �√𝜆𝑥�

Applying the left B.C. gives

0 = 𝑐2√𝜆

Therefore 𝑐2 = 0 as 𝜆 > 0. The solution becomes

𝑋 (𝑥) = 𝑐1 cos �√𝜆𝑥�

And 𝑋′ (𝑥) = −𝑐1√𝜆 sin �√𝜆𝑥�. Applying the right B.C. gives

0 = −𝑐1√𝜆 sin �√𝜆𝐿�

𝑐1 = 0 gives a trivial solution. Selecting sin �√𝜆𝐿� = 0 gives

√𝜆𝐿 = 𝑛𝜋 𝑛 = 1, 2, 3,⋯

Or

𝜆𝑛 = �
𝑛𝜋
𝐿
�
2

𝑛 = 1, 2, 3,⋯

Therefore the eigenfunctions are

𝑋𝑛 (𝑥) = cos �𝑛𝜋
𝐿
𝑥� 𝑛 = 1, 2, 3,⋯

The time solution is found by solving

𝑇′𝑛 (𝑡) + 𝛾𝜆𝑛𝑇𝑛 (𝑡) = 0

This has the solution

𝑇𝑛 (𝑡) = 𝐴𝑛𝑒−𝛾𝜆𝑛𝑡

= 𝐴𝑛𝑒
−𝛾� 𝑛𝜋𝐿 �

2
𝑡 𝑛 = 1, 2, 3,⋯

The solution to the PDE is

𝑢𝑛 (𝑥, 𝑡) = 𝑇𝑛 (𝑡) 𝑋𝑛 (𝑥) 𝑛 = 0, 1, 2, 3,⋯

But for linear system sum of eigenfunctions is also a solution. Hence

𝑢 (𝑥, 𝑡) = 𝑢0 (𝑥, 𝑡) +
∞
�
𝑛=1

𝑢𝑛 (𝑥, 𝑡)

=
𝐴0
2
+

∞
�
𝑛=1

𝐴𝑛 cos �𝑛𝜋
𝐿
𝑥� 𝑒−𝛾�

𝑛𝜋
𝐿 �

2
𝑡 (1)

From the solution found above, setting 𝑡 = 0 gives

𝑓 (𝑥) =
𝐴0
2
+

∞
�
𝑛=1

𝐴𝑛 cos �𝑛𝜋
𝐿
𝑥�

Hence 𝐴0, 𝐴𝑛 are the Fourier cos coe�cients for the function 𝑓 (𝑥). Doing an even extension
of 𝑓 (𝑥) from [−𝐿, 𝐿], then 𝐴0

2 is the average of the function 𝑓 (𝑥) over [−𝐿, 𝐿]. But this average

is seen as
2� 12×

1
2 �

2 = 1
4 . The term

1
2 ×

1
2 is the area of 𝑓 (𝑥) from [0, 𝐿].

𝐴0
2
=
1
4
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For 𝐴𝑛

𝐴𝑛 =
1
𝐿 �

𝐿

−𝐿
𝑓 (𝑥) cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

Replacing 𝐿 = 1 and using the definition of 𝑓 (𝑥) given above gives

𝐴𝑛 = �
1

−1
𝑓 (𝑥) cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

But 𝑓 (𝑥) is even (after even extending) and cos is even, hence the above becomes

𝐴𝑛 = 2�
1

0
𝑓 (𝑥) cos (𝑛𝜋𝑥) 𝑑𝑥

= 2
⎛
⎜⎜⎜⎜⎝�

1
2

0
𝑥 cos (𝑛𝜋𝑥) 𝑑𝑥 +�

1

1
2

(1 − 𝑥) cos (𝑛𝜋𝑥) 𝑑𝑥
⎞
⎟⎟⎟⎟⎠

= 2
⎛
⎜⎜⎜⎜⎝�

1
2

0
𝑥 cos (𝑛𝜋𝑥) 𝑑𝑥 +�

1

1
2

cos (𝑛𝜋𝑥) 𝑑𝑥 −�
1

1
2

𝑥 cos (𝑛𝜋𝑥) 𝑑𝑥
⎞
⎟⎟⎟⎟⎠ (2)

But

�
𝑏

𝑎
𝑥 cos (𝑛𝜋𝑥) 𝑑𝑥 = 1

𝑛𝜋
[𝑥 sin (𝑛𝜋𝑥)]𝑏𝑎 −

1
𝑛𝜋 �

𝑏

𝑎
sin (𝑛𝜋𝑥) 𝑑𝑥

=
1
𝑛𝜋

[𝑥 sin (𝑛𝜋𝑥)]𝑏𝑎 +
1

𝑛2𝜋2
[cos (𝑛𝜋𝑥)]𝑏𝑎 (3)

When 𝑎 = 0, 𝑏 = 1
2 the above gives

�
1
2

0
𝑥 cos (𝑛𝜋𝑥) 𝑑𝑥 = 1

𝑛𝜋
[𝑥 sin (𝑛𝜋𝑥)]

1
2
0 +

1
𝑛2𝜋2

[cos (𝑛𝜋𝑥)]
1
2
0

=
1
𝑛𝜋 �

1
2

sin �𝑛𝜋
2
�� +

1
𝑛2𝜋2

�cos �𝑛𝜋
2
� − 1�

=
1
2𝑛𝜋

sin �𝑛𝜋
2
� +

1
𝑛2𝜋2

�cos �𝑛𝜋
2
� − 1�

=
1
2𝑛𝜋

sin �𝑛𝜋
2
� +

1
𝑛2𝜋2

cos �𝑛𝜋
2
� −

1
𝑛2𝜋2

(4)

And when 𝑎 = 1
2 , 𝑏 = 1 (3) gives

�
1

1
2

𝑥 cos (𝑛𝜋𝑥) 𝑑𝑥 = 1
𝑛𝜋

[𝑥 sin (𝑛𝜋𝑥)]11
2
+

1
𝑛2𝜋2

[cos (𝑛𝜋𝑥)]11
2

=
1
𝑛𝜋 �

sin (𝑛𝜋) − 1
2

sin �𝑛𝜋
2
�� +

1
𝑛2𝜋2 �

cos (𝑛𝜋) − cos �𝑛𝜋
2
��

= −
1
2𝑛𝜋

sin �𝑛𝜋
2
� +

1
𝑛2𝜋2

cos (𝑛𝜋) − 1
𝑛2𝜋2

cos �𝑛𝜋
2
� (5)

Substituting (4,5) into (2) gives
𝐴𝑛
2
=

1
2𝑛𝜋

sin �𝑛𝜋
2
� +

1
𝑛2𝜋2

cos �𝑛𝜋
2
� −

1
𝑛2𝜋2

+�
1

1
2

cos (𝑛𝜋𝑥) 𝑑𝑥

− �−
1
2𝑛𝜋

sin �𝑛𝜋
2
� +

1
𝑛2𝜋2

cos (𝑛𝜋) − 1
𝑛2𝜋2

cos �𝑛𝜋
2
��

Or
𝐴𝑛
2
=

1
2𝑛𝜋

sin �𝑛𝜋
2
� +

1
𝑛2𝜋2

cos �𝑛𝜋
2
� −

1
𝑛2𝜋2

+
1
𝑛𝜋

0

���������sin (𝑛𝜋) − 1
𝑛𝜋

sin �𝑛𝜋
2
�

+
1
2𝑛𝜋

sin �𝑛𝜋
2
� −

1
𝑛2𝜋2

cos (𝑛𝜋) + 1
𝑛2𝜋2

cos �𝑛𝜋
2
�
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Or
𝐴𝑛
2
= �

1
𝑛𝜋

sin �𝑛𝜋
2
� +

2
𝑛2𝜋2

cos �𝑛𝜋
2
� −

1
𝑛2𝜋2 �

−
1
𝑛𝜋

sin �𝑛𝜋
2
� −

1
𝑛2𝜋2

cos (𝑛𝜋)

=
2 cos �𝑛𝜋2 � − 1 − (−1)

𝑛

𝑛2𝜋2
Therefore the solution (1) becomes, replacing 𝐿 = 1

𝑢 (𝑥, 𝑡) =
𝐴0
2
+

∞
�
𝑛=1

𝐴𝑛 cos (𝑛𝜋𝑥) 𝑒−𝛾𝑛2𝜋2𝑡

=
1
4
+ 2

∞
�
𝑛=1

2 cos �𝑛𝜋2 � − 1 − (−1)
𝑛

𝑛2𝜋2
cos (𝑛𝜋𝑥) 𝑒−𝛾𝑛2𝜋2𝑡 (6)

2.6.2.2 Part b

From the solution (6) in part (a), since 𝛾 > 0 then lim𝑡→∞ 𝑒−𝛾𝑛
2𝜋2𝑡 = 0 and the solution

becomes

lim
𝑡→∞

𝑢 (𝑥, 𝑡) =
1
4

This is the average of the initial temperature distribution. This makes sense, since there
are no sources or sinks, and both ends are insulated. So all of the initial heat will remain
in the bar but will average evenly over the bar length at the average which is 1

4 .

2.6.2.3 Part c

due to the exponential decay term 𝑒−𝛾𝑛2𝜋2𝑡 and also having 1
𝑛2 term, the decay of the sum is

very fast. High frequency terms decay very fast since 𝑒−𝛾𝑛2𝜋2𝑡 ⋘ 1 for large 𝑛. Using 𝛾 = 1
only few terms are needed to show this. The solution goes to the average (the constant
term in the Fourier series) at exponential rate.

This will be shown explicitly in the next part by plotting the solution using 𝛾 = 1 for
illustration.

2.6.2.4 Part d

The following shows how fast the initial temperature reach equilibrium 1
4 degree over the

whole bar. Using only 4 terms in the Fourier series, and using 𝛾 = 1, it took only 0.1 seconds.
Looking at the middle of the bar, where the initial temperature was highest at 0.5, we first
see that initial temperature which was not smooth, become instantaneously smooth. Then
it took 0.5 seconds for the temperature in the middle of the bar to go down to 0.3 degrees.
And the next 0.5 second to go down to 0.25. This shows that the initial decay was rapid,
then it slows down relatively until it reaches 0.25 degree which is the average then stops
there.
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Figure 2.39: Plot showing solution in time

u[x_, t_, max_] :=

1

4
+ 2 Sum

1

n2 π2
2 Cos

n π

2
 - 1 - -1n Cos[n π x] Exp- n2 π2 t, {n, 1, max};

p = Grid[Partition[Table[Quiet@Plot[u[x, t, 4], {x, 0, 1}, PlotRange → {Automatic, {0, 0.5}},

GridLines → Automatic, GridLinesStyle → LightGray, PlotStyle → Red,

PlotLabel → Row[{"time =", t}]], {t, 0, .11, 0.01}], 3], Frame → All];

Figure 2.40: Code used for the above plot

2.6.3 Problem 4.1.10c

For each of the following initial temperature distributions, (i ) write out the Fourier series
solution to the heated ring (4.30–32), and (ii ) find the resulting equilibrium temperature
as 𝑡 → ∞ (c) 𝑢 (𝑥, 0) = |𝑥|

Solution

2.6.3.1 Part I

The heated ring is given by 4.30-4.32 as solving for 𝑢 (𝑥, 𝑡) in

𝑢𝑡 = 𝑢𝑥𝑥 − 𝜋 < 𝑥 < 𝜋, 𝑡 > 0

With periodic BC

𝑢 (−𝜋, 𝑡) = 𝑢 (𝜋, 𝑡)
𝑢𝑥 (−𝜋, 𝑡) = 𝑢𝑥 (𝜋, 𝑡)

And initial conditions 𝑢 (𝑥, 0) = 𝑓 (𝑥) = |𝑥|. As given in the text, the Fourier series solution
is (4.35)

𝑢 (𝑥, 𝑡) =
𝑎0
2
+

∞
�
𝑛=1

(𝑎𝑛 cos 𝑛𝑥 + 𝑏𝑛 sin 𝑛𝑥) 𝑒−𝑛2𝑡
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Since 𝑓 (𝑥) is even, then all 𝑏𝑛 = 0.

𝑎0 =
1
𝜋 �

𝜋

−𝜋
𝑓 (𝑥) 𝑑𝑥

=
2
𝜋 �

𝜋

0
𝑥𝑑𝑥

=
2
𝜋
1
2
�𝑥2�

𝜋

0

= 𝜋

And

𝑎𝑛 =
1
𝜋 �

𝜋

−𝜋
𝑓 (𝑥) cos (𝑛𝑥) 𝑑𝑥

=
2
𝜋 �

𝜋

0
𝑥 cos (𝑛𝑥) 𝑑𝑥

=
2
𝜋

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

�������������
�
𝑥 sin 𝑛𝑥
𝑛𝜋 �

𝜋

0
−�

𝜋

0

sin 𝑛𝑥
𝑛𝜋

𝑑𝑥

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
2
𝜋 �

1
𝑛𝜋

[cos 𝑛𝑥]𝜋0 �

=
2
𝑛𝜋2

(cos 𝑛𝜋 − 1)

=
2
𝑛𝜋2

�(−1)𝑛 − 1�

Hence the solution becomes

𝑢 (𝑥, 𝑡) =
𝜋
2
+
2
𝜋2

∞
�
𝑛=1

(−1)𝑛 − 1
𝑛

cos (𝑛𝑥) 𝑒−𝑛2𝑡

2.6.3.2 Part II

From the solution above, we see that

lim
𝑡→∞

𝑢 (𝑥, 𝑡) =
𝜋
2

Which is the average of the original temperature distribution.

2.6.4 Problem 4.1.16

The cable equation 𝑣𝑡 = 𝛾𝑣𝑥𝑥 − 𝛼𝑣 with 𝛾, 𝛼 > 0, also known as the lossy heat equation,was
derived by the nineteenth-century Scottish physicist William Thomson to model propaga-
tion of signals in a transatlantic cable. Later, in honor of his work on thermodynamics,
including determining the value of absolute zero temperature, he was named Lord Kelvin
by Queen Victoria. The cable equation was later used to model the electrical activity of neu-
rons. (a) Show that the general solution to the cable equation is given by 𝑣 (𝑥, 𝑡) = 𝑒−𝛼𝑡𝑢 (𝑥, 𝑡)
where 𝑢 (𝑥, 𝑡) solves the heat equation 𝑢𝑡 = 𝛾𝑢𝑥𝑥.

(b) Find a Fourier series solution to the Dirichlet initial-boundary value problem 𝑣𝑡 =
𝛾𝑣𝑥𝑥−𝛼𝑣, with initial conditions 𝑣 (𝑥, 0) = 𝑓 (𝑥) and boundary conditions 𝑣 (0, 𝑡) = 0, 𝑣 (1, 𝑡) = 0
for 0 ≤ 𝑥 ≤ 1, 𝑡 > 0. Does your solution approach an equilibrium value? If so, how fast? (c)
Answer part (b) for the Neumann problem

𝑣𝑡 = 𝛾𝑣𝑥𝑥 − 𝛼𝑣 0 ≤ 𝑥 ≤ 1, 𝑡 > 0

With initial conditions

𝑣 (𝑥, 0) = 𝑓 (𝑥)

And B.C.

𝑣𝑥 (0, 𝑡) = 0
𝑣𝑥 (1, 𝑡) = 0

Solution
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2.6.4.1 Part c

Part (a,b) were solved in HW5 so we only need to solve part c here.

Using separation of variable, let 𝑣 = 𝑇 (𝑡) 𝑋 (𝑥) where 𝑇 (𝑡) is function that depends on time
only and 𝑋 (𝑥) is a function that depends on 𝑥 only. Using this substitution in (1) gives

𝑇′𝑋 = 𝛾𝑋′′𝑇 − 𝛼𝑋𝑇

Dividing by 𝑋𝑇 ≠ 0 gives
1
𝛾
𝑇′

𝑇
+
𝛼
𝛾
=
𝑋′′

𝑋
= −𝜆

Where 𝜆 is the separation constant. The above gives two ODE’s to solve

𝑋′′ + 𝜆𝑋 = 0
𝑋′ (0) = 0
𝑋′ (1) = 0 (2)

And
1
𝛾
𝑇′

𝑇
+
𝛼
𝛾
= −𝜆

𝑇′ + 𝛼𝑇 = −𝜆𝛾𝑇
𝑇′ + 𝛼𝑇 + 𝜆𝛾𝑇 = 0

𝑇′ + �𝛼 + 𝜆𝛾� 𝑇 = 0 (3)

ODE (2) is the boundary value ODE which will generate the eigenvalues and eigenfunc-
tions.

case 𝜆 < 0

Let −𝜆 = 𝜔2. The solution to (2) becomes

𝑋 = 𝑐1 cosh (𝜔𝑥) + 𝑐2 sinh (𝜔𝑥)
𝑋′ = 𝜔𝑐1 sinh (𝜔𝑥) + 𝜔𝑐2 cosh (𝜔𝑥)

At 𝑥 = 0

0 = 𝜔𝑐2
Therefore 𝑐2 = 0. The solution becomes

𝑋 = 𝑐1 cosh (𝜔𝑥)
𝑋′ = 𝜔𝑐1 sinh (𝜔𝑥)

At 𝑥 = 1 this gives 0 = 𝜔𝑐1 sinh (𝜔). But sinh (𝜔) = 0 only when 𝜔 = 0 which is not the case
here. Hence 𝑐1 = 0 leading to trivial solution. Therefore 𝜆 < 0 is not eigenvalue.

case 𝜆 = 0

The solution is 𝑋 (𝑥) = 𝑐1𝑥 + 𝑐2 and 𝑋′ = 𝑐1. At 𝑥 = 0 this gives 0 = 𝑐1. Hence solution is
𝑋 = 𝑐2 and 𝑋′ = 0. At 𝑥 = 1 this gives 0 = 0. Therefore any 𝑐2 will work. Taking 𝑐2 = 1 the
eigenfunction is 𝑋0 (𝑥) = 1 and 𝜆 = 0 is eigenvalue.

case 𝜆 > 0

Solution is

𝑋 (𝑥) = 𝑐1 cos �√𝜆𝑥� + 𝑐2 sin �√𝜆𝑥�

𝑋′ (𝑥) = √𝜆𝑐1 sin �√𝜆𝑥� + 𝑐2√𝜆 cos �√𝜆𝑥�

At 𝑥 = 0 this results in 0 = 𝑐2√𝜆. Hence 𝑐2 = 0. The solution now becomes The above now
becomes

𝑋 (𝑥) = 𝑐1 cos �√𝜆𝑥�

𝑋′ (𝑥) = −𝑐1 sin �√𝜆𝑥�

At 𝑥 = 1

0 = −𝑐1 sin �√𝜆�
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For non-trivial solution we want sin �√𝜆� = 0 or √𝜆 = 𝑛𝜋, 𝑛 = 1, 2,⋯. Hence

𝜆𝑛 = 𝑛2𝜋2 𝑛 = 1, 2,⋯

And the corresponding eigenfunctions

𝑋𝑛 (𝑥) = cos (𝑛𝜋𝑥) (4)

Now we can solve the time ODE (3). For the zero eigenvalue, (3) becomes

𝑇′ + 𝛼𝑇 = 0

With solution

𝑇0 (𝑡) =
𝐴0
2
𝑒−𝛼𝑡

And for the non zero eigenvalues 𝜆𝑛 = 𝑛2𝜋2 the ODE (3) becomes

𝑇′ + �𝛼 + 𝑛2𝜋2𝛾� 𝑇 = 0

With solution

𝑇𝑛 (𝑡) = 𝐴𝑛𝑒
−�𝛼+𝑛2𝜋2𝛾�𝑡

The general solution is linear combination of the above

𝑣 (𝑥, 𝑡) =
𝐴0
2
𝑒−𝛼𝑡 +

∞
�
𝑛=1

𝐴𝑛𝑒
−�𝛼+𝑛2𝜋2𝛾�𝑡 cos (𝑛𝜋𝑥) (6)

At 𝑡 = 0 the above becomes

𝑓 (𝑥) =
𝐴0
2
+

∞
�
𝑛=1

𝐴𝑛 cos (𝑛𝜋𝑥)

We see that 𝐴𝑛 are the cosine Fourier coe�cients of 𝑓 (𝑥), after even extending 𝑓 (𝑥) to
[−1, 1], the period of 𝑓 (𝑥) becomes 2 giving

𝐴0 = �
1

−1
𝑓 (𝑥) 𝑑𝑥

= 2�
1

0
𝑓 (𝑥) 𝑑𝑥

And

𝐴𝑛 = �
1

−1
𝑓 (𝑥) cos (𝑛𝑥) 𝑑𝑥

= 2�
1

0
𝑓 (𝑥) cos (𝑛𝑥) 𝑑𝑥

Using the above in solution (6) gives

𝑣 (𝑥, 𝑡) = ��
1

0
𝑓 (𝑥) 𝑑𝑥� 𝑒−𝛼𝑡 + 2

∞
�
𝑛=1

��
1

0
𝑓 (𝑥) cos (𝑛𝑥) 𝑑𝑥� 𝑒−�𝛼+𝑛

2𝜋2𝛾�𝑡 cos (𝑛𝜋𝑥)

To find equilibrium, we let 𝑡 → ∞ then 𝑒−�𝛼+𝑛
2𝜋2𝛾�𝑡 → 0 and also 𝑒−𝛼𝑡 because 𝛼, 𝛾 > 0 and

the above becomes

𝑣𝑒𝑞 (𝑥, 𝑡) = 0

The decay is fast due to 𝑒−�𝛼+𝑛
2𝜋2𝛾�𝑡 ≫ 1 for large 𝑛. Hence it is exponential decay. Solution

each equilibrium value of 0 where it remains there.

2.6.5 Problem 4.2.3d

Write down the solutions to the following initial-boundary value problems for the wave
equation in the form of a Fourier series

𝑢𝑡𝑡 = 4𝑢𝑥𝑥 (1)

With boundary conditions

𝑢 (0, 𝑡) = 0
𝑢 (1, 𝑡) = 0
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And initial conditions

𝑢 (𝑥, 0) = 𝑥
𝑢𝑡 (𝑥, 0) = −𝑥

Solution

To make the solution more general and useful, the length is taken as 𝐿 and initial conditions
𝑢 (𝑥, 0) = 𝑓 (𝑥) and 𝑢𝑡 (𝑥, 0) = 𝑔 (𝑥) and 𝑐2 = 4, and then at the end these are replaced by the
actual values given in this problem which are 𝐿 = 1, 𝑓 (𝑥) = 𝑥, 𝑔 (𝑥) = −𝑥, 𝑐2 = 4.

Hence the PDE to solve is 𝑢𝑡𝑡 = 𝑐2𝑢𝑥𝑥 with BC 𝑢 (0, 𝑡) = 0, 𝑢 (𝐿, 0) = 0 and 𝑢 (𝑥, 0) =
𝑓 (𝑥) , 𝑢𝑡 (𝑥, 0) = 𝑔 (𝑥).

Using separation of variables, let 𝑢 = 𝑋 (𝑥) 𝑇 (𝑡). The PDE becomes
𝑇′′𝑋
𝑐2

= 𝑋′′𝑇

1
𝑐2
𝑇′′

𝑇
=
𝑋′′

𝑋
= −𝜆

Where 𝜆 is separation constant. Hence the eigenvalue ODE is

𝑋′′ + 𝜆𝑋 = 0 (2)

𝑋 (0) = 0
𝑋 (𝐿) = 0

And the time ODE is

𝑇′′ + 𝑐2𝜆𝑇 = 0 (3)

Starting by the eigenvalue ODE to determine the eigenvalues and eigenfunctions.

Case 𝜆 < 0

Let −𝜆 = 𝜔2. Hence the ODE is 𝑋′′ − 𝜔2𝑋 = 0 and the solution becomes

𝑋 (𝑥) = 𝐶1 cosh (𝜔𝑥) + 𝐶2 sinh (𝜔𝑥)
At 𝑥 = 0 the above gives

0 = 𝐶1
Hence the solution now becomes

𝑋 (𝑥) = 𝐶2 sinh (𝜔𝑥)
At 𝑥 = 𝐿 the above gives

0 = 𝐶2 sinh (𝜔𝐿)
But sinh is zero only when its argument is zero which is not the case here. Therefore 𝐶2 = 0
which leads to trivial solution. Therefore 𝜆 < 0 is not eigenvalue.

Case 𝜆 = 0

The space equation becomes 𝑋′′ (𝑥) = 0 with the solution

𝑋 = 𝐴𝑥 + 𝐵

At 𝑥 = 0 the above gives 0 = 𝐵. Therefore the solution is 𝑋 = 𝐴𝑥. At 𝑥 = 𝐿 this gives 0 = 𝐴𝐿.
Hence 𝐴 = 0, which leads to trivial solutions. Therefore 𝜆 = 0 is not an eigenvalue.

case 𝜆 > 0

The solution to the above ODE now is

𝑋 (𝑥) = 𝐴 cos �√𝜆𝑥� + 𝐵 sin �√𝜆𝑥�

Since 𝑋 (0) = 0 then 𝐴 = 0 and the solution becomes

𝑋 (𝑥) = 𝐵 sin �√𝜆𝑥�

Since 𝑋 (𝐿) = 0 then for non trivial solution we want sin �√𝜆𝐿� = 0 or √𝜆𝐿 = 𝑛𝜋 or

𝜆𝑛 = �
𝑛𝜋
𝐿
�
2

𝑛 = 1, 2, 3,⋯

113



2.6. HW 6 CHAPTER 2. HWS

Hence the eigenfunctions are

𝑋𝑛 (𝑥) = sin �𝑛𝜋
𝐿
𝑥� 𝑛 = 1, 2, 3,⋯

The time ODE (3) now becomes

𝑇′′ + 𝑐2 �
𝑛𝜋
𝐿
�
2
𝑇 = 0

Which has the solution

𝑇 (𝑡) = 𝐵𝑛 cos �𝑐𝑛𝜋
𝐿
𝑡� + 𝐴𝑛 sin �𝑐𝑛𝜋

𝐿
𝑡�

Therefore the complete solution becomes

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

�𝐵𝑛 cos �𝑐𝑛𝜋
𝐿
𝑡� + 𝐴𝑛 sin �𝑐𝑛𝜋

𝐿
𝑡�� sin �𝑛𝜋

𝐿
𝑥� (4)

Now we can replace the given values in the above solution which gives

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

(𝐵𝑛 cos (2𝑛𝜋𝑡) + 𝐴𝑛 sin (2𝑛𝜋𝑡)) sin (𝑛𝜋𝑥) (4A)

At 𝑡 = 0 the above becomes

𝑓 (𝑥) =
∞
�
𝑛=1

𝐵𝑛 sin (𝑛𝜋𝑥) 𝑑𝑥

Hence 𝐵𝑛 are the Fourier sine coe�cients of 𝑓 (𝑥) = 𝑥. After odd extending 𝑓 (𝑥) to [−1, 1]
we obtain

𝐵𝑛 = �
1

−1
𝑓 (𝑥) sin (𝑛𝜋𝑥) 𝑑𝑥

= 2�
1

0
𝑓 (𝑥) sin (𝑛𝜋𝑥) 𝑑𝑥

= 2�
1

0
𝑥 sin (𝑛𝜋𝑥) 𝑑𝑥

= 2 �
−1
𝑛𝜋

[𝑥 cos 𝑛𝜋𝑥]10 +
1
𝑛𝜋 �

1

0
cos 𝑛𝜋𝑥𝑑𝑥�

= 2 �
−1
𝑛𝜋

(cos 𝑛𝜋) + 1
𝑛2𝜋2

[sin 𝑛𝜋𝑥]10�

=
−2 (−1)𝑛

𝑛𝜋
To find 𝐴𝑛, taking time derivative of (4A) gives

𝑢𝑡 (𝑥, 𝑡) =
∞
�
𝑛=1

(−𝐵𝑛2𝑛𝜋 sin (2𝑛𝜋𝑡) + 2𝑛𝜋𝐴𝑛 cos (2𝑛𝜋𝑡)) sin (𝑛𝜋𝑥)

At 𝑡 = 0 the above becomes, using the initial conditions where 𝑔 (𝑥) = −𝑥

𝑔 (𝑥) =
∞
�
𝑛=1

(2𝑛𝜋𝐴𝑛) sin (𝑛𝜋𝑥)
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The above is the Fourier sine series for 𝑔 (𝑥). By odd extending −𝑥 to [−1, 1] then

2𝑛𝜋𝐴𝑛 = �
1

−1
𝑔 (𝑥) sin (𝑛𝜋𝑥) 𝑑𝑥

= 2�
1

0
𝑔 (𝑥) sin (𝑛𝜋𝑥) 𝑑𝑥

= −2�
1

0
𝑥 sin (𝑛𝜋𝑥) 𝑑𝑥

= −2 �−
1
𝑛𝜋

[𝑥 cos (𝑛𝜋𝑥)]10 +
1
𝑛𝜋 �

1

0
cos (𝑛𝜋𝑥) 𝑑𝑥�

= −2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
−
1
𝑛𝜋

cos (𝑛𝜋) + 1
𝑛2𝜋2

0

���������������[sin (𝑛𝜋𝑥)]10

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=
2
𝑛𝜋

[cos (𝑛𝜋)]

=
2 (−1)𝑛

𝑛𝜋
Therefore

𝐴𝑛 =
(−1)𝑛

𝑛2𝜋2
Now that we found 𝐴𝑛, 𝐵𝑛, then the solution (4A) is

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

�
−2 (−1)𝑛

𝑛𝜋
cos (2𝑛𝜋𝑡) +

(−1)𝑛

𝑛2𝜋2
sin (2𝑛𝜋𝑡)� sin (𝑛𝜋𝑥)

=
∞
�
𝑛=1

(−1)𝑛

𝑛2𝜋2
(sin (2𝑛𝜋𝑡) − 2𝑛𝜋 cos (2𝑛𝜋𝑡)) sin (𝑛𝜋𝑥)

2.6.6 Problem 4.2.4b

Find all separable solutions to the wave equation 𝑢𝑡𝑡 = 𝑢𝑥𝑥 on the interval 0 ≤ 𝑥 ≤ 𝜋 subject
to (b) Neumann boundary conditions 𝑢𝑥 (0, 𝑡) = 0, 𝑢𝑥 (𝜋, 𝑡) = 0.

Solution

Using separation of variables, let 𝑢 = 𝑋 (𝑥) 𝑇 (𝑡). The PDE becomes

𝑇′′𝑋 = 𝑋′′𝑇
𝑇′′

𝑇
=
𝑋′′

𝑋
= −𝜆

Where 𝜆 is separation constant. Hence the eigenvalue ODE is

𝑋′′ + 𝜆𝑋 = 0 (2)

𝑋′ (0) = 0
𝑋′ (𝜋) = 0

And the time ODE is

𝑇′′ + 𝜆𝑇 = 0 (3)

Starting by the eigenvalue ODE to determine the eigenvalues and eigenfunctions.

Case 𝜆 < 0

Let −𝜆 = 𝜔2. Hence the ODE is 𝑋′′ − 𝜔2𝑋 = 0 and the solution becomes

𝑋 (𝑥) = 𝐶1 cosh (𝜔𝑥) + 𝐶2 sinh (𝜔𝑥)
𝑋′ (0) = 𝐶1𝜔 sinh (𝜔𝑥) + 𝐶2𝜔 cosh (𝜔𝑥)

At 𝑥 = 0 the above gives

0 = 𝐶2
Hence the solution now becomes

𝑋 (𝑥) = 𝐶1 cosh (𝜔𝑥)
𝑋′ (𝑥) = 𝐶1𝜔 sinh (𝜔𝑥)
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At 𝑥 = 𝜋 the above gives

0 = 𝐶1𝜔 sinh (𝜔𝜋)
But sinh is zero only when its argument is zero which is not the case here. Therefore 𝐶1 = 0
which leads to trivial solution. Therefore 𝜆 < 0 is not eigenvalue.

Case 𝜆 = 0

The space equation becomes 𝑋′′ (𝑥) = 0 with the solution

𝑋 = 𝐴𝑥 + 𝐵
𝑋′ (𝑥) = 𝐴

At 𝑥 = 0 the above gives 0 = 𝐴. Therefore the solution is 𝑋 = 𝐵. Therefore 𝑋′ = 0. At 𝑥 = 𝜋
this gives 0 = 0. Therefore any value of 𝐵 will work. Using the constant as 1, then the 𝜆 = 0
is an eigenvalue with corresponding eigenfunction 𝑋0 = 1.

case 𝜆 > 0

The solution to the above ODE now is

𝑋 (𝑥) = 𝐴 cos �√𝜆𝑥� + 𝐵 sin �√𝜆𝑥�

𝑋′ (𝑥) = −𝐴√𝜆 sin �√𝜆𝑥� + 𝐵√𝜆 cos �√𝜆𝑥�

Since 𝑋′ (0) = 0 then 𝐵 = 0 and the solution becomes

𝑋 (𝑥) = 𝐴 cos �√𝜆𝑥�

𝑋′ (𝑥) = −𝐴√𝜆 sin �√𝜆𝑥�

Since 𝑋′ (𝜋) = 0 then for non trivial solution we want sin �√𝜆𝜋� = 0 or √𝜆𝜋 = 𝑛𝜋 or

𝜆𝑛 = 𝑛2 𝑛 = 1, 2, 3,⋯

Hence the eigenfunctions are

𝑋𝑛 (𝑥) = cos (𝑛𝑥) 𝑛 = 1, 2, 3,⋯

The time ODE (3) is now solved. For 𝜆 = 0 it becomes 𝑇′′ = 0. Hence the solution is
𝑇0 (𝑡) =

𝐵0
2 𝑡 +

𝐴0
2 and for 𝜆𝑛 = 𝑛2 it becomes

𝑇′′𝑛 + 𝑛2𝑇𝑛 = 0

Which has the solution

𝑇𝑛 (𝑡) = 𝐴𝑛 cos (𝑛𝑡) + 𝐵𝑛 sin (𝑛𝑡)
Therefore the complete solution becomes

𝑢 (𝑥, 𝑡) =
1
⏞𝑋0

𝐵0
2 𝑡+

𝐴0
2

⏞𝑇0 +
∞
�
𝑛=1

𝑋𝑛𝑇𝑛

=
𝐵0
2
𝑡 +

𝐴0
2
+

∞
�
𝑛=1

(𝐴𝑛 cos (𝑛𝑡) + 𝐵𝑛 sin (𝑛𝑡)) cos (𝑛𝑥) (4)

To find 𝐴0, 𝐵0, 𝐴𝑛, 𝐵𝑛 we need initial conditions which are not given. I was not sure if we
are supposed to assume such initial conditions or not in order to continue. If so, then
assuming 𝑢 (𝑥, 0) = 𝑓 (𝑥) and 𝑢𝑡 (𝑥, 0) = 𝑔 (𝑥), then at 𝑡 = 0 the above becomes

𝑓 (𝑥) =
𝐴0
2
+

∞
�
𝑛=1

𝐴𝑛 cos (𝑛𝑥)

Hence 𝐴𝑛 are the Fourier cosine coe�cients of 𝑓 (𝑥). After even extending 𝑓 (𝑥) to [−𝜋, 𝜋]
we obtain

𝐴0 =
1
𝜋 �

𝜋

−𝜋
𝑓 (𝑥) 𝑑𝑥

=
2
𝜋 �

𝜋

0
𝑓 (𝑥) 𝑑𝑥

And
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𝐴𝑛 =
1
𝜋 �

𝜋

−𝜋
𝑓 (𝑥) cos (𝑛𝑥) 𝑑𝑥

=
2
𝜋 �

𝜋

0
𝑓 (𝑥) cos (𝑛𝑥) 𝑑𝑥

To find 𝐵𝑛, taking time derivative of (4) gives

𝑢𝑡 (𝑥, 𝑡) =
𝐵0
2
+

∞
�
𝑛=1

(−𝑛𝐴𝑛 sin (𝑛𝑡) + 𝑛𝐵𝑛 cos (𝑛𝑡)) cos (𝑛𝑥)

At 𝑡 = 0 the above gives

𝑔 (𝑥) =
𝐵0
2
+

∞
�
𝑛=1

𝑛𝐵𝑛 cos (𝑛𝑥)

Hence was done above for 𝐴0, 𝐴𝑛 we obtain

𝐵0 =
2
𝜋 �

𝜋

0
𝑔 (𝑥) 𝑑𝑥

And

𝑛𝐵𝑛 =
2
𝜋 �

𝜋

0
𝑔 (𝑥) cos (𝑛𝑥) 𝑑𝑥

𝐵𝑛 =
2
𝑛𝜋 �

𝜋

0
𝑔 (𝑥) cos (𝑛𝑥) 𝑑𝑥

Now that we found 𝐴𝑛, 𝐵𝑛, then the solution (4) is

𝑢 (𝑥, 𝑡) = 𝑡 �
1
𝜋 �

𝜋

0
𝑔 (𝑥) 𝑑𝑥� + �

1
𝜋 �

𝜋

0
𝑓 (𝑥) 𝑑𝑥�

+
∞
�
𝑛=1

��
2
𝜋 �

𝜋

0
𝑓 (𝑥) cos (𝑛𝑥) 𝑑𝑥� cos (𝑛𝑡) + �

2
𝑛𝜋 �

𝜋

0
𝑔 (𝑥) cos (𝑛𝑥) 𝑑𝑥� sin (𝑛𝑡)� cos (𝑛𝑥)

Or

𝑢 (𝑥, 𝑡) = 𝑡 �
1
𝜋 �

𝜋

0
𝑔 (𝑥) 𝑑𝑥� + �

1
𝜋 �

𝜋

0
𝑓 (𝑥) 𝑑𝑥�

+
2
𝜋

∞
�
𝑛=1

1
𝑛 �
𝑛 cos (𝑛𝑡)�

𝜋

0
𝑓 (𝑥) cos (𝑛𝑥) 𝑑𝑥 + sin (𝑛𝑡)�

𝜋

0
𝑔 (𝑥) cos (𝑛𝑥) 𝑑𝑥� cos (𝑛𝑥)

2.6.7 Problem 4.2.6

(a) Formulate the periodic initial-boundary value problem for the wave equation on the
interval −𝜋 ≤ 𝑥 ≤ 𝜋, modeling the vibrations of a circular ring. (b) Write out a formula for
the solution to your problem in the form of a Fourier series. (c) Is the solution a periodic
function of 𝑡? If so, what is the period? (d) Suppose the initial displacement coincides with
that in Figure 4.6, while the initial velocity is zero. Describe what happens to the solution
as time evolves.

Solution

2.6.7.1 Part a

Solving for 𝑢 (𝑥, 𝑡) in

𝑢𝑡𝑡 = 𝑐2𝑢𝑥𝑥 (1)

With periodic boundary conditions

𝑢 (−𝜋, 𝑡) = 𝑢 (𝜋, 𝑡)
𝑢𝑥 (−𝜋, 𝑡) = 𝑢𝑥 (𝜋, 𝑡)

And initial conditions

𝑢 (𝑥, 0) = 𝑓 (𝑥)
𝑢𝑡 (𝑥, 0) = 𝑔 (𝑥)
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2.6.7.2 Part b

Using separation of variables, let 𝑢 = 𝑋 (𝑥) 𝑇 (𝑡). Substituting in (1) gives
1
𝑐2
𝑇′′𝑋 = 𝑋′′𝑇

1
𝑐2
𝑇′′

𝑇
=
𝑋′′

𝑋
= −𝜆

Where 𝜆 is the separation variable. This gives two ODE’s to solve. The time ODE

𝑇′′ + 𝑐2𝜆𝑇 = 0 (2)

And the eigenvalue ODE

𝑋′′ + 𝜆𝑋 = 0 (3)

case 𝜆 < 0

Since 𝜆 < 0, then −𝜆 is positive. Let 𝜇 = −𝜆, where 𝜇 is now positive. The solution to (3)
becomes

𝑋 (𝑥) = 𝑐1𝑒√𝜇𝑥 + 𝑐2𝑒−√𝜇𝑥

The above can be written as

𝑋 (𝑥) = 𝑐1 cosh �√𝜇𝑥� + 𝑐2 sinh �√𝜇𝑥� (4)

Applying first B.C. 𝑋 (−𝜋) = 𝑋 (𝜋) using (4) gives

𝑐1 cosh �√𝜇𝜋� + 𝑐2 sinh �−√𝜇𝜋� = 𝑐1 cosh �√𝜇𝜋� + 𝑐2 sinh �√𝜇𝜋�

𝑐2 sinh �−√𝜇𝜋� = 𝑐2 sinh �√𝜇𝜋�
But sinh is only zero when its argument is zero which is not the case here. Therefore the
above implies that 𝑐2 = 0. The solution (4) now reduces to

𝑋 (𝑥) = 𝑐1 cosh �√𝜇𝑥�
Taking derivative gives

𝑋′ (𝑥) = 𝑐1√𝜇 sinh �√𝜇𝑥�
Applying the second BC 𝑋′ (−𝜋) = 𝑋′ (𝜋) the above gives

𝑐1√𝜇 sinh �−√𝜇𝜋� = 𝑐1√𝜇 sinh �√𝜇𝑥�
But sinh is only zero when its argument is zero which is not the case here. Therefore
the above implies that 𝑐1 = 0. This means a trivial solution. Therefore 𝜆 < 0 is not an
eigenvalue.

case 𝜆 = 0

In this case the solution is 𝑋 (𝑥) = 𝑐1 + 𝑐2𝑥. Applying first BC 𝑋 (−𝜋) = 𝑋 (𝜋) gives

𝑐1 − 𝑐2𝜋 = 𝑐1 + 𝑐2𝜋
−𝑐2𝜋 = 𝑐2𝜋

This gives 𝑐2 = 0. The solution now becomes 𝑋 (𝑥) = 𝑐1 and 𝑋′ (𝑥) = 0. Applying the
second boundary conditions 𝑋′ (−𝜋) = 𝑋′ (𝜋) is not satisfies (0 = 0). Therefore 𝜆 = 0 is an
eigenvalue with eigenfunction 𝑋0 (0) = 1 (selected 𝑐1 = 1 since an arbitrary constant).

case 𝜆 > 0

The solution in this case is

𝑋 (𝑥) = 𝑐1 cos �√𝜆𝑥� + 𝑐2 sin �√𝜆𝑥� (5)

Applying first B.C. 𝑋 (−𝜋) = 𝑋 (𝜋) using the above gives

𝑐1 cos �√𝜆𝜋� + 𝑐2 sin �−√𝜆𝜋� = 𝑐1 cos �√𝜆𝜋� + 𝑐2 sin �√𝜆𝜋�

𝑐2 sin �−√𝜆𝜋� = 𝑐2 sin �√𝜆𝜋�

There are two choices here. If sin �−√𝜆𝜋� ≠ sin �√𝜆𝜋�, then this implies that 𝑐2 = 0. If
sin �−√𝜆𝜋� = sin �√𝜆𝜋� then 𝑐2 ≠ 0. Assuming for now that sin �−√𝜆𝜋� = sin �√𝜆𝜋�. This
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happens when √𝜆𝜋 = 𝑛𝜋, 𝑛 = 1, 2, 3,⋯, or

𝜆𝑛 = 𝑛2 𝑛 = 1, 2, 3,⋯

Using this choice, we will now look to see what happens using the second BC. The solution
(5) now becomes

𝑋 (𝑥) = 𝑐1 cos (𝑛𝑥) + 𝑐2 sin (𝑛𝑥) 𝑛 = 1, 2, 3,⋯

Therefore

𝑋′ (𝑥) = −𝑐1𝑛 sin (𝑛𝑥) + 𝑐2𝑛 cos (𝑛𝑥)
Applying the second BC 𝑋′ (−𝜋) = 𝑋′ (𝜋) using the above gives

𝑐1𝑛 sin (𝑛𝜋) + 𝑐2𝑛 cos (𝑛𝜋) = −𝑐1𝑛 sin (𝑛𝜋) + 𝑐2𝑛 cos (𝑛𝜋)
𝑐1𝑛 sin (𝑛𝜋) = −𝑐1𝑛 sin (𝑛𝜋)

0 = 0

Since 𝑛 is integer.

Therefore this means that using 𝜆𝑛 = 𝑛2 has satisfied both boundary conditions with
𝑐2 ≠ 0, 𝑐1 ≠ 0. This means the solution (5) becomes

𝑋𝑛 (𝑥) = 𝐴𝑛 cos (𝑛𝑥) + 𝐵𝑛 sin (𝑛𝑥) 𝑛 = 1, 2, 3,⋯

The above says that there are two eigenfunctions in this case. They are

𝑋𝑛 (𝑥) =

⎧⎪⎪⎨
⎪⎪⎩

cos (𝑛𝑥)
sin (𝑛𝑥)

Since there is also zero eigenvalue, then the complete set of eigenfunctions become

𝑋𝑛 (𝑥) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
cos (𝑛𝑥)
sin (𝑛𝑥)

Now that the eigenvalues are found, we go back and solve the time ODE. Recalling that
the time ODE (2) from above was found to be

𝑇′′ + 𝑐2𝜆𝑇 = 0

When 𝜆 = 0 this becomes 𝑇′′ = 0 with solution 𝑇0 (𝑡) = 𝐴𝑡 + 𝐵. When 𝜆𝑛 = 𝑛2 the ODE
becomes 𝑇′′ + 𝑐2𝑛2𝑇 = 0 with solution

𝑇𝑛 (𝑡) = 𝐶𝑛 cos (𝑐𝑛𝑡) + 𝐸𝑛 sin (𝑐𝑛𝑡)
Adding all the above solutions using 𝑢𝑛 (𝑥, 𝑡) = 𝑋𝑛 (𝑥) 𝑇𝑛 (𝑡) gives the final solution as

𝑢 (𝑥, 𝑡) = 𝑋0 (𝑥) 𝑇0 (𝑡) +
∞
�
𝑛=1

𝑋𝑛 (𝑥) 𝑇𝑛 (𝑡)

= 𝐴𝑡 + 𝐵 +
∞
�
𝑛=1

(cos (𝑛𝑥) + sin (𝑛𝑥)) (𝐶𝑛 cos (𝑐𝑛𝑡) + 𝐸𝑛 sin (𝑐𝑛𝑡))

Or

𝑢 (𝑥, 𝑡) = 𝐴𝑡 + 𝐵

+
∞
�
𝑛=1

(𝐶𝑛 cos (𝑐𝑛𝑡) + 𝐸𝑛 sin (𝑐𝑛𝑡)) cos (𝑛𝑥)

+
∞
�
𝑛=1

(𝐶𝑛 cos (𝑐𝑛𝑡) + 𝐸𝑛 sin (𝑐𝑛𝑡)) sin (𝑛𝑥)

2.6.7.3 Part c

The solution is periodic in time. To find the period, solving 𝑐𝑡 = 2𝜋
𝑇 𝑡 for 𝑇 gives

𝑇 =
2𝜋
𝑐

2.6.7.4 Part d

The solution will behave similar to the one on page 148 initially, where initial conditions
splits in half, one half moving left and one moving right until each half reach the boundary
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conditions. But now, each half wave reflects o� the boundary staying upside and starts
moving back toward the middle again, until the two halves reunite again to reproduce the
same initial conditions shape. This process then repeats again and again.

So the di�erence between periodic boundary conditions, and having ends fixed as the case
in Figure 4.6, is that when ends are fixed, the two half waves reflect upside down at the
boundaries, while here they do not not. The solution above was animated and plotted
showing this. Initial conditions used is small triangle similar to one used in Figure 4.6 with
zero initial conditions and using 𝑐 = 1 for speed. The following is the result
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Figure 2.41: Plot showing solution in time, Periodic B.C.

In the above at 𝑡 = 3.15 sec. is when each half wave reaches the boundary at 𝑥 = −𝜋 and
𝑥 = 𝜋. At 𝑡 > 3.3 the waves half reflects and are starting to moving back towards the center.
At 𝑡 = 6.36 the initial conditions shape is reconstructed again. For higher times, the above
motion repeats.

2.6.8 Problem 4.2.14c

Sketch the solution of the wave equation 𝑢𝑡𝑡 = 𝑢𝑥𝑥 and describe its behavior when the initial

displacement is the box function 𝑢 (𝑥, 0) =

⎧⎪⎪⎨
⎪⎪⎩
1 1 < 𝑥 < 2
0 otherwise

while the initial velocity is

0 in each of the following scenarios (c) on the half-line 0 ≤ 𝑥 < ∞, with homogeneous
Neumann boundary condition at the end.

Solution
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Figure 2.42: Initial conditions

Let 𝑓 (𝑥) = 𝑢 (𝑥, 0) and let 𝑔 (𝑥) = 𝑢𝑡 (𝑥, 0) = 0. Since the boundary condition is homogeneous
Neumann, then 𝑓 (𝑥) is even extended to make it periodic with period 4. This is done so
we can use d’Alembert solution which is valid for unbounded domain. Let ̃𝑓 (𝑥) be the new
periodic initial conditions as shown the in the following diagram.
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Figure 2.43: Initial conditions

With the new periodic initial conditions, we now can apply d’Alembert solution

�̃� (𝑥, 𝑡) =
1
2
� ̃𝑓 (𝑥 − 𝑐𝑡) + ̃𝑓 (𝑥 + 𝑐𝑡)�

Since 𝑐 = 1 then above becomes

�̃� (𝑥, 𝑡) =
1
2
� ̃𝑓 (𝑥 − 𝑡) + ̃𝑓 (𝑥 + 𝑡)�

We will use the solution from above only for 𝑥 > 0 since that is the physical domain.

The solution will starts by splitting each packet into 2 halves. One that move to the right
and one that move to the left. When the half that moves to the left reach 𝑥 = 0, at that
same time the half wave that was moving to the right from 𝑥 < 0 arrives. And they pass
through each others. This appears as the wave half deflecting o� 𝑥 = 0 turning around,
remaining upright, and starts to move to the right behind the half that was moving to the
right from the start. So we end up with 2 half waves moving to the right after that. This is
sketch of what happens in time.

121



2.6. HW 6 CHAPTER 2. HWS

0 2 4 6 8 10

0.2

0.4

0.6

0.8

1.0
time: 0

0 2 4 6 8 10

0.2

0.4

0.6

0.8

1.0
time: 0.27

0 2 4 6 8 10

0.2

0.4

0.6

0.8

1.0
time: 0.7

0 2 4 6 8 10

0.2

0.4

0.6

0.8

1.0
time: 1.07

0 2 4 6 8 10

0.2

0.4

0.6

0.8

1.0
time: 1.82

0 2 4 6 8 10

0.2

0.4

0.6

0.8

1.0
time: 2.25

0 2 4 6 8 10

0.2

0.4

0.6

0.8

1.0
time: 2.94

0 2 4 6 8 10

0.2

0.4

0.6

0.8

1.0
time: 3.8

0 2 4 6 8 10

0.2

0.4

0.6

0.8

1.0
time: 5.41

0 2 4 6 8 10

0.2

0.4

0.6

0.8

1.0
time: 8

0 2 4 6 8 10

0.2

0.4

0.6

0.8

1.0
time: 9

0 2 4 6 8 10

0.2

0.4

0.6

0.8

1.0
time: 11

Figure 2.44: sketch of solution over time

pde = D[u[x, t], {t, 2}] ⩵ D[u[x, t], {x, 2}];

f[x_] := Piecewise[{{1, 1 < x < 2}, {0, True}}];

fbar[x_] := If[-3 < x < -1, fbar[x + 4], f[x]];

u[x_, t_] := 1  2  fbar[x - t] + fbar[x + t];

Table[Plot[u[x, t0], {x, 0, 10}, PlotRange → {Automatic, {0, 1.02}},

GridLines → Automatic, GridLinesStyle → LightGray,

PlotStyle → Red, PlotLabel → Row[{"time: ", t0}],

PlotPoints → 40, Exclusions → None],

{t0, {0, 0.27, 0.7, 1.07, 1.82, 2.25, 2.94, 3.8, 5.41, 8, 9, 11}}];

p = Grid[Partition[%, 3], Frame → All];

Figure 2.45: Code used for the above

2.6.9 Problem 4.2.22

Under what conditions is the solution to the Neumann boundary value problem for the
wave equation on a bounded interval [0, 1] periodic in time? What is the period?

Solution

By even-extending the initial displacement and initial velocity to [−1, 1] and then repeating
this again for the whole line −∞ < 𝑥 < ∞, and then using the d‘Alembert solution, then the
resulting solution 𝑢 (𝑥, 𝑡) will always be periodic since initial conditions are periodic. The
period of the solution will 2𝐿 in 𝑥, where 𝐿 = 1 here. Hence period is 2 in 𝑥.
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2.6.10 Problem 4.2.25

Write down a formula for the solution 𝑢(𝑥, 𝑡) to the initial-boundary value problem 𝑢𝑡𝑡 = 4𝑢𝑥𝑥
with boundary conditions

𝑢𝑥 (0, 𝑡) = 0
𝑢𝑥 (𝜋, 𝑡) = 0

And initial conditions

𝑢 (𝑥, 0) = sin 𝑥
𝑢𝑡 (𝑥, 0) = 0

For 0 < 𝑥 < 𝜋, 𝑡 > 0

Solution

Since boundary conditions are Neumann, then to use d‘Alembert solution, we start by
even extending both initial position 𝑢 (𝑥, 0) = sin (𝑥) and initial velocity (which is zero here)
to be even over [−𝜋, 𝜋]. Next we duplicate this over the whole line −∞ < 𝑥 < ∞. Now we are
able to use d‘Alembert solution to solve the wave equation. The solution will be periodic
with period 2𝜋 in 𝑥. Let 𝑓 (𝑥) = sin 𝑥 and let ̃𝑓 (𝑥) be its even periodic extension such that

̃𝑓 (−𝑥) = 𝑓 (𝑥)
̃𝑓 (𝑥 + 2𝜋) = 𝑓 (𝑥)
̃𝑓 (𝑥 − 2𝜋) = 𝑓 (𝑥)

Hence the solution is

�̃� (𝑥, 𝑡) =
1
2
� ̃𝑓 (𝑥 − 𝑐𝑡) + ̃𝑓 (𝑥 + 𝑐𝑡)�

But 𝑐 = 2 therefore the above becomes

�̃� (𝑥, 𝑡) =
1
2
(sin (𝑥 − 2𝑡) + sin (𝑥 + 𝑐𝑡))

The actual solution we want is over [0, 𝜋] from the above since that is the physical domain
of the original problem.
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2.6.11 Key solution for HW 6
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2.7 HW 7
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2.7.1 Problem 4.3.24

Use the method in Exercise 4.3.23 to solve an Euler equation whose characteristic equation
has a double root 𝑟1 = 𝑟2 = 𝑟

Solution

2.7.1.1 Part (a)

Euler ODE is

𝑎𝑥2𝑢′′ (𝑥) + 𝑏𝑥𝑢′ (𝑥) + 𝑐𝑢 (𝑥) = 0

By assuming 𝑢 = 𝑥𝑟 then 𝑢′ = 𝑟𝑥𝑟−1, 𝑢′′ = 𝑟 (𝑟 − 1) 𝑥𝑟−2. Substituting back into the above ODE
gives

𝑎𝑥2𝑟 (𝑟 − 1) 𝑥𝑟−2 + 𝑏𝑥𝑟𝑥𝑟−1 + 𝑐𝑥𝑟 = 0
𝑎𝑟 (𝑟 − 1) + 𝑏𝑟 + 𝑐 = 0
𝑎𝑟2 − 𝑎𝑟 + 𝑏𝑟 + 𝑐 = 0
𝑎𝑟2 + 𝑟 (𝑏 − 𝑎) + 𝑐 = 0

Solving for 𝑟 gives the roots

𝑟1,2 = −
𝑏 − 𝑎
2𝑎

±
1
2𝑎�

(𝑏 − 𝑎)2 − 4𝑎𝑐 (1)

Double root means that 𝑟 = 𝑟1 = 𝑟2 = −
𝑏−𝑎
2𝑎 . Hence the first solution of the ODE is

𝑢1 = 𝑥𝑟1

And now we need to find the second solution. Using reduction of order method, we assume
the second solution is

𝑢2 (𝑥) = 𝑣 (𝑥) 𝑢1 (𝑥) (2)

And we need to determine the function 𝑣 (𝑥). Therefore

𝑢′2 = 𝑣′𝑢1 + 𝑣𝑢′1
𝑢′′2 = 𝑣′′𝑢1 + 𝑣′𝑢′1 + 𝑣′𝑢′1 + 𝑣𝑢′′1

= 𝑣′′𝑢1 + 2𝑣′𝑢′1 + 𝑣𝑢′′1
Substituting the above into the ODE gives

𝑎𝑥2 �𝑣′′𝑢1 + 2𝑣′𝑢′1 + 𝑣𝑢′′1 � + 𝑏𝑥 �𝑣′𝑢1 + 𝑣𝑢′1� + 𝑐𝑣𝑢1 = 0

𝑣′′ �𝑎𝑥2𝑢1� + 𝑣′ �2𝑎𝑥2𝑢′1 + 𝑏𝑥𝑢1� + 𝑣 �𝑎𝑥2𝑢′′1 + 𝑏𝑥𝑢′1 + 𝑐𝑢1� = 0

But 𝑎𝑥2𝑢′′1 + 𝑏𝑥𝑢′1 + 𝑐𝑢1 = 0 since 𝑢1 is a solution. The above now simplifies to

𝑣′′ �𝑎𝑥2𝑢1� + 𝑣′ �2𝑎𝑥2𝑢′1 + 𝑏𝑥𝑢1� = 0
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But 𝑢1 = 𝑥𝑟, hence 𝑢′1 = 𝑟𝑥𝑟−1 and the above becomes

𝑣′′ �𝑎𝑥2𝑥𝑟� + 𝑣′ �2𝑎𝑟𝑥2𝑥𝑟−1 + 𝑏𝑥𝑥𝑟� = 0

𝑎𝑣′′𝑥𝑟+2 + 𝑣′ �2𝑎𝑟𝑥𝑟+1 + 𝑏𝑥𝑟+1� = 0
𝑎𝑣′′𝑥𝑟+2 + 𝑣′ (2𝑎𝑟 + 𝑏) 𝑥𝑟+1 = 0
(𝑎𝑣′′𝑥 + 𝑣′ (2𝑎𝑟 + 𝑏)) 𝑥𝑟+1 = 0

𝑎𝑣′′𝑥 + 𝑣′ (2𝑎𝑟 + 𝑏) = 0

But 𝑟 = 𝑟1 = −
𝑏−𝑎
2𝑎 from (1) since double root. The above simplifies to

𝑎𝑣′′𝑥 + 𝑣′ �2𝑎 �−
𝑏 − 𝑎
2𝑎 � + 𝑏� = 0

𝑎𝑣′′𝑥 + 𝑣′ ((−𝑏 + 𝑎) + 𝑏) = 0
𝑎𝑣′′𝑥 + 𝑎𝑣′ = 0
𝑣′′𝑥 + 𝑣′ = 0

Therefore
𝑑
𝑑𝑥
(𝑥𝑣′) = 0

𝑥𝑣′ = 𝐶1

𝑣′ =
𝐶1
𝑥

𝑣 = 𝐶1 ln 𝑥 + 𝐶2
Now that we found 𝑣 (𝑥), then using (2) we find the second solution to the ODE as

𝑢2 = 𝑣𝑢1
= (𝐶1 ln 𝑥 + 𝐶2) 𝑥2

Therefore the complete solution is

𝑢 = 𝐶0𝑥𝑟 + (𝐶1 ln 𝑥 + 𝐶2) 𝑥𝑟

By combining constants, the above simplifies to

𝑢 (𝑥) = 𝐴𝑥𝑟 + 𝐵𝑥𝑟 ln 𝑥

2.7.2 Problem 4.3.25

Solve the following boundary value problems (c) ∇ 2𝑢 = 0, 𝑥2 + 𝑦2 < 4, 𝑢 = 𝑥4, 𝑥2 + 𝑦2 = 4 (d)
∇ 2𝑢 = 0, 𝑥2 + 𝑦2 < 1, 𝜕𝑢𝜕𝑛 = 𝑥, 𝑥

2 + 𝑦2 = 1

Solution

2.7.2.1 Part c

In polar coordinates, where 𝑥 = 𝑟 cos𝜃, 𝑦 = 𝑟 sin𝜃, we need to solve for 𝑢 (𝑟, 𝜃) inside disk
of radius 𝑟0 = 4. The Laplace PDE in polar coordinates is

𝑢𝑟𝑟 +
1
𝑟
𝑢𝑟 +

1
𝑟2
𝑢𝜃𝜃 = 0 0 < 𝑟 < 𝑟0, −𝜋 < 𝜃 < 𝜋

𝑢 (𝑟0, 𝜃) = 𝑓 (𝜃) = (𝑟0 cos𝜃)4

𝑢 (−𝜋) = 𝑢 (𝜋)
𝑢𝜃 (−𝜋) = 𝑢𝜃 (𝜋)

The solution to Laplace PDE of radius 𝑟0 can be found using separation of variables and
derived in the textbook (full derivation is also given in this HW in problem 4.3.33 below).
The Fourier series solution is

𝑢 (𝑟, 𝜃) =
𝑎0
2
+�𝑎𝑛 �

𝑟
𝑟0
�
𝑛

cos (𝑛𝜃) + 𝑏𝑛 �
𝑟
𝑟0
�
𝑛

sin (𝑛𝜃)
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Since 𝑟0 = 4 the above becomes

𝑢 (𝑟, 𝜃) =
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 �
𝑟
4
�
𝑛

cos (𝑛𝜃) + 𝑏𝑛 �
𝑟
4
�
𝑛

sin (𝑛𝜃) (1A)

Where 𝑎𝑛 =
1
𝜋
∫𝜋
−𝜋
𝑓 (𝜃) cos 𝑛𝜃𝑑𝜃, 𝑏𝑛 =

1
𝜋
∫𝜋
−𝜋
𝑓 (𝜃) sin 𝑛𝜃𝑑𝜃.

𝑎0 =
1
𝜋 �

𝜋

−𝜋
256 cos4 𝜃𝑑𝜃

=
256
𝜋 �

𝜋

−𝜋
cos4 𝜃𝑑𝜃

=
256
𝜋 �

3𝜃
8
+
1
4

sin (2𝜃) + 1
32

sin (4𝜃)�
𝜋

−𝜋

=
256
𝜋 �

3𝜋
8
+
3𝜋
8 �

=
256
𝜋 �

3𝜋
4 �

= 192

And

𝑎𝑛 =
1
𝜋 �

𝜋

−𝜋
256 cos4 (𝜃) cos (𝑛𝜃) 𝑑𝜃

=
256
𝜋 �

𝜋

−𝜋
cos4 (𝜃) cos (𝑛𝜃) 𝑑𝜃

To evaluate the above integral, we will start by using the identity

cos4 (𝜃) = 3
8
+
1
8

cos (4𝜃) + 1
2

cos (2𝜃)

Therefore the integral now becomes

𝑎𝑛 =
256
𝜋 �

𝜋

−𝜋
�
3
8
+
1
8

cos (4𝜃) + 1
2

cos (2𝜃)� cos (𝑛𝜃) 𝑑𝜃

=
256
𝜋 �

3
8 �

𝜋

−𝜋
cos (𝑛𝜃) 𝑑𝜃 + 1

8 �
𝜋

−𝜋
cos (4𝜃) cos (𝑛𝜃) 𝑑𝜃 + 1

2 �
𝜋

−𝜋
cos (2𝜃) cos (𝑛𝜃) 𝑑𝜃� (1)

But ∫
𝜋

−𝜋
cos (𝑛𝜃) 𝑑𝜃 = 0 and ∫𝜋

−𝜋
cos (4𝜃) cos (𝑛𝜃) 𝑑𝜃 is not zero, only for 𝑛 = 4 by orthogonality

of cosine functions. Hence

�
𝜋

−𝜋
cos (4𝜃) cos (𝑛𝜃) 𝑑𝜃 = �

𝜋

−𝜋
cos2 (4𝜃) 𝑑𝜃

= 𝜋

And similarly, ∫
𝜋

−𝜋
cos (2𝜃) cos (𝑛𝜃) 𝑑𝜃 is not zero, only for 𝑛 = 2 by orthogonality of cosine

functions. Hence

�
𝜋

−𝜋
cos (2𝜃) cos (𝑛𝜃) 𝑑𝜃 = �

𝜋

−𝜋
cos2 (2𝜃) 𝑑𝜃

= 𝜋

Using these results in (1) gives, for 𝑛 = 2

𝑎2 =
256
𝜋 �

1
2 �

𝜋

−𝜋
cos2 (2𝜃) 𝑑𝜃�

=
256
𝜋

�
𝜋
2
�

= 128

And for 𝑛 = 4

𝑎4 =
256
𝜋 �

1
8 �

𝜋

−𝜋
cos2 (4𝜃) 𝑑𝜃�

=
256
𝜋

�
𝜋
8
�

= 32
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And all other 𝑎𝑛 are zero. Now that we found all 𝑎𝑛, and since 𝑏𝑛 = 0 for all 𝑛 (because
𝑓 (𝜃) is even function) then the solution (1A) becomes

𝑢 (𝑟, 𝜃) =
192
2
+ 𝑎2 �

𝑟
4
�
2
cos (2𝜃) + 𝑎4 �

𝑟
4
�
4
cos (4𝜃)

= 96 + 128 �
𝑟2

16�
cos (2𝜃) + 32 𝑟

4

256
cos (4𝜃)

Therefore

𝑢 (𝑟, 𝜃) = 96 + 8𝑟2 cos (2𝜃) + 1
8𝑟
4 cos (4𝜃)

Here is plot of the above solution.

sol = 96 + 8 r2 Cos[2 θ] +
1

8
r4 Cos[4 θ];

ParametricPlot3D[{r Cos[θ], r Sin[θ], sol}, {r, 0, 4}, {θ, 0, 2 Pi},

AxesLabel → {x, y, "u(x,y"}, ImageSize → 400, BoxRatios → {1, 1, 1}, BaseStyle → 14]

Figure 2.46: Solution plot to the above problem with code used

It is also possible to use, as shown in textbook, the closed form sum as given in theorem
4.6 as

𝑢 (𝑟, 𝜃) =
1
2𝜋 �

𝜋

−𝜋
𝑓 �𝜙�

1 − 𝑟2

1 + 𝑟2 − 2𝑟 cos �𝜃 − 𝜙�
𝑑𝜙

Notice that theorem 4.6 is for a unit disk. Since the disk here has radius 4 then 𝑟 is changed
to 𝑟

4 in 4.126 as given in book. Here 𝑓 (𝜃) = (4 cos𝜃)4. Hence the above becomes

𝑢 (𝑟, 𝜃) =
1
2𝜋 �

𝜋

−𝜋
256 cos4 �𝜙�

1 − � 𝑟4�
2

1 + � 𝑟4�
2
− 2 � 𝑟4� cos �𝜃 − 𝜙�

𝑑𝜙

=
128
𝜋 �

𝜋

−𝜋
cos4 �𝜙�

1 − 𝑟2

16

1 + 𝑟2

16 −
𝑟
2 cos �𝜃 − 𝜙�

𝑑𝜙

=
128
𝜋 �

𝜋

−𝜋
cos4 �𝜙� 16 − 𝑟2

16 + 𝑟2 − 8𝑟 cos �𝜃 − 𝜙�
𝑑𝜙

But evaluating the above integral was hard to do by hand. It should of course give the
same solution as found above using Fourier series.
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2.7.2.2 Part d

In polar coordinates, where 𝑥 = 𝑟 cos𝜃, 𝑦 = 𝑟 sin𝜃, we need to solve for 𝑢 (𝑟, 𝜃) inside disk
of radius 𝑟0 = 1. The Laplace PDE in polar coordinates is

𝑢𝑟𝑟 +
1
𝑟
𝑢𝑟 +

1
𝑟2
𝑢𝜃𝜃 = 0 0 < 𝑟 < 1, −𝜋 < 𝜃 < 𝜋

𝑢𝑟 (1, 𝜃) = 𝑓 (𝜃) = cos𝜃
𝑢 (−𝜋) = 𝑢 (𝜋)
𝑢𝜃 (−𝜋) = 𝑢𝜃 (𝜋)

Using separation of variables, let 𝑢 (𝑟, 𝜃) = 𝑅 (𝑟)Θ (𝜃) the solution is given by

𝑢 (𝑟, 𝜃) =
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛𝑟𝑛 cos (𝑛𝜃) + 𝑏𝑛𝑟𝑛 sin (𝑛𝜃) (1)

At 𝑟 = 𝑟0 = 1 we have that
𝜕𝑢(𝑟,𝜃)
𝜕𝑟 = cos𝜃 (since 𝑥 = 𝑟 cos𝜃 but 𝑟 = 1 at boundary). The above

becomes

cos𝜃 =
∞
�
𝑛=1

𝑛𝑎𝑛𝑟𝑛−1 cos (𝑛𝜃) + 𝑛𝑏𝑛𝑟𝑛−1 sin (𝑛𝜃)

Therefore 𝑛 = 1 is only term that survives in the sum. Hence 𝑎1 = 1 and all others are zero.
The solution (1) becomes

𝑢 (𝑟, 𝜃) =
𝑎0
2
+ 𝑟 cos (𝜃)

The solution is not unique as there is 𝑎0 arbitrary constant.

2.7.3 Problem 4.3.33

Write out the series solution to the boundary value problem 𝑢 (1, 𝜃) = 0, 𝑢 (2, 𝜃) = ℎ (𝜃) for
the Laplace equation on an annulus 1 < 𝑟 < 2.

Solution

Using 𝑎 for the inner radius and 𝑏 for the outer radius to keep the solution more general.
At the end these are replaced with 𝑎 = 1, 𝑏 = 2.

a

b
r
θ

u(a, θ) = 0

u(b, θ) = h(θ)

∇2u(r, θ) = 0

a = 1, b = 2

Figure 2.47: PDE to solve using polar coordinates

The Laplace PDE in polar coordinates is

𝑟2
𝜕2𝑢
𝜕𝑟2

+ 𝑟
𝜕𝑢
𝜕𝑟

+
𝜕2𝑢
𝜕𝜃2

= 0 (A)

With

𝑢 (𝑎, 𝜃) = 0
𝑢 (𝑏, 𝜃) = ℎ (𝜃) (B)

Let the solution be

𝑢 (𝑟, 𝜃) = 𝑅 (𝑟)Θ (𝜃)

Substituting this assumed solution back into the (A) gives

𝑟2𝑅′′Θ + 𝑟𝑅′Θ + 𝑅Θ ′′ = 0
133



2.7. HW 7 CHAPTER 2. HWS

Dividing the above by 𝑅Θ gives

𝑟2
𝑅′′

𝑅
+ 𝑟

𝑅′

𝑅
+
Θ ′′

Θ
= 0

𝑟2
𝑅′′

𝑅
+ 𝑟

𝑅′

𝑅
= −

Θ ′′

Θ
Since each side depends on di�erent independent variable and they are equal, they must
be equal to the same constant. say 𝜆.

𝑟2
𝑅′′

𝑅
+ 𝑟

𝑅′

𝑅
= −

Θ ′′

Θ
= 𝜆

This results in the following two ODE’s. The boundaries conditions in (B) are also trans-
ferred to each ODE. Hence

Θ ′′ + 𝜆Θ = 0 (1)

Θ(−𝜋) = Θ (𝜋)
Θ ′ (−𝜋) = Θ ′ (𝜋)

And

𝑟2𝑅′′ + 𝑟𝑅′ − 𝜆𝑅 = 0 (2)

𝑅 (𝑎) = 0

Starting with ODE (1) with periodic boundary conditions.

Case 𝜆 < 0 The solution is

Θ(𝜃) = 𝐴 cosh �√|𝜆|𝜃� + 𝐵 sinh �√|𝜆|𝜃�
First B.C. gives

Θ(−𝜋) = Θ (𝜋)

𝐴 cosh �−√|𝜆|𝜋� + 𝐵 sinh �−√|𝜆|𝜋� = 𝐴 cosh �√|𝜆|𝜋� + 𝐵 sinh �√|𝜆|𝜋�

𝐴 cosh �√|𝜆|𝜋� − 𝐵 sinh �√|𝜆|𝜋� = 𝐴 cosh �√|𝜆|𝜋� + 𝐵 sinh �√|𝜆|𝜋�

2𝐵 sinh �√|𝜆|𝜋� = 0
But sinh = 0 only at zero and 𝜆 ≠ 0, hence 𝐵 = 0 and the solution becomes

Θ(𝜃) = 𝐴 cosh �√|𝜆|𝜃�

Θ ′ (𝜃) = 𝐴√𝜆 cosh �√|𝜆|𝜃�
Applying the second B.C. gives

Θ ′ (−𝜋) = Θ ′ (𝜋)

𝐴√|𝜆| cosh �−√|𝜆|𝜋� = 𝐴√|𝜆| cosh �√|𝜆|𝜋�

𝐴√|𝜆| cosh �√|𝜆|𝜋� = 𝐴√|𝜆| cosh �√|𝜆|𝜋�

2𝐴√|𝜆| cosh �√|𝜆|𝜋� = 0
But cosh is never zero, hence𝐴 = 0. Therefore trivial solution and 𝜆 < 0 is not an eigenvalue.

Case 𝜆 = 0 The solution is Θ = 𝐴𝜃 + 𝐵. Applying the first B.C. gives

Θ(−𝜋) = Θ (𝜋)
−𝐴𝜋 + 𝐵 = 𝜋𝐴 + 𝐵

2𝜋𝐴 = 0
𝐴 = 0

And the solution becomes Θ = 𝐵0. A constant. Hence 𝜆 = 0 is an eigenvalue.

Case 𝜆 > 0

The solution becomes

Θ = 𝐴 cos �√𝜆𝜃� + 𝐵 sin �√𝜆𝜃�

Θ ′ = −𝐴√𝜆 sin �√𝜆𝜃� + 𝐵√𝜆 cos �√𝜆𝜃�
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Applying first B.C. gives

Θ(−𝜋) = Θ (𝜋)

𝐴 cos �−√𝜆𝜋� + 𝐵 sin �−√𝜆𝜋� = 𝐴 cos �√𝜆𝜋� + 𝐵 sin �√𝜆𝜋�

𝐴 cos �√𝜆𝜋� − 𝐵 sin �√𝜆𝜋� = 𝐴 cos �√𝜆𝜋� + 𝐵 sin �√𝜆𝜋�

2𝐵 sin �√𝜆𝜋� = 0 (3)

Applying second B.C. gives

Θ ′ (−𝜋) = Θ ′ (𝜋)

−𝐴√𝜆 sin �−√𝜆𝜋� + 𝐵√𝜆 cos �−√𝜆𝜋� = −𝐴√𝜆 sin �√𝜆𝜋� + 𝐵√𝜆 cos �√𝜆𝜋�

𝐴√𝜆 sin �√𝜆𝜋� + 𝐵√𝜆 cos �√𝜆𝜋� = −𝐴√𝜆 sin �√𝜆𝜋� + 𝐵√𝜆 cos �√𝜆𝜋�

𝐴√𝜆 sin �√𝜆𝜋� = −𝐴√𝜆 sin �√𝜆𝜋�

2𝐴 sin �√𝜆𝜋� = 0 (4)

Equations (3,4) can be both zero only if 𝐴 = 𝐵 = 0 which gives trivial solution, or when
sin �√𝜆𝜋� = 0. Therefore taking sin �√𝜆𝜋� = 0 gives a non-trivial solution. Hence

√𝜆𝜋 = 𝑛𝜋 𝑛 = 1, 2, 3,⋯
𝜆𝑛 = 𝑛2 𝑛 = 1, 2, 3,⋯

Hence the eigenfunctions are

{1, cos (𝑛𝜃) , sin (𝑛𝜃)} 𝑛 = 1, 2, 3,⋯ (5)

Now the 𝑅 equation is solved

The case for 𝜆 = 0 gives from (2)

𝑟2𝑅′′ + 𝑟𝑅′ = 0

𝑅′′ +
1
𝑟
𝑅′ = 0 𝑟 ≠ 0

As was done in last problem, the solution to this is

𝑅0 (𝑟) = 𝐴 ln 𝑟 + 𝐶
Applying the B.C. 𝑅 (𝑎) = 0 gives

0 = 𝐴 ln 𝑎 + 𝐶
𝐶 = −𝐴 ln 𝑎

Hence the solution becomes

𝑅0 (𝑟) = 𝐴 ln 𝑟 − 𝐴 ln 𝑎

= 𝐴 ln 𝑟
𝑎

Case 𝜆 > 0 The ODE (2) becomes

𝑟2𝑅′′ + 𝑟𝑅′ − 𝑛2𝑅 = 0 𝑛 = 1, 2, 3,⋯

Let 𝑅 = 𝑟𝑝, the above becomes

𝑟2𝑝 �𝑝 − 1� 𝑟𝑝−2 + 𝑟𝑝𝑟𝑝−1 − 𝑛2𝑟𝑝 = 0

𝑝 �𝑝 − 1� 𝑟𝑝 + 𝑝𝑟𝑝 − 𝑛2𝑟𝑝 = 0

𝑝 �𝑝 − 1� + 𝑝 − 𝑛2 = 0
𝑝2 = 𝑛2

𝑝 = ±𝑛

Hence the solution is

𝑅𝑛 (𝑟) = 𝐶𝑟𝑛 + 𝐷
1
𝑟𝑛

𝑛 = 1, 2, 3,⋯
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Applying the boundary condition 𝑅 (𝑎) = 0 gives

0 = 𝐶𝑎𝑛 + 𝐷
1
𝑎𝑛

−𝐶𝑎𝑛 = 𝐷
1
𝑎𝑛

𝐷 = −𝐶𝑎2𝑛

The solution becomes

𝑅𝑛 (𝑟) = 𝐶𝑟𝑛 − 𝐶𝑎2𝑛
1
𝑟𝑛

𝑛 = 1, 2, 3,⋯

= 𝐶𝑛 �𝑟𝑛 −
𝑎2𝑛

𝑟𝑛 �

Hence the complete solution for 𝑅 (𝑟) is

𝑅 (𝑟) = 𝐴 ln 𝑟
𝑎
+

∞
�
𝑛=1

𝐶𝑛 �𝑟𝑛 −
𝑎2𝑛

𝑟𝑛 �
(6)

Using (5),(6) gives

𝑢𝑛 (𝑟, 𝜃) = 𝑅𝑛Θ𝑛

𝑢 (𝑟, 𝜃) = �𝐴 ln 𝑟
𝑎
+

∞
�
𝑛=1

𝐶𝑛 �𝑟𝑛 −
𝑎2𝑛

𝑟𝑛 �� �
𝐴0 +

∞
�
𝑛=1

𝐴𝑛 cos (𝑛𝜃) + 𝐵𝑛 sin (𝑛𝜃)�

Combining constants to simplify things gives

𝑢 (𝑟, 𝜃) = 𝐴 ln 𝑟
𝑎
+

∞
�
𝑛=1

�𝑟𝑛 −
𝑎2𝑛

𝑟𝑛 �
(𝐴𝑛 cos (𝑛𝜃) + 𝐵𝑛 sin (𝑛𝜃))

But 𝑎 = 1, then above simplifies to

𝑢 (𝑟, 𝜃) = 𝐴 ln 𝑟 +
∞
�
𝑛=1

�𝑟𝑛 −
1
𝑟𝑛 �

(𝐴𝑛 cos (𝑛𝜃) + 𝐵𝑛 sin (𝑛𝜃)) (7)

At 𝑟 = 𝑏 we use 𝑢 (𝑏, 𝜃) = ℎ (𝜃) to find 𝐴0, 𝐴𝑛, 𝐵𝑛.

𝑢 (𝑏, 𝜃) = ℎ (𝜃)

ℎ (𝜃) = 𝐴0 ln 𝑏 +
∞
�
𝑛=1

�𝑏𝑛 +
1
𝑏𝑛 �

(𝐴𝑛 cos (𝑛𝜃) + 𝐵𝑛 sin (𝑛𝜃))

Hence

𝐴0 ln 𝑏 = 2
𝜋 �

𝜋

−𝜋
ℎ (𝜃) 𝑑𝜃

𝐴𝑛 �𝑏𝑛 +
1
𝑏𝑛 �

=
1
𝜋 �

𝜋

−𝜋
ℎ (𝜃) cos (𝑛𝜃) 𝑑𝜃

𝐵𝑛 �𝑏𝑛 +
1
𝑏𝑛 �

=
1
𝜋 �

𝜋

−𝜋
ℎ (𝜃) sin (𝑛𝜃) 𝑑𝜃

The solution (7) becomes

𝑢 (𝑟, 𝜃) = �
2
𝜋 �

𝜋

−𝜋
ℎ (𝜃) 𝑑𝜃�

ln 𝑟
ln 𝑏+

∞
�
𝑛=1

�𝑟𝑛 − 1
𝑟𝑛
�

𝑏𝑛 + 1
𝑏𝑛

��
1
𝜋 �

𝜋

−𝜋
ℎ (𝜃) cos (𝑛𝜃) 𝑑𝜃� cos (𝑛𝜃) + �

1
𝜋 �

𝜋

−𝜋
ℎ (𝜃) cos (𝑛𝜃) 𝑑𝜃� sin (𝑛𝜃)�

But 𝑏 = 2 and the above becomes

𝑢 (𝑟, 𝜃) = �
2
𝜋 �

𝜋

−𝜋
ℎ (𝜃) 𝑑𝜃�

ln 𝑟
ln 2 +

1
𝜋

∞
�
𝑛=1

�𝑟𝑛 − 1
𝑟𝑛
�

2𝑛 + 1
2𝑛

���
𝜋

−𝜋
ℎ (𝜃) cos (𝑛𝜃) 𝑑𝜃� cos (𝑛𝜃) + ��

𝜋

−𝜋
ℎ (𝜃) cos (𝑛𝜃) 𝑑𝜃� sin (𝑛𝜃)�

= �
2
𝜋 �

𝜋

−𝜋
ℎ (𝜃) 𝑑𝜃�

ln 𝑟
ln 2 +

1
𝜋

∞
�
𝑛=1

2𝑛

𝑟𝑛
�𝑟2𝑛 − 1�
22𝑛 + 1 ���

𝜋

−𝜋
ℎ (𝜃) cos (𝑛𝜃) 𝑑𝜃� cos (𝑛𝜃) + ��

𝜋

−𝜋
ℎ (𝜃) cos (𝑛𝜃) 𝑑𝜃� sin (𝑛𝜃)�

2.7.4 Problem 4.3.38

Suppose ∫
𝜋

−𝜋
|ℎ (𝜃)| 𝑑𝜃 < ∞. Prove that (4.115) converges uniformly to the solution to the

boundary value problem (4.101) on any smaller disk 𝐷𝑟∗ = {𝑟 ≤ 𝑟∗ < 1}  𝐷1
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Solution

4.115 is solution for 𝑢 (𝑟, 𝜃) inside unit disk 0 < 𝑟 < 1 and 𝑢 = ℎ (𝜃) at 𝑟 = 1.

𝑢 (𝑟, 𝜃) =
𝑎0
2
+

∞
�
𝑛=1

𝑟𝑛 (𝑎𝑛 cos (𝑛𝜃) + 𝑏𝑛 sin (𝑛𝜃)) (4.115)

This problem is asking to show that the Fourier series solution 4.115 converges uniformly
to solution of Laplace PDE ∇ 2𝑢 = 0 inside disk with radius less than unity with above
boundary conditions.

Let 𝑓𝑛 = 𝑟𝑛 (𝑎𝑛 cos (𝑛𝜃) + 𝑏𝑛 sin (𝑛𝜃)), then to show uniform convergence, we need to show
that for any 𝜀 > 0, there exist integer 𝑁 (𝜀) such that for all 𝑛 > 𝑁 the following is true

|𝑢𝑛 − 𝑢∗| < 𝜀

Where

𝑢∗ = �
𝑟
𝑟∗
�
𝑛

(𝑎𝑛 cos (𝑛𝜃) + 𝑏𝑛 sin (𝑛𝜃))

Hence we need to show, we can find 𝑁 such that for all 𝑛 > 𝑁

�𝑟𝑛 (𝑎𝑛 cos (𝑛𝜃) + 𝑏𝑛 sin (𝑛𝜃)) − �
𝑟
𝑟∗
�
𝑛

(𝑎𝑛 cos (𝑛𝜃) + 𝑏𝑛 sin (𝑛𝜃))� < 𝜀

But

�𝑟𝑛 (𝑎𝑛 cos (𝑛𝜃) + 𝑏𝑛 sin (𝑛𝜃)) − �
𝑟
𝑟∗
�
𝑛

(𝑎𝑛 cos (𝑛𝜃) + 𝑏𝑛 sin (𝑛𝜃))� = ��𝑟𝑛 − �
𝑟
𝑟∗
�
𝑛

� (𝑎𝑛 cos (𝑛𝜃) + 𝑏𝑛 sin (𝑛𝜃))�

= ��𝑟𝑛 − �
𝑟
𝑟∗
�
𝑛

�� |𝑎𝑛 cos (𝑛𝜃) + 𝑏𝑛 sin (𝑛𝜃)|

(1)

But |𝑎𝑛 cos (𝑛𝜃) + 𝑏𝑛 sin (𝑛𝜃)| can be made as small as we want by increasing 𝑛. This is
because

|𝑎𝑛 cos (𝑛𝜃) + 𝑏𝑛 sin (𝑛𝜃)| ≤ |𝑎𝑛 cos (𝑛𝜃)| + |𝑏𝑛 sin (𝑛𝜃)|
And since ∫

𝜋

−𝜋
|ℎ (𝜃)| 𝑑𝜃 < ∞ it implies the Fourier series coe�cients 𝑎𝑛, 𝑏𝑛 → 0 as 𝑛 → ∞ per

Lemma 3.40 on page 112. Hence (1) can be made as small as we want for large 𝑛 and it

will remain smaller as 𝑛 increases because ��𝑟𝑛 − �
𝑟
𝑟∗
�
𝑛
�� < 1.

Therefore there exist such an 𝑁 (𝜀). Hence 𝑢 converges uniformly to 𝑢∗.

2.7.5 Problem 4.3.42

Complete the proof of Theorem 4.9 by showing that 𝑢 �𝑥, 𝑦� = 𝑀∗ for all �𝑥, 𝑦� ∈ Ω. Hint:

Join �𝑥0, 𝑦0� to �𝑥, 𝑦� by curve 𝐶 ⊂ Ω of finite length, and use the preceding part of the proof

to inductively deduce the existence of a finite sequence of points �𝑥𝑖, 𝑦𝑖� ∈ 𝐶, 𝑖 = 0,⋯ , 𝑛
with �𝑥𝑛, 𝑦𝑛� = �𝑥, 𝑦� and such that 𝑢 �𝑥𝑖, 𝑦𝑖� = 𝑀∗

Solution

Theorem 4.9 : Let 𝑢 be a nonconstant harmonic function defined on a bounded do-
main Ω and continuous on 𝜕Ω. Then 𝑢 achieves its maximum and minimum values
only at boundary points of the domain. In other words, if 𝑚 = min{𝑢 �𝑥, 𝑦� | �𝑥, 𝑦� ∈ 𝜕Ω},
𝑀 = max{𝑢 (𝑥, 𝑡) | �𝑥, 𝑦� ∈ 𝜕Ω} are respectively, its maximum and minimum values on the

boundary, then 𝑚 < 𝑢 �𝑥, 𝑦� < 𝑀 at all interior points �𝑥, 𝑦� ∈ Ω.

The book gives the proof showing that maximum 𝑀∗ occurs on the boundary 𝜕Ω. We are
asked here to show that once we determined that given a circle inside Ω and assuming the
maximum is at it center meaning all points inside this disk are 𝑢 = 𝑀∗ then this implies
that all points inside Ω must also be 𝑢 = 𝑀∗ leading to contradiction of the nonconstant
requirement. Hence the starting point is this diagram
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u = M∗

C

(x0, y0) Ω

∂Ω

Figure 2.48: All points inside 𝐶 have same value 𝑀∗

Now, we pick a new point from inside the disk 𝐶 near the edge and apply the first part of
the proof to show that all points inside the new disk 𝐶2 also have 𝑢 = 𝑀∗ there. So we have
this new diagram.

C

Ω

∂Ω

(x0, y0)

(x1, y1)

All points here
have u = M∗

C2

Figure 2.49: All points inside 𝐶2 have same value 𝑀∗

We continue this way connecting points and adding the domain where all points have
𝑢 = 𝑀∗ values.

C

Ω

∂Ω

(x0, y0)

(x1, y1)

All points here
have u = M∗

C2
(x2, y2)

All points here
have u = M∗

C3

Figure 2.50: All points inside 𝐶3 have same value 𝑀∗

Since Ω is connected then we can cover the whole region Ω this way all the way to the
boundary 𝜕Ω. This complete the proof given in the book.

2.7.6 Problem 4.3.46

Write down an integral formula for the solution to the Dirichlet boundary value problem
on a disk of radius 𝑅 > 0, namely, ∇ 2𝑢 = 0, 𝑥2 + 𝑦2 < 𝑅2, 𝑢 = ℎ, 𝑥2 + 𝑦2 = 𝑅2

Solution
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The closed form sum as given in theorem 4.6 in the book as the Poisson kernel integral
formula

𝑢 (𝑟, 𝜃) =
1
2𝜋 �

𝜋

−𝜋
ℎ �𝜙�

1 − 𝑟2

1 + 𝑟2 − 2𝑟 cos �𝜃 − 𝜙�
𝑑𝜙

Theorem 4.6 is for a unit disk. Since the disk here has radius 𝑅 then 𝑟 is changed to 𝑟
𝑅 in

the above giving

𝑢 (𝑟, 𝜃) =
1
2𝜋 �

𝜋

−𝜋
ℎ �𝜙�

1 − � 𝑟𝑅�
2

1 + � 𝑟𝑅�
2
− 2 � 𝑟𝑅� cos �𝜃 − 𝜙�

𝑑𝜙

Which can be simplified to

𝑢 (𝑟, 𝜃) =
1
2𝜋 �

𝜋

−𝜋
ℎ �𝜙�

𝑅2 − 𝑟2

𝑅2 + 𝑟2 − 2𝑟𝑅 cos �𝜃 − 𝜙�
𝑑𝜙

2.7.7 Problem 4.4.4

Consider the following partial di�erential equations. At what points of the plane is the
equation elliptic? hyperbolic? parabolic? degenerate?

(a) 𝑥2𝑢𝑥𝑥 + 𝑥𝑢𝑥 + 𝑢𝑦𝑦 = 0 (c) 𝑢𝑡 =
𝜕
𝜕𝑥
((𝑥 + 𝑡) 𝑢𝑥)

Solution

2.7.7.1 Part a

The general form of two variables �𝑥, 𝑦� PDE is

𝐿 [𝑢] = 𝐴𝑢𝑥𝑥 + 𝐵𝑢𝑥𝑦 + 𝐶𝑢𝑦𝑦 + 𝐷𝑢𝑥 + 𝐸𝑢𝑦 + 𝐹𝑢 = 𝐺 (1)

The type of PDE depends on value of the discriminant

Δ = 𝐵2 − 4𝐴𝐶

Comparing the PDE 𝑥2𝑢𝑥𝑥 + 𝑥𝑢𝑥 + 𝑢𝑦𝑦 to (1) shows that 𝐴 = 𝑥2, 𝐵 = 0, 𝐶 = 1. Hence

Δ = −4𝑥2

This is always negative (𝑥 = 0 is not possible, since this would made the PDE not a PDE
any more). Therefore using definition 4.12 this means the PDE is elliptic.

2.7.7.2 Part b

𝑢𝑡 =
𝜕
𝜕𝑥

((𝑥 + 𝑡) 𝑢𝑥)

= �
𝜕
𝜕𝑥

(𝑥 + 𝑡)� 𝑢𝑥 + (𝑥 + 𝑡)
𝜕
𝜕𝑥
𝑢𝑥

= 𝑢𝑥 + (𝑥 + 𝑡) 𝑢𝑥𝑥
Hence

𝑢𝑥 + (𝑥 + 𝑡) 𝑢𝑥𝑥 − 𝑢𝑡 = 0 (2)

The general form of two variables (𝑡, 𝑥) PDE is

𝐿 [𝑢] = 𝐴𝑢𝑡𝑡 + 𝐵𝑢𝑡𝑥 + 𝐶𝑢𝑥𝑥 + 𝐷𝑢𝑡 + 𝐸𝑢𝑥 + 𝐹𝑢 = 𝐺 (3)

Comparing (2) to (3) shows that 𝐶 = (𝑥 + 𝑡) , 𝐴 = 0, 𝐵 = 0. Hence

Δ = 𝐵2 − 4𝐴𝐶
= 0

Hence PDE is parabolic.

2.7.8 Problem 4.4.11

Prove that the complex change of variables 𝑥 = 𝑥, 𝑡 = 𝑖𝑦, maps the Laplace equation
𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0 to the wave equation 𝑢𝑡𝑡 = 𝑢𝑥𝑥. Explain why the type of a partial di�erential
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equation is not necessarily preserved under a complex change of variables.

Solution

Given 𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0, let 𝑥 = 𝑥, 𝑡 = 𝑖𝑦. Hence we are to go from 𝑢 �𝑥, 𝑦� to 𝑣 (𝑡, 𝑥). Therefore

𝜕𝑢 �𝑥, 𝑦�
𝜕𝑥

=

0
�𝜕𝑢
𝜕𝑡

𝑑𝑡
𝑑𝑥
+
𝜕𝑢
𝜕𝑥

𝑑𝑥
𝑑𝑥

=
𝜕𝑢
𝜕𝑥

And
𝜕2𝑢
𝜕𝑥2

=
𝜕
𝜕𝑥 �

𝜕𝑢
𝜕𝑥�

=
𝜕2𝑢
𝜕𝑥𝜕𝑡

𝑑𝑡
𝑑𝑥
+
𝜕2𝑢
𝜕𝑥2

𝑑𝑥
𝑑𝑥

=
𝜕2𝑢
𝜕𝑥2

(1)

And

𝜕𝑢
𝜕𝑦

=
𝜕𝑢
𝜕𝑡

𝑑𝑡
𝑑𝑦
+

0
�𝜕𝑢
𝜕𝑥

𝑑𝑥
𝑑𝑦

= 𝑖
𝜕𝑢
𝜕𝑡

And
𝜕2𝑢
𝜕𝑦2

=
𝜕
𝜕𝑦 �

𝜕𝑢
𝜕𝑦�

= 𝑖
𝜕
𝜕𝑦 �

𝜕𝑢
𝜕𝑡 �

= 𝑖

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜕2𝑢
𝜕𝑡2

𝑑𝑡
𝑑𝑦
+

0

���������𝜕2𝑢
𝜕𝑡𝜕𝑥

𝑑𝑥
𝑑𝑦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 𝑖 �𝑖
𝜕2𝑢
𝜕𝑡2 �

= −
𝜕2𝑢
𝜕𝑡2

(2)

Substituting (1,2) into 𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0 gives

𝜕2𝑢
𝜕𝑥2

−
𝜕2𝑢
𝜕𝑡2

= 0

𝑢𝑡𝑡 = 𝑢𝑥𝑥
Which is the wave equation.

When change of variables contains only real quantities, then no sign change will occur.
Only stretching (scaling) can occur, so the type of the PDE do not change. But with
complex variables, a sign change can occur as in this example due to multiplying 𝑖 with 𝑖.
And this is what causes the PDE type to change.

2.7.9 Problem 4.4.16

True or false: The characteristic curves of the Helmholtz equation 𝑢𝑥𝑥 + 𝑢𝑦𝑦 − 𝑢 = 0 are
circles.

Solution
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Comparing the above to 𝐿 [𝑢] = 𝐴𝑢𝑥𝑥 + 𝐵𝑢𝑥𝑦 + 𝐶𝑢𝑦𝑦 + 𝐷𝑢𝑥 + 𝐸𝑢𝑦 + 𝐹𝑢 = 𝐺 shows that

𝐴 = 1
𝐵 = 0
𝐶 = 1

Hence the characteristic curves are given by (4.151) as (where we choose 𝑦 ≡ 𝑦 (𝑥) and
hence 𝑠 = 𝑥 here)

𝐴�𝑥, 𝑦� �
𝑑𝑦
𝑑𝑥�

2

− 𝐵 �𝑥, 𝑦�
𝑑𝑦
𝑑𝑥
+ 𝐶 �𝑥, 𝑦� = 0

�
𝑑𝑦
𝑑𝑥�

2

+ 1 = 0

�
𝑑𝑦
𝑑𝑥�

2

= −1

𝑑𝑦
𝑑𝑥

= ±𝑖

There are no real characteristic curves. Therefore the answer is false.
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2.7.10 Key solution for HW 7

4.3.24(a)  

 
4.3.25(c)(d)  

 
 

4.3.33  

 
 

4.3.38  

 
 

4.3.42  
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4.3.46  

 
 

4.4.4(a)(c)  

 
 

4.4.11  

 
 

4.4.16  
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2.8 HW 8

Local contents
2.8.1 Problem 6.1.4c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
2.8.2 Problem 6.1.5b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
2.8.3 Problem 6.1.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
2.8.4 Problem 6.1.30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
2.8.5 Problem 6.1.36 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
2.8.6 Problem 6.2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
2.8.7 Problem 6.2.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
2.8.8 Problem 6.2.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
2.8.9 Problem 6.2.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
2.8.10 Key solution for HW 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

2.8.1 Problem 6.1.4c

Find and sketch a graph of the derivative (in the context of generalized functions) of the
following functions

(c) ℎ (𝑥) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sin (𝜋𝑥) 𝑥 > 1
1 − 𝑥2 −1 < 𝑥 < 1
𝑒𝑥 𝑥 < −1

Solution

-3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0

Exp[x]

1-x^2

Sin[Pi x]

Figure 2.51: Sketch of the function ℎ(𝑥)

There is only one jump discontinuity at 𝑥 = −1. The amount of jump 2 at 𝑥 = −1 is −1
𝑒 .

Hence

ℎ′ (𝑥) = −𝑒−1𝛿 (𝑥 + 1) +

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

𝜋 cos (𝜋𝑥) 𝑥 > 1
−2𝑥 −1 < 𝑥 < 1
𝑒𝑥 𝑥 < −1

-3 -2 -1 1 2 3

-4

-2

2

4

Exp[x]
-2x

Pi Cos[Pi x]

Figure 2.52: Sketch of the function ℎ′(𝑥)

2When determining the sign of the jump, we go from left to right always. Dropping down means negative
sign and moving higher means positive sign.
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2.8.2 Problem 6.1.5b

Find the first and second derivatives of the functions

(b) 𝑘 (𝑥) =

⎧⎪⎪⎨
⎪⎪⎩
|𝑥| −2 < 𝑥 < 2
0 otherwise

Solution

First, the function 𝑘 (𝑥) is shown below

-3 -2 -1 1 2 3

0.5

1.0

1.5

2.0

Figure 2.53: Sketch of the function 𝑘(𝑥)

We see there is a jump discontinuity at 𝑥 = −2 of value 2 and at 𝑥 = 2 of value −2. Now,
when −2 < 𝑥 < 0, then 𝑘 (𝑥) = −𝑥 and when 0 < 𝑥 < 2, then 𝑘 (𝑥) = 𝑥. Hence

𝑘′ (𝑥) = 2𝛿 (𝑥 + 2) − 2𝛿 (𝑥 − 2) +

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 𝑥 < −2
−1 −2 < 𝑥 < 0
1 0 < 𝑥 < 2
0 𝑥 > 2

The derivative is not defined at 𝑥 = 0. A plot of the above gives

-3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0

Figure 2.54: Sketch of the function 𝑘′(𝑥)

We see that there is now a jump discontinuity at 𝑥 = −2 of value −1 and jump discontinuity
at 𝑥 = 0 of value 2 and jump discontinuity at 𝑥 = 2 of value −1. Hence

𝑘′′ (𝑥) = 2𝛿′ (𝑥 + 2) − 2𝛿′ (𝑥 − 2) − 𝛿 (𝑥 + 2) + 2𝛿 (𝑥) − 𝛿 (𝑥 − 2)

Where 𝛿′ (𝑥 + 2) and 𝛿′ (𝑥 − 2) are called "doublets" at 𝑥 = −2 and at 𝑥 = 2 respectively.

2.8.3 Problem 6.1.9

For each positive integer 𝑛, let 𝑔𝑛 (𝑥) =

⎧⎪⎪⎨
⎪⎪⎩

1
2𝑛 |𝑥| < 1

𝑛
0 otherwise

(a) Sketch a graph of 𝑔𝑛 (𝑥). (b)

Show that lim𝑛→∞ 𝑔𝑛 (𝑥) = 𝛿 (𝑥). (c) Evaluate 𝑓𝑛 (𝑥) = ∫
𝑥

−∞
𝑔𝑛 �𝑦� 𝑑𝑦 and sketch a graph. Does

the sequence 𝑓𝑛 (𝑥) converge to the step function 𝜎 (𝑥) as 𝑛 → ∞? (d) Find the derivative
ℎ𝑛 (𝑥) = 𝑔′𝑛 (𝑥). (e) Does the sequence ℎ𝑛 (𝑥) converge to 𝛿′ (𝑥) as 𝑛 → ∞?
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Solution

2.8.3.1 Part a

Lets try few values of 𝑛.

𝑛 = 1 𝑔1 (𝑥) =

⎧⎪⎪⎨
⎪⎪⎩

1
2 |𝑥| < 1
0 otherwise

𝑛 = 2 𝑔2 (𝑥) =

⎧⎪⎪⎨
⎪⎪⎩
1 |𝑥| < 1

2
0 otherwise

𝑛 = 3 𝑔2 (𝑥) =

⎧⎪⎪⎨
⎪⎪⎩

3
2 |𝑥| < 1

3
0 otherwise

And so on. We see that as 𝑛 increases, the function value increases and the domain it is
not zero on becomes smaller. As 𝑛 → ∞ this becomes a 𝛿 (𝑥) function. Here is a plot of
few values of increasing 𝑛.

-1.0 -0.5 0.5 1.0

1

2

3

4

n=1

n=2

n=3

n=4

n=5

n=6

n=7

n=8

Figure 2.55: 𝑔𝑛(𝑥) for increasing 𝑛

2.8.3.2 Part b

lim
𝑛→∞

𝑔𝑛 (𝑥) =

⎧⎪⎪⎨
⎪⎪⎩

lim𝑛→∞
1
2𝑛 lim𝑛→∞ |𝑥| <

1
𝑛

0 otherwise

=

⎧⎪⎪⎨
⎪⎪⎩
∞ |𝑥| → 0
0 otherwise

= 𝛿 (𝑥)

2.8.3.3 Part c

We want to integrate this function

−1
n

1
n

n
2

x
0

Figure 2.56: Integrating 𝑔𝑛(𝑥)
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Therefore

𝑓𝑛 (𝑥) = �
𝑥

−∞
𝑔𝑛 �𝑦� 𝑑𝑦 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 𝑥 < −1
𝑛

� 1
𝑛 + 𝑥�

𝑛
2

−1
𝑛 < 𝑥 < 0

� 1
𝑛 − 𝑥�

𝑛
2 0 < 𝑥 < 1

𝑛

1 𝑥 > 1
𝑛

This is a sketch of the above We see that as 𝑛 → ∞ then 𝑓𝑛 (𝑥) becomes

lim
𝑛→∞

𝑓𝑛 (𝑥) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 𝑥 < 0
1
2 𝑥 = 0
1 𝑥 > 0

Which is the step function 𝜎 (𝑥)

2.8.3.4 Part d

From the plot of 𝑔𝑛 (𝑥) above, we see there is a jump discontinuity at 𝑥 = − 1𝑛 of value 𝑛
2

and a jump discontinuity at 𝑥 = 1
𝑛 of value −

𝑛
2 . And since 𝑔𝑛 (𝑥) is constant everywhere else,

then

ℎ𝑛 (𝑥) = 𝑔′𝑛 (𝑥) =
𝑛
2
𝛿 �𝑥 +

1
𝑛�
−
𝑛
2
𝛿 �𝑥 −

1
𝑛�

2.8.3.5 Part e

Yes, lim𝑛→∞ ℎ𝑛 (𝑥) = 𝛿′ (𝑥). By definition, and as shown in figure 6.6 in textbook, 𝛿′ (𝑥) is
"doublets". Which is an impulse in positive direction just to the left of 𝑥 and another impulse
in negative direction just to the right of 𝑥 and this is what happens when lim𝑛→∞ ℎ𝑛 (𝑥) as
seen from the result in part d.

2.8.4 Problem 6.1.30

(a) Find the complex Fourier series for the derivative of the delta function 𝛿′ (𝑥) by direct
evaluation of the coe�cient formulas (b) Verify that your series can be obtained by term-
by-term di�erentiation of the series for 𝛿 (𝑥). (c) Write a formula for the 𝑛𝑡ℎ partial sum
of your series. (d) Use a computer graphics package to investigate the convergence of the
series.

Solution

2.8.4.1 Part a

By first doing 2𝜋 periodic extension (similar to Dirac comb) we can calculate the coe�cients.
First we find the Fourier series for 𝛿 (𝑥)

𝛿 (𝑥) ∼
𝑘=∞
�
𝑘=−∞

𝑐𝑘𝑒𝑖𝑘𝑥

Where 𝑐𝑘 =
1
2𝜋
∫𝜋
−𝜋
𝛿 (𝑥) 𝑒−𝑖𝑘𝑥𝑑𝑥 = 1

2𝜋 . Hence

𝛿 (𝑥) ∼
1
2𝜋

𝑘=∞
�
𝑘=−∞

𝑒𝑖𝑘𝑥

∼
1
2𝜋

�⋯ + 𝑒−2𝑖𝑥 + 𝑒−𝑖𝑥 + 1 + 𝑒𝑖𝑥 + 𝑒2𝑖𝑥 +⋯� (1)

Now

𝛿′ (𝑥) ∼
𝑘=∞
�
𝑘=−∞

𝑑𝑘𝑒𝑖𝑘𝑥 (2)
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Where

𝑑𝑘 =
1
2𝜋 �

𝜋

−𝜋
𝛿′ (𝑥) 𝑒−𝑖𝑘𝑥𝑑𝑥

=
1
2𝜋 �

�𝑒−𝑖𝑘𝑥�
′
�
𝑥=0

=
1
2𝜋

�−𝑖𝑘𝑒−𝑖𝑘𝑥�
𝑥=0

=
1
2𝜋

[−𝑖𝑘]

= −𝑖
𝑘
2𝜋

Hence from (2) we obtain the Fourier series for 𝛿′ (𝑥) as

𝛿′ (𝑥) ∼
−𝑖
2𝜋

𝑘=∞
�
𝑘=−∞

𝑘𝑒𝑖𝑘𝑥

∼
−𝑖
2𝜋

�⋯ − 2𝑒−2𝑖𝑥 − 𝑒−𝑖𝑥 + 𝑒𝑖𝑥 + 2𝑒2𝑖𝑥 +⋯�

∼
1
2𝜋

�⋯ + 2𝑖𝑒−2𝑖𝑥 + 𝑖𝑒−𝑖𝑥 − 𝑖𝑒𝑖𝑥 − 2𝑖𝑒2𝑖𝑥 +⋯� (3)

2.8.4.2 Part b

To do term by term di�erentiation of 𝛿 (𝑥), we first have to note the use of the following
relation and the sign change needed to add

lim
𝑛→∞

𝑔𝑛 (𝑥) → 𝛿 (𝑥)

− lim
𝑛→∞

𝑔′𝑛 (𝑥) → 𝛿′ (𝑥)

The above means we need to add a minus sign to the RHS when taking derivative of 𝛿 (𝑥).
Therefore, term by term di�erentiation of the Fourier series for 𝛿 (𝑥) given in (1) now gives

𝛿′ (𝑥) ∼ (−)
1
2𝜋

𝑑
𝑑𝑥
�⋯ + 𝑒−2𝑖𝑥 + 𝑒−𝑖𝑥 + 1 + 𝑒𝑖𝑥 + 𝑒2𝑖𝑥 +⋯�

∼ (−)
1
2𝜋

�⋯ − 2𝑖𝑒−2𝑖𝑥 − 𝑖𝑒−𝑖𝑥 + 𝑖𝑒𝑖𝑥 + 2𝑖𝑒2𝑖𝑥 +⋯�

∼
1
2𝜋

�⋯ + 2𝑖𝑒−2𝑖𝑥 + 𝑖𝑒−𝑖𝑥 − 𝑖𝑒𝑖𝑥 − 2𝑖𝑒2𝑖𝑥 +⋯� (4)

Comparing (4) and (3) shows they are the same.

2.8.4.3 Part c

It is easier to use normal Fourier series for this.

𝑎𝑘 =
1
𝜋 �

𝜋

−𝜋
𝛿′ (𝑥) cos (𝑘𝑥) 𝑑𝑥

=
1
𝜋
�(cos 𝑘𝑥)′�

𝑥=0

=
1
𝜋
[−𝑘 sin 𝑘𝑥]𝑥=0

= 0

And

𝑏𝑘 =
1
𝜋 �

𝜋

−𝜋
𝛿′ (𝑥) sin (𝑘𝑥) 𝑑𝑥

=
1
𝜋
�(sin 𝑘𝑥)′�

𝑥=0

=
1
𝜋
[𝑘 cos 𝑘𝑥]𝑥=0

=
𝑘
𝜋

Hence

𝛿′ (𝑥) ∼
1
𝜋

∞
�
𝑘=1

𝑘 sin (𝑘𝑥) (1)
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Therefore the 𝑛𝑡ℎ partial sum is

𝛿′𝑛 (𝑥) ∼
1
𝜋

𝑛
�
𝑘=1

𝑘 sin (𝑘𝑥)

Since |sin (𝑘𝑥)| ≤ 1, used partial sum formula for the above given by
𝑛
�
𝑘=1

𝑘 sin (𝑘𝑥) = 𝑛 sin ((𝑛 + 1) 𝑥) − (𝑛 + 1) sin (𝑛𝑥)
2 cos (𝑥) − 2 (2)

Hence

𝛿′𝑛 (𝑥) ∼
1
𝜋
𝑛 sin ((𝑛 + 1) 𝑥) − (𝑛 + 1) sin (𝑛𝑥)

2 cos (𝑥) − 2
It is possible to obtain the above formula by writing sin (𝑘𝑥) = Im �𝑒𝑖𝑘𝑥� and then using
Im∑𝑛

𝑘=1 𝑘𝑒
𝑖𝑘𝑥 = Im∑𝑛

𝑘=1 𝑘𝑧
𝑘 where 𝑧 = 𝑒𝑖𝑥. Since |𝑧| ≤ 1 then using the partial sum formula

𝑛
�
𝑘=1

𝑘𝑧𝑘 =
𝑧 (1 − 𝑧𝑛)
(1 − 𝑧)2

−
𝑛𝑧𝑛+1

1 − 𝑧

=
𝑧 (1 − 𝑧𝑛) − 𝑛𝑧𝑛+1 (1 − 𝑧)

(1 − 𝑧)2

=
𝑧 − 𝑧𝑛+1 − 𝑛𝑧𝑛+1 + 𝑛𝑧𝑛+2

(1 − 𝑧)2

=
𝑧 − (1 + 𝑛) 𝑧𝑛+1 + 𝑛𝑧𝑛+2

(1 − 𝑧)2

Then replacing 𝑧 back by 𝑒𝑖𝑥 in the above, and using 𝑒𝑖𝑥 = cos 𝑥+ 𝑖 sin 𝑥 and simplifying and
taking the imaginary part to obtain (2).

2.8.4.4 Part d

Using computer graphics, the following is plot of (2) for increasing values of 𝑛. This shows
that as 𝑛 increases 𝛿′𝑛 (𝑥) approaches "doublets", which is a pulse to the left of 𝑥 = 0 and
one to the right of 𝑥 = 0.

-1.0 -0.5 0.5 1.0

-0.5

0.5

n=2

-1.0 -0.5 0.5 1.0

-4

-2

2

4

n=5

-1.0 -0.5 0.5 1.0

-15

-10

-5

5

10

15
n=10

-1.0 -0.5 0.5 1.0

-60

-40

-20

20

40

60
n=20

-1.0 -0.5 0.5 1.0

-100

-50

50

100

n=30

-1.0 -0.5 0.5 1.0

-300

-200

-100

100

200

300

n=50

-1.0 -0.5 0.5 1.0

-600

-400

-200

200

400

600

n=70

-1.0 -0.5 0.5 1.0

-1000

-500

500

1000

n=90

-1.0 -0.5 0.5 1.0

-1500

-1000

-500

500

1000

1500

n=110

Figure 2.57: Convergence of Fourier series of 𝛿′(𝑥) as 𝑛 increases
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f[x_, n_] :=
1

π

n Sinn + 1 x - n + 1 Sin[n x]

2 Cos[x] - 2

data = Table[Plot[f[x, n], {x, -1, 1}, PlotRange → All, PlotStyle → Red,

PlotLabel → Row[{"n=", n}]], {n, {2, 5, 10, 20, 30, 50, 70, 90, 110}}];

p = Grid[Partition[data, 3], Frame → All];

Figure 2.58: Code used for the above plot

2.8.5 Problem 6.1.36

True or false: If you integrate the Fourier series for the delta function 𝛿 (𝑥) term by term,
you obtain the Fourier series for the step function 𝜎 (𝑥).

Solution

The Fourier series for delta function 𝛿 (𝑥) is (assuming 2𝜋 periodic extension)

𝛿 (𝑥) ∼
1
2𝜋

+
1
𝜋

∞
�
𝑛=1

cos 𝑛𝑥

Integrating RHS term by term gives

�
𝜋

−𝜋

1
2𝜋
𝑑𝑥 +

1
𝜋

∞
�
𝑛=1

�
𝜋

−𝜋
cos 𝑛𝑥𝑑𝑥 = 1 + 1

𝜋

∞
�
𝑛=1

0

�������������
�
sin 𝑛𝑥
𝑛 �

𝜋

−𝜋

= 1 (1)

The step function 𝜎 (𝑥) is defined as

𝜎 (𝑥) =

⎧⎪⎪⎨
⎪⎪⎩
0 𝑥 < 0
1 𝑥 > 0

Its Fourier series was already found on page 83 (assuming 2𝜋 periodic extension) in
Example 3.9 as

𝜎 (𝑥) ∼
1
2
+
2
𝜋

∞
�
𝑛=1

1
(2𝑛 − 1)

sin ((2𝑛 − 1) 𝑥)

=
1
2
+
2
𝜋 �

sin 𝑥 + 1
3

sin 3𝑥 + 1
5

sin 5𝑥 +⋯� (2)

Comparing (1) and (2), the answer is false.

2.8.6 Problem 6.2.4

The boundary value problem − 𝑑
𝑑𝑥
�𝑐 (𝑥) 𝑑𝑢𝑑𝑥� = 𝑓 (𝑥) , 𝑢 (0) = 𝑢 (1) = 0, models the displacement

𝑢(𝑥) of a nonuniform elastic bar with sti�ness 𝑐 (𝑥) = 1
1+𝑥2 for 0 ≤ 𝑥 ≤ 1. (a) Find the

displacement when the bar is subjected to a constant external force, 𝑓 = 1. (b) Find
the Green’s function for the boundary value problem (c) Use the resulting superposition
formula to check your solution to part (a). (d) Which point 0 < 𝜉 < 1 on the bar is
the "weakest", i.e., the bar experiences the largest displacement under a unit impulse
concentrated at that point?

Solution

2.8.6.1 Part a

The ode to solve is
𝑑
𝑑𝑥 �

1
1 + 𝑥2

𝑑𝑢
𝑑𝑥�

= −1
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Integrating once gives
1

1 + 𝑥2
𝑑𝑢
𝑑𝑥

= −𝑥 + 𝐶1
𝑑𝑢
𝑑𝑥

= �1 + 𝑥2� (−𝑥 + 𝐶1)

= 𝐶1 − 𝑥 + 𝐶1𝑥2 − 𝑥3

Integrating once more gives

𝑢 (𝑥) = 𝐶1𝑥 −
𝑥2

2
+ 𝐶1

𝑥3

3
−
𝑥4

4
+ 𝐶2

= −
𝑥4

4
+ 𝐶1

𝑥3

3
−
𝑥2

2
+ 𝐶1𝑥 + 𝐶2 (1)

Applying left B.C. 𝑢 (0) = 0 gives

0 = 𝐶2
Hence solution (1) becomes

𝑢 (𝑥) = −
𝑥4

4
+ 𝐶1

𝑥3

3
−
𝑥2

2
+ 𝐶1𝑥 (2)

Applying left B.C. 𝑢 (1) = 0 gives

0 = −
1
4
+ 𝐶1

1
3
−
1
2
+ 𝐶1

𝐶1 =
9
16

Hence the solution (2) becomes

𝑢 (𝑥) = −
𝑥4

4
+
3
16
𝑥3 −

𝑥2

2
+
9
16
𝑥

=
1
16
�−4𝑥4 + 3𝑥3 − 8𝑥2 + 9𝑥�

u[x_] :=
-x4

4
+

3

16
x
3
-
x
2

2
+

9

16
x;

Plot[u[x], {x, 0, 1}, PlotStyle → Red,

GridLines → Automatic, GridLinesStyle → LightGray]

Out[ ]=

0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15

Figure 2.59: Plot of the above solution

2.8.6.2 Part b

When 𝑥 ≠ 𝑦, then Green function satisfies 𝑑
𝑑𝑥 �𝑐 (𝑥)

𝑑𝐺�𝑥,𝑦�

𝑑𝑥 � = 0. This means that

𝑐 (𝑥)
𝑑𝐺 �𝑥, 𝑦�
𝑑𝑥

= 𝐴1
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But 𝑐 (𝑥) = 1
1+𝑥2 , therefore

𝑑𝐺 �𝑥, 𝑦�
𝑑𝑥

= 𝐴1 �1 + 𝑥2�

Integrating gives

𝐺�𝑥, 𝑦� = 𝐴1𝑥 + 𝐴1
𝑥3

3
+ 𝐴2

Therefore Green function is

𝐺�𝑥, 𝑦� =

⎧⎪⎪⎨
⎪⎪⎩
𝐴1𝑥 + 𝐴1

𝑥3

3 + 𝐴2 𝑥 < 𝑦

𝐵1𝑥 + 𝐵1
𝑥3

3 + 𝐵2 𝑥 > 𝑦
(1)

Notice we used di�erent constants of integrations for each side of the delta location 𝑦.
Now we use boundary conditions on the left and right end to find these unknowns. Since
Green function satisfies same boundary conditions as the solution, then at 𝑥 = 0 we need

𝐺�0, 𝑦� = 0
= 𝐴2

And at 𝑥 = 1

𝐺 �1, 𝑦� = 0

= 𝐵1 + 𝐵1
1
3
+ 𝐵2

Which means −43𝐵1 = 𝐵2. Using these results in (1) gives

𝐺�𝑥, 𝑦� =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

𝐴1 �𝑥 +
𝑥3

3
� 𝑥 < 𝑦

𝐵1𝑥 + 𝐵1
𝑥3

3 −
4
3𝐵1 𝑥 > 𝑦

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

𝐴1 �𝑥 +
𝑥3

3
� 𝑥 < 𝑦

𝐵1 �𝑥 +
𝑥3

3 −
4
3
� 𝑥 > 𝑦

(1A)

We now need to determine 𝐴1, 𝐵1. From continuity condition of 𝐺�𝑥, 𝑦� at 𝑥 = 𝑦 we obtain
the first equation

𝐴1 �𝑦 +
𝑦3

3 �
= 𝐵1 �𝑦 +

𝑦3

3
−
4
3�

(2)

And

𝑑𝐺 �𝑥, 𝑦�
𝑑𝑥

=

⎧⎪⎪⎨
⎪⎪⎩
𝐴1 �1 + 𝑥2� 𝑥 < 𝑦
𝐵1 �1 + 𝑥2� 𝑥 > 𝑦

Evaluated at 𝑥 = 𝑦

𝑑𝐺 �𝑥, 𝑦�
𝑑𝑥

=

⎧⎪⎪⎨
⎪⎪⎩
𝐴1 �1 + 𝑦2� 𝑥 < 𝑦
𝐵1 �1 + 𝑦2� 𝑥 > 𝑦

There is a jump discontinuity in
𝑑𝐺�𝑥,𝑦�

𝑑𝑥 of value 1
𝑝 where − �𝑝𝑦

′′� = 0. Comparing this with

− 𝑑
𝑑𝑥 �𝑐 (𝑥)

𝑑𝐺�𝑥,𝑦�

𝑑𝑥 � = 𝑓 (𝑥) shows that 𝑝 = 1
𝑐(𝑥) = �1 + 𝑥2� or �1 + 𝑦2� at 𝑥 = 𝑦. Therefore this

condition gives the second equation we need

𝐴1 �1 + 𝑦2� − 𝐵1 �1 + 𝑦2� =
1
𝑝

(3)

= �1 + 𝑦2� (2.1)

We now have the two equations we want (2,3) to solve for 𝐴1, 𝐵1. Solving for 𝐴1, 𝐵1 gives

𝐴1 =
1
4
�4 − 3𝑦 − 𝑦3�

𝐵1 =
1
4
�−3𝑦 − 𝑦3�

Substituting the above into (1A) gives the Green function
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𝐺�𝑥, 𝑦� =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
4
�4 − 3𝑦 − 𝑦3� �𝑥 + 𝑥3

3
� 𝑥 < 𝑦

1
4
�−3𝑦 − 𝑦3� �𝑥 + 𝑥3

3 −
4
3
� 𝑥 > 𝑦

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
4
�4 − 3𝑦 − 𝑦3� �𝑥 + 𝑥3

3
� 𝑥 < 𝑦

1
4
�4 − 3𝑥 − 𝑥3� �𝑦 + 𝑦3

3
� 𝑥 > 𝑦

we now see the symmetry above as expected.

2.8.6.3 Part (c)

Now we check the solution of part (a) for 𝑓 (𝑥) = 1 using the superposition formula and
noting that 𝑓 �𝑦� = 1 we obtain

𝑢 (𝑥) =

𝑦<𝑥

�������������������������
�

𝑥

0
𝐺�𝑥, 𝑦� 𝑓 �𝑦� 𝑑𝑦 +

𝑦>𝑥

�������������������������
�

1

𝑥
𝐺�𝑥, 𝑦� 𝑓 �𝑦� 𝑑𝑦

= �
𝑥

0

1
4
�4 − 3𝑥 − 𝑥3� �𝑦 +

𝑦3

3 �
𝑑𝑦 +�

1

𝑥

1
4
�4 − 3𝑦 − 𝑦3� �𝑥 +

𝑥3

3 �
𝑑𝑦

Hence

𝑢 (𝑥) =
1
4
�4 − 3𝑥 − 𝑥3��

𝑥

0
�𝑦 +

𝑦3

3 �
𝑑𝑦 +

1
4 �
𝑥 +

𝑥3

3 ��
1

𝑥
�4 − 3𝑦 − 𝑦3� 𝑑𝑦

=
1
4
�4 − 3𝑥 − 𝑥3� �

𝑦2

2
+
𝑦4

12�
𝑥

0
+
1
4 �
𝑥 +

𝑥3

3 � �
4𝑦 −

3𝑦2

2
−
𝑦4

4 �
1

𝑥

=
1
4
�4 − 3𝑥 − 𝑥3� �

𝑥2

2
+
𝑥4

12�
+
1
4 �
𝑥 +

𝑥3

3 � �
4 −

3
2
−
1
4
− �4𝑥 −

3𝑥2

2
−
𝑥4

4 ��

=
1
16
𝑥 �−4𝑥3 + 3𝑥2 − 8𝑥 + 9�

Which agree with solution obtain in part (a)

2.8.6.4 Part (d)

From the solution above 𝑢 (𝑥) = 1
16
�−4𝑥4 + 3𝑥3 − 8𝑥2 + 9𝑥�. Hence

𝑑𝑢
𝑑𝑥

=
1
16
�−16𝑥3 + 9𝑥2 − 16𝑥 + 9�

Solving for 𝑑𝑢
𝑑𝑥 = 0 gives

1
16
�−16𝑥3 + 9𝑥2 − 16𝑥 + 9� = 0

−
1
16
(16𝑥 − 9) �1 + 𝑥2� = 0

�1 + 𝑥2� = 0 does not give real solutions. Hence − 1
16
(16𝑥 − 9) = 0 or 16𝑥 − 9 = 0 or

𝑥 =
9
16

At this 𝑥 is the largest displacement which is found by evaluating the solution at this 𝑥

𝑢 �
9
16�

=
1
16

⎛
⎜⎜⎜⎜⎝−4 �

9
16�

4

+ 3 �
9
16�

3

− 8 �
9
16�

2

+ 9 �
9
16�

⎞
⎟⎟⎟⎟⎠

=
43659
262144

= 0.167
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2.8.7 Problem 6.2.7

For 𝑛 a positive integer, set 𝑓𝑛 (𝑥) =

⎧⎪⎪⎨
⎪⎪⎩

1
2𝑛 |𝑥 − 𝜉| < 1

𝑛
0 otherwise

(a) Find the solution 𝑢𝑛 (𝑥) to the

boundary value problem −𝑢′′ = 𝑓𝑛 (𝑥) , 𝑢 (0) = 0, 𝑢 (1) = 0, assuming 0 < 𝜉 − 1
𝑛 < 𝜉 + 1

𝑛 < 1.
(b) Prove that lim𝑛→∞ 𝑢𝑛 (𝑥) = 𝐺 (𝑥; 𝜉) converges to the Green’s function (6.51) given by
solution to −𝑐𝑢′′ = 𝑓 (𝑥) with same BC as

𝐺 (𝑥; 𝜉) =
(1 − 𝜉) 𝑥 − 𝜌 (𝑥 − 𝜉)

𝑐
=

⎧⎪⎪⎨
⎪⎪⎩
(1 − 𝜉) 𝑥𝑐 𝑥 ≤ 𝜉
(1 − 𝑥) 𝜉𝑐 𝑥 ≥ 𝜉

But here 𝑐 = 1, so the above becomes

𝐺 (𝑥; 𝜉) = (1 − 𝜉) 𝑥 − 𝜌 (𝑥 − 𝜉) =

⎧⎪⎪⎨
⎪⎪⎩
(1 − 𝜉) 𝑥 𝑥 ≤ 𝜉
(1 − 𝑥) 𝜉 𝑥 ≥ 𝜉

Where 𝜌 is the ramp function. Why should this be the case? (c) Reconfirm the result in
part (b) by graphing 𝑢5 (𝑥) , 𝑢15 (𝑥) , 𝑢25 (𝑥), along with 𝐺 (𝑥; 𝜉) when 𝜉 = 0.3.

Solution

2.8.7.1 Part a

When 𝑥 ≠ 𝜉, then Green function satisfies
𝑑2𝐺�𝑥,𝑦�

𝑑𝑥2 = 0. This means that

𝐺�𝑥, 𝑦� = 𝐴1𝑥 + 𝐴2
Hence Green function is

𝐺�𝑥, 𝑦� =

⎧⎪⎪⎨
⎪⎪⎩
𝐴1𝑥 + 𝐴2 𝑥 ≤ 𝜉
𝐵1𝑥 + 𝐵2 𝑥 ≥ 𝜉

At 𝑥 = 0, 𝐺�0, 𝑦� = 0 = 𝐴2 and at 𝑥 = 1, 𝐺�1, 𝑦� = 0 = 𝐵1 + 𝐵2. Hence 𝐵2 = −𝐵1. The above
becomes

𝐺�𝑥, 𝑦� =

⎧⎪⎪⎨
⎪⎪⎩

𝐴1𝑥 𝑥 ≤ 𝜉
𝐵1𝑥 − 𝐵1 𝑥 ≥ 𝜉

=

⎧⎪⎪⎨
⎪⎪⎩

𝐴1𝑥 𝑥 ≤ 𝜉
𝐵1 (𝑥 − 1) 𝑥 ≥ 𝜉

(A)

Where 𝐴1, 𝐵1 are constants to be found. These are found from the continuity condition
and the jump discontinuity condition on 𝑑𝐺

𝑑𝑥 both at 𝑥 = 𝜉. The continuity condition at
𝑥 = 𝜉 gives the first equation as

𝐴𝜉 = 𝐵 (𝜉 − 1) (1)

And 𝑑𝐺
𝑑𝑥 at 𝑥 = 𝜉 gives

lim
𝑥→𝜉

𝑑𝐺
𝑑𝑥

=

⎧⎪⎪⎨
⎪⎪⎩
𝐴1 𝑥 ≤ 𝜉
𝐵1 𝑥 ≥ 𝜉

Hence the jump discontinuity condition gives the second equation we want which is

𝐴1 − 𝐵1 = 1 (2)

Where 1 is used in RHS above since 𝑐 = 1. From (1,2) we solve for 𝐴1, 𝐵1. Which gives

𝐵1 = −𝜉
𝐴1 = 1 − 𝜉

Substituting the above back into Eq (A) gives the Green function

𝐺 (𝑥; 𝜉) =

⎧⎪⎪⎨
⎪⎪⎩
(1 − 𝜉) 𝑥 𝑥 ≤ 𝜉
(1 − 𝑥) 𝜉 𝑥 ≥ 𝜉

(3)
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The solution is now found using superposition formula

𝑢𝑛 (𝑥) =

𝜉<𝑥

���������������������������
�

𝑥

0
𝐺 (𝑥, 𝜉) 𝑓𝑛 (𝜉) 𝑑𝜉 +

𝜉>𝑥

���������������������������
�

1

𝑥
𝐺 (𝑥, 𝜉) 𝑓𝑛 (𝜉) 𝑑𝜉

= �
𝑥

0
(1 − 𝑥) 𝜉𝑓𝑛 (𝜉) 𝑑𝜉 +�

1

𝑥
(1 − 𝜉) 𝑥𝑓𝑛 (𝜉) 𝑑𝜉

= (1 − 𝑥)�
𝑥

0
𝜉𝑓𝑛 (𝜉) 𝑑𝜉 + 𝑥�

1

𝑥
(1 − 𝜉) 𝑓𝑛 (𝜉) 𝑑𝜉 (4)

But 𝑓𝑛 (𝑥) =

⎧⎪⎪⎨
⎪⎪⎩

1
2𝑛 |𝑥 − 𝜉| < 1

𝑛
0 otherwise

. We are told that 0 < 𝜉 − 1
𝑛 < 𝜉+

1
𝑛 < 1. Hence (4) becomes

𝑢𝑛 (𝑥) = (1 − 𝑥)�
𝑥

𝑥− 1
𝑛

𝜉
𝑛
2
𝑑𝜉 + 𝑥�

𝑥+ 1
𝑛

𝑥
(1 − 𝜉)

𝑛
2
𝑑𝜉

=
(1 − 𝑥)
2

𝑛�
𝑥

𝑥− 1
𝑛

𝜉𝑑𝜉 +
𝑥
2
𝑛�

𝑥+ 1
𝑛

𝑥
(1 − 𝜉) 𝑑𝜉

=
(1 − 𝑥)
2

𝑛 �
𝜉2

2 �
𝑥

𝑥− 1
𝑛

+
𝑥
2
𝑛 �𝜉 −

𝜉2

2 �
𝑥+ 1

𝑛

𝑥

=
(1 − 𝑥)
2

𝑛

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥2

2
−
�𝑥 − 1

𝑛
�
2

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+
𝑥
2
𝑛

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
�𝑥 +

1
𝑛�
−
�𝑥 + 1

𝑛
�
2

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
− �𝑥 −

𝑥2

2 �

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= �
1
2
𝑥 +

1
4𝑛
𝑥 −

1
4𝑛

−
1
2
𝑥2� − �

1
4𝑛
𝑥 (2𝑛𝑥 − 2𝑛 + 1)�

= −
1
4𝑛
�4𝑛𝑥2 − 4𝑛𝑥 + 1�

= 𝑥 − 𝑥2 −
1
4𝑛

2.8.7.2 Part b

lim
𝑛→∞

𝑢𝑛 (𝑥) = lim
𝑛→∞

𝑥 − 𝑥2 −
1
4𝑛

= 𝑥 (1 − 𝑥)

2.8.7.3 Part c

This is plot of Green function 𝐺 (𝑥; 𝜉) =

⎧⎪⎪⎨
⎪⎪⎩
(1 − 𝜉) 𝑥 𝑥 ≤ 𝜉
𝜉 (1 − 𝑥) 𝑥 ≥ 𝜉

for 𝜉 = 0.3

0.2 0.4 0.6 0.8 1.0
x

0.05

0.10

0.15

0.20

G(x,0.3

Figure 2.60: Green function
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green[x_, z_] := Piecewise1 - z x, x < z, 1 - x z, x > z

p = Plot[green[x, 0.3], {x, 0, 1}, PlotStyle → Red,

GridLines → Automatic, GridLinesStyle → LightGray,

AxesLabel → {"x", "G(x,0.3"}, BaseStyle → 12,

Epilog → {Red, {PointSize[.025], Point[{0.3, 0}]}}];

Figure 2.61: Code for the above plot

These are plots of 𝑢𝑛 (𝑥) = 𝑥 − 𝑥2 −
1
4𝑛 for di�erent 𝑛 values.

5

15

25
0.2 0.4 0.6 0.8 1.0

-0.05

0.05

0.10

0.15

0.20

0.25

Figure 2.62: Plot of 𝑢𝑛(𝑥) for di�erent 𝑛 values

u[x_, n_] := x - x^2 - 1  (4 n)

p = Plot[Evaluate[Table[Callout[u[x, n], n], {n, {5, 15, 25}}]], {x, 0, 1},

AxesOrigin → {0, 0}, GridLines → Automatic,

GridLinesStyle → LightGray];

Figure 2.63: Code for the above plot

Please note that the plots above do not seem to converge well with what is expected which
is the Green function plot earlier. I am not able to find out so far where the problem is.

2.8.8 Problem 6.2.11

Let 𝜔 > 0. (a) Find the Green’s function for the mixed boundary value problem

−𝑢′′ + 𝜔2𝑢 = 𝑓 (𝑥) , 𝑢 (0) = 0, 𝑢′ (1) = 0

(b) Use your Green’s function to find the solution when 𝑓 (𝑥) =

⎧⎪⎪⎨
⎪⎪⎩
1 0 < 𝑥 < 1

2
−1 1

2 < 𝑥 ≤ 1

Solution

2.8.8.1 Part a

When 𝑥 ≠ 𝜉, then Green function satisfies −
𝑑2𝐺�𝑥,𝑦�

𝑑𝑥2 + 𝜔2𝐺�𝑥, 𝑦� = 0. This means that
𝑑2𝐺�𝑥,𝑦�

𝑑𝑥2 − 𝜔2𝐺�𝑥, 𝑦� = 0 which has solution

𝐺�𝑥, 𝑦� = 𝐴1 cosh (𝜔𝑥) + 𝐴2 sinh (𝜔𝑥)
Hence Green function is

𝐺�𝑥, 𝑦� =

⎧⎪⎪⎨
⎪⎪⎩
𝐴1 cosh (𝜔𝑥) + 𝐴2 sinh (𝜔𝑥) 0 < 𝑥 < 𝑦
𝐵1 cosh (𝜔𝑥) + 𝐵2 sinh (𝜔𝑥) 𝑦 < 𝑥 < 1

(1A)
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At 𝑥 = 0, 𝐺�0, 𝑦� = 0 = 𝐴1. And to find conditions at 𝑥 = 1, then 𝐺′ �𝑥, 𝑦� = 𝜔𝐵1 sinh (𝜔𝑥) +
𝜔𝐵2 cosh (𝜔𝑥). Hence at 𝑥 = 1 this gives

𝐺′ �1, 𝑦� = 0
= 𝜔𝐵1 sinh𝜔 + 𝜔𝐵2 cosh𝜔

Therefore 𝐵1 sinh𝜔 + 𝐵2 cosh𝜔 = 0. Or 𝐵2 = −𝐵1 tanh𝜔. Hence (1A) becomes

𝐺�𝑥, 𝑦� =

⎧⎪⎪⎨
⎪⎪⎩

𝐴2 sinh (𝜔𝑥) 0 < 𝑥 < 𝑦
𝐵1 cosh (𝜔𝑥) − 𝐵1 tanh𝜔 sinh (𝜔𝑥) 𝑦 < 𝑥 < 1

=

⎧⎪⎪⎨
⎪⎪⎩

𝐴2 sinh (𝜔𝑥) 0 < 𝑥 < 𝑦
𝐵1 (cosh (𝜔𝑥) − tanh𝜔 sinh (𝜔𝑥)) 𝑦 < 𝑥 < 1

But cosh (𝜔𝑥) − tanh𝜔 sinh (𝜔𝑥) = cosh(𝜔−𝜔𝑥)
cosh𝜔 . The above becomes

𝐺�𝑥, 𝑦� =

⎧⎪⎪⎨
⎪⎪⎩
𝐴2 sinh (𝜔𝑥) 0 < 𝑥 < 𝑦
𝐵1

cosh(𝜔−𝜔𝑥)
cosh𝜔 𝑦 < 𝑥 < 1

(1)

We now need to determine 𝐴2, 𝐵1. From continuity condition of 𝐺�𝑥, 𝑦� at 𝑥 = 𝑦 we obtain
the first equation

𝐴2 sinh �𝜔𝑦� = 𝐵1
cosh �𝜔 − 𝜔𝑦�

cosh𝜔 (2)

And

𝑑𝐺 �𝑥, 𝑦�
𝑑𝑥

=

⎧⎪⎪⎨
⎪⎪⎩

𝐴2𝜔 cosh (𝜔𝑥) 𝑥 < 𝑦

𝐵1 �
−𝜔 sinh(𝜔−𝜔𝑥)

cosh𝜔 � 𝑥 > 𝑦

Evaluated at 𝑥 = 𝑦

𝑑𝐺 �𝑥, 𝑦�
𝑑𝑥

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

𝐴2𝜔 cosh �𝜔𝑦� 𝑥 < 𝑦

𝐵1 �
−𝜔 sinh�𝜔−𝜔𝑦�

cosh𝜔 � 𝑥 > 𝑦

There is a jump discontinuity in
𝑑𝐺�𝑥,𝑦�

𝑑𝑥 of value 1 at 𝑥 = 𝑦. Therefore this condition gives
the second equation we need

𝐴2𝜔 cosh �𝜔𝑦� + 𝐵1
𝜔 sinh �𝜔 − 𝜔𝑦�

cosh𝜔 = 1 (3)

Solving (2,3) for 𝐴2, 𝐵1 gives

𝐴2 =
cosh �𝜔 �1 − 𝑦��
𝜔 cosh (𝜔)

𝐵1 =
sinh �𝜔𝑦�

𝜔
Substituting the above into (1) gives the Green function

𝐺�𝑥, 𝑦� =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cosh�𝜔�1−𝑦��
𝜔 cosh(𝜔) sinh (𝜔𝑥) 0 < 𝑥 < 𝑦

cosh(𝜔(1−𝑥))
𝜔 cosh𝜔 sinh �𝜔𝑦� 𝑦 < 𝑥 < 1

(4)

2.8.8.2 Part b

Using the superposition formula

𝑢 (𝑥) =

𝑦<𝑥

�������������������������
�

𝑥

0
𝐺�𝑥, 𝑦� 𝑓 �𝑦� 𝑑𝑦 +

𝑦>𝑥

�������������������������
�

1

𝑥
𝐺�𝑥, 𝑦� 𝑓 �𝑦� 𝑑𝑦

= �
𝑥

0

cosh (𝜔 (1 − 𝑥))
𝜔 cosh (𝜔) sinh �𝜔𝑦� 𝑓 �𝑦� 𝑑𝑦 +�

1

𝑥

cosh �𝜔 �1 − 𝑦��
𝜔 cosh (𝜔) sinh (𝜔𝑥) 𝑓 �𝑦� 𝑑𝑦

But 𝑓 (𝑥) =

⎧⎪⎪⎨
⎪⎪⎩
1 0 < 𝑥 < 1

2
−1 1

2 < 𝑥 ≤ 1
, hence the above reduces to
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case 𝑥 < 1
2

𝑢 (𝑥) = �
𝑥

0

cosh (𝜔 (1 − 𝑥))
𝜔 cosh (𝜔) sinh �𝜔𝑦� 𝑑𝑦 +�

1
2

𝑥

cosh �𝜔 �1 − 𝑦��
𝜔 cosh (𝜔) sinh (𝜔𝑥) 𝑑𝑦 −�

1

1
2

cosh �𝜔 �1 − 𝑦��
𝜔 cosh (𝜔) sinh (𝜔𝑥) 𝑑𝑦

=
1
𝜔2

−
�𝑒

𝜔
2 − 𝑒−

𝜔
2 + 𝑒−𝜔� 𝑒𝜔𝑥 + �𝑒𝜔 − 𝑒

𝜔
2 + 𝑒−

𝜔
2 � 𝑒−𝜔𝑥

𝜔2 (𝑒𝜔 + 𝑒−𝜔)

case 𝑥 > 1
2

𝑢 (𝑥) = �
1
2

0

cosh (𝜔 (1 − 𝑥))
𝜔 cosh (𝜔) sinh �𝜔𝑦� 𝑑𝑦 −�

𝑥

1
2

cosh �𝜔 �1 − 𝑦��
𝜔 cosh (𝜔) sinh (𝜔𝑥) 𝑑𝑦 −�

1

𝑥

cosh �𝜔 �1 − 𝑦��
𝜔 cosh (𝜔) sinh (𝜔𝑥) 𝑑𝑦

= −
1
𝜔2

−
�𝑒

−𝜔
2 − 𝑒−𝜔 + 𝑒−

3
2𝜔� 𝑒𝜔𝑥 + �𝑒

3
2𝜔 − 𝑒𝜔 + 𝑒

𝜔
2 � 𝑒−𝜔𝑥

𝜔2 (𝑒𝜔 + 𝑒−𝜔)

2.8.9 Problem 6.2.12

Suppose 𝜔 > 0. Does the Neumann boundary value problem −𝑢′′ + 𝜔2𝑢 = 𝑓 (𝑥) , 𝑢′ (0) =
𝑢′ (1) = 0 admit a Green’s function? If not, explain why not. If so, find it, and then write
down an integral formula for the solution of the boundary value problem.

Solution

To find out if it admits a Green function, we will see if we can solve for the constants that
show up in the formulation of Green function. If not able to find a solution, then no Green
function.

When 𝑥 ≠ 𝜉, then Green function satisfies −
𝑑2𝐺�𝑥,𝑦�

𝑑𝑥2 + 𝜔2𝐺�𝑥, 𝑦� = 0. This means that

𝐺�𝑥, 𝑦� = 𝐴1 cosh (𝜔𝑥) + 𝐴2 sinh (𝜔𝑥)
Hence Green function is

𝐺�𝑥, 𝑦� =

⎧⎪⎪⎨
⎪⎪⎩
𝐴1 cosh (𝜔𝑥) + 𝐴2 sinh (𝜔𝑥) 0 < 𝑥 < 𝑦
𝐵1 cosh (𝜔𝑥) + 𝐵2 sinh (𝜔𝑥) 𝑦 < 𝑥 < 1

(1A)

On the left end, 𝑑
𝑑𝑥𝐺�𝑥, 𝑦� = 𝜔𝐴1 sinh (𝜔𝑥) + 𝜔𝐴2 cosh (𝜔𝑥). Hence At 𝑥 = 0, 𝐺′ �0, 𝑦� = 0 =

𝜔𝐴2. Therefore 𝐴2 = 0. On the right side 𝑑
𝑑𝑥𝐺�𝑥, 𝑦� = 𝜔𝐵1 sinh (𝜔𝑥) + 𝜔𝐵2 cosh (𝜔𝑥). At

𝑥 = 1, then 𝐺′ �𝑥, 𝑦� = 𝜔𝐵1 sinh (𝜔) + 𝜔𝐵2 cosh (𝜔) = 0. Therefore 𝐵1 sinh𝜔 + 𝐵2 cosh𝜔 = 0.
Or 𝐵2 = −𝐵1 tanh𝜔. Hence (1A) becomes

𝐺�𝑥, 𝑦� =

⎧⎪⎪⎨
⎪⎪⎩

𝐴1 cosh (𝜔𝑥) 0 < 𝑥 < 𝑦
𝐵1 cosh (𝜔𝑥) − 𝐵1 tanh𝜔 sinh (𝜔𝑥) 𝑦 < 𝑥 < 1

=

⎧⎪⎪⎨
⎪⎪⎩

𝐴1 cosh (𝜔𝑥) 0 < 𝑥 < 𝑦
𝐵1 (cosh (𝜔𝑥) − tanh𝜔 sinh (𝜔𝑥)) 𝑦 < 𝑥 < 1

But cosh (𝜔𝑥) − tanh𝜔 sinh (𝜔𝑥) = cosh(𝜔(1−𝑥))
cosh𝜔 . The above becomes

𝐺�𝑥, 𝑦� =

⎧⎪⎪⎨
⎪⎪⎩
𝐴1 cosh (𝜔𝑥) 0 < 𝑥 < 𝑦
𝐵1

cosh(𝜔(1−𝑥))
cosh𝜔 𝑦 < 𝑥 < 1

Now we will try to see if we can determine 𝐴1, 𝐵1. Continuity condition at 𝑥 = 𝑦 gives the
first equation

𝐴1 cosh �𝜔𝑦� = 𝐵1
cosh𝜔 cosh �𝜔 �1 − 𝑦�� (1)

And

𝑑𝐺 �𝑥, 𝑦�
𝑑𝑥

=

⎧⎪⎪⎨
⎪⎪⎩

𝐴1𝜔 sinh (𝜔𝑥) 0 < 𝑥 < 𝑦
− 𝐵1

cosh𝜔𝜔 sinh (𝜔 (1 − 𝑥)) 𝑦 < 𝑥 < 1
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Hence at 𝑥 = 𝑦 to satisfy the jump discontinuity in
𝑑𝐺�𝑥,𝑦�

𝑑𝑥 the second equation is

𝐴𝜔 sinh �𝜔𝑦� + 𝐵1
cosh𝜔𝜔 sinh �𝜔 �1 − 𝑦�� = 1 (2)

Solving (1,2) for 𝐴,𝐵 gives

𝐴1 =
cosh �𝜔 �1 − 𝑦��
𝜔 sinh (𝜔)

𝐵1 =
cosh �𝜔𝑦�
𝜔 sinh (𝜔) cosh (𝜔)

Hence Green function exist. Substituting the above in Green function above gives

𝐺�𝑥, 𝑦� =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cosh�𝜔�1−𝑦��
𝜔 sinh(𝜔) cosh (𝜔𝑥) 0 < 𝑥 < 𝑦

cosh(𝜔(1−𝑥))
𝜔 sinh(𝜔) cosh �𝜔𝑦� 𝑦 < 𝑥 < 1

Here is a plot of the above when the pulse at 𝑦 = 0.25 with 𝜔 = 1

0.2 0.4 0.6 0.8 1.0

0.90

0.95

1.00

1.05

1.10

1.15

Figure 2.64: Plot of the Green function found

p = With{y = 0.25, w = 1},

Plot
Coshw 1 - y

w Sinh[w]
Cosh[w x] HeavisideTheta[-x + y] +

Coshw 1 - x

w Sinh[w]
Cosh[w y] HeavisideTheta[x - y], {x, 0, 1},

PlotStyle → Red, GridLines → Automatic, GridLinesStyle → LightGray

;

Figure 2.65: Code used for the above plot

The integral formula is

𝑢 (𝑥) = �
𝑥

0

cosh �𝜔𝑦�
𝜔 sinh (𝜔) cosh (𝜔 (1 − 𝑥)) 𝑓 �𝑦� 𝑑𝑦 +�

1

𝑥

cosh �𝜔 �1 − 𝑦��
𝜔 sinh (𝜔) cosh (𝜔𝑥) 𝑓 �𝑦� 𝑑𝑦

=
cosh (𝜔 (1 − 𝑥))
𝜔 sinh (𝜔) �

𝑥

0
cosh �𝜔𝑦� 𝑓 �𝑦� 𝑑𝑦 + cosh (𝜔𝑥)

𝜔 sinh (𝜔) �
1

𝑥
cosh �𝜔 �1 − 𝑦�� 𝑓 �𝑦� 𝑑𝑦

159



2.8. HW 8 CHAPTER 2. HWS

2.8.10 Key solution for HW 8

6.1.4c  

 
6.1.5b  

 
 

6.1.9  
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6.2.4  

 
 

6.2.7  
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6.2.11  

 
 

6.2.12  
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2.9.1 Problem 1

Find the eigenvalues and the eigenfunctions for the Dirichlet and Neumann problems for
the Laplacian on a rectangle (0, 𝑎) × (0, 𝑏)

Solution

2.9.1.1 Dirichlet case

∇ 2𝑢 = −𝜆𝑢
𝑢 (𝑥, 0) = 0
𝑢 (𝑥, 𝑏) = 0

𝑢 �0, 𝑦� = 0

𝑢 �𝑎, 𝑦� = 0

Let 𝑢 �𝑥, 𝑦� = 𝑋 (𝑥) 𝑌 (𝑥). Substituting this into the PDE 𝜕2𝑢
𝜕𝑥2 +

𝜕2𝑢
𝜕𝑦2 = −𝜆𝑢 gives

𝑋′′𝑌 + 𝑌′′𝑋 = −𝜆𝑋𝑌

Dividing by 𝑋𝑌 ≠ 0 gives
𝑋′′

𝑋
+
𝑌′′

𝑌
= −𝜆

𝑋′′

𝑋
= −

𝑌′′

𝑌
− 𝜆

Since the LHS depends on 𝑥 only and the RHS depends on 𝑦 only and they are equal, they
must be both constant. Say −𝜇. The above becomes

𝑋′′

𝑋
= −

𝑌′′

𝑌
− 𝜆 = −𝜇

Two ODE’s are therefore obtained from the above. They are

𝑋′′ + 𝜇𝑋 = 0 (1)

𝑋 (0) = 0
𝑋 (𝑎) = 0

And
𝑌′′

𝑌
+ 𝜆 = 𝜇

𝑌′′

𝑌
+ �𝜆 − 𝜇� = 0

Let �𝜆 − 𝜇� = 𝛾 constant. Hence the above gives the second ODE in 𝑦 as

𝑌′′ + 𝛾𝑌 = 0 (2)

𝑌 (0) = 0
𝑌 (𝑏) = 0

Now the eigenvalues 𝜇, 𝛾 and eigenfunctions for each ODE is found and from that result
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the eigenvalue 𝜆 is found using

𝜆 = 𝛾 + 𝜇 (3)

Starting with ODE (1) 𝑋′′ + 𝜇𝑋 = 0

Case 𝜇 < 0

The solution to (1) is

𝑋 = 𝐴 cosh ���𝜇�𝑥� + 𝐵 sinh ���𝜇�𝑥�

At 𝑥 = 0, the above gives 0 = 𝐴. Hence 𝑋 = 𝐵 sinh ���𝜇�𝑥�. At 𝑥 = 𝑎 this gives 0 =

𝐵 sinh ���𝜇�𝑎�. But sinh ���𝜇�𝑎� = 0 only at 0 and ��𝜇�𝑎 ≠ 0, therefore 𝐵 = 0 and this leads

to trivial solution. Hence 𝜇 < 0 is not an eigenvalue.

Case 𝜇 = 0

𝑋 = 𝐴𝑥 + 𝐵

Hence at 𝑥 = 0 this gives 0 = 𝐵 and the solution becomes 𝑋 = 𝐵. At 𝑥 = 𝑎, 𝐵 = 0. Hence the
trivial solution. 𝜇 = 0 is not an eigenvalue.

Case 𝜇 > 0

Solution is

𝑋 = 𝐴 cos �√𝜇𝑥� + 𝐵 sin �√𝜇𝑥�

At 𝑥 = 0 this gives 0 = 𝐴 and the solution becomes 𝑋 = 𝐵 sin �√𝜇𝑥�. At 𝑥 = 𝑎

0 = 𝐵 sin �√𝜇𝑎�

For non-trivial solution we want sin �√𝜇𝑎� = 0 or √𝜇𝑎 = 𝑘𝜋 where 𝑘 = 1, 2, 3,⋯, therefore

𝜇𝑘 = �
𝑘𝜋
𝑎 �

2

𝑘 = 1, 2, 3,⋯ (4)

The corresponding Eigenfunctions are

𝑋𝑘 (𝑥) = sin �
𝑘𝜋
𝑎
𝑥� 𝑘 = 1, 2, 3,⋯ (5)

Solving ODE (2) 𝑌′′ + 𝛾𝑌 = 0

The same steps are repeated as above. The only di�erence is that now we obtain eigenvalues

𝛾𝑚 = �
𝑚𝜋
𝑏
�
2

𝑚 = 1, 2, 3,⋯ (6)

And the corresponding eigenfunctions

𝑌𝑚 �𝑦� = sin �𝑚𝜋
𝑏
𝑦� 𝑚 = 1, 2, 3,⋯ (7)

From (4,6) we see that the eigenvalues for ∇ 2𝑢 = −𝜆𝑢 are, using (3)

𝜆𝑘,𝑚 = 𝜇𝑘 + 𝛾𝑚

= �
𝑘𝜋
𝑎 �

2

+ �
𝑚𝜋
𝑏
�
2

𝑘 = 1, 2, 3,⋯ ,𝑚 = 1, 2, 3,⋯

And the eigenfunctions are from (5,7) are

Φ𝑘,𝑚 �𝑥, 𝑦� = sin �
𝑘𝜋
𝑎
𝑥� sin �𝑚𝜋

𝑏
𝑦� 𝑘 = 1, 2, 3,⋯ ,𝑚 = 1, 2, 3,⋯
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2.9.1.2 Neumann case

∇ 2𝑢 = −𝜆𝑢
𝜕
𝜕𝑦
𝑢 (𝑥, 0) = 0

𝜕
𝜕𝑦
𝑢 (𝑥, 𝑏) = 0

𝜕
𝜕𝑥
𝑢 �0, 𝑦� = 0

𝜕
𝜕𝑥
𝑢 �𝑎, 𝑦� = 0

Let 𝑢 �𝑥, 𝑦� = 𝑋 (𝑥) 𝑌 (𝑥). Substituting this into the PDE 𝜕2𝑢
𝜕𝑥2 +

𝜕2𝑢
𝜕𝑦2 = −𝜆𝑢 gives

𝑋′′𝑌 + 𝑌′′𝑋 = −𝜆𝑋𝑌

Dividing by 𝑋𝑌 ≠ 0 gives
𝑋′′

𝑋
+
𝑌′′

𝑌
= −𝜆

𝑋′′

𝑋
= −

𝑌′′

𝑌
− 𝜆

Since the LHS depends on 𝑥 only and the RHS depends on 𝑦 only and they are equal, they
must be both constant. Say −𝜇. The above becomes

𝑋′′

𝑋
= −

𝑌′′

𝑌
− 𝜆 = −𝜇

Two ODE’s are therefore obtained from the above. They are

𝑋′′ + 𝜇𝑋 = 0 (1)

𝑋′ (0) = 0
𝑋′ (𝑎) = 0

And
𝑌′′

𝑌
+ 𝜆 = 𝜇

𝑌′′

𝑌
+ �𝜆 − 𝜇� = 0

Let �𝜆 − 𝜇� = 𝛾 constant. Hence the above gives the second ODE in 𝑦 as

𝑌′′ + 𝛾𝑌 = 0 (2)

𝑌′ (0) = 0
𝑌′ (𝑏) = 0

Now we find the eigenvalues 𝜇, 𝛾 and eigenfunctions for each ODE and from this result
find

𝜆 = 𝛾 + 𝜇 (3)

Starting with ODE (1) 𝑋′′ + 𝜇𝑋 = 0

Case 𝜇 < 0

The solution to (1) is

𝑋 (𝑥) = 𝐴 cosh ���𝜇�𝑥� + 𝐵 sinh ���𝜇�𝑥�

𝑋′ (𝑥) = 𝐴��𝜇� sinh ���𝜇�𝑥� + 𝐵��𝜇� cosh ���𝜇�𝑥�

At 𝑥 = 0, the above gives 0 = 𝐵. Hence 𝑋 (𝑥) = 𝐴 cosh ���𝜇�𝑥� and 𝑋
′ (𝑥) = 𝐴��𝜇� sinh ���𝜇�𝑥�

At 𝑥 = 𝑎 this gives 0 = 𝐴��𝜇� sinh ���𝜇�𝑎�. But sinh ���𝜇�𝑎� = 0 only at 0 and ��𝜇�𝑎 ≠ 0,
therefore 𝐴 = 0 and this leads to trivial solution. Hence 𝜇 < 0 is not an eigenvalue.
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Case 𝜇 = 0

𝑋 = 𝐴𝑥 + 𝐵
𝑋′ = 𝐴

At 𝑥 = 0 this gives 0 = 𝐴 and the solution becomes 𝑋 = 𝐵, therefore 𝑋′ = 0. At 𝑥 = 𝑎, 0 = 0.
Hence any constant 𝐵 will work. Let this constant be 𝐶0. Therefore 𝜇 = 0 is an eigenvalue
with corresponding eigenfunction 𝑋0 (𝑥) = 𝐶0, a constant.

Case 𝜇 > 0

Solution is

𝑋 (𝑥) = 𝐴 cos �√𝜇𝑥� + 𝐵 sin �√𝜇𝑥�

𝑋′ (𝑥) = −𝐴√𝜇 sin �√𝜇𝑥� + 𝐵√𝜇 cos �√𝜇𝑥�

At 𝑥 = 0 this gives 0 = 𝐵 and the solution becomes 𝑋 (𝑥) = 𝐴 cos �√𝜇𝑥�. Hence 𝑋′ (𝑥) =
−𝐴√𝜇 sin �√𝜇𝑥�. At 𝑥 = 𝑎 this gives

0 = −𝐴√𝜇 sin �√𝜇𝑎�

For non-trivial solution we want sin �√𝜇𝑎� = 0 or √𝜇𝑎 = 𝑘𝜋 where 𝑘 = 1, 2, 3,⋯, therefore

𝜇𝑘 = �
𝑘𝜋
𝑎 �

2

𝑘 = 1, 2, 3,⋯ (4)

The corresponding Eigenfunctions are

𝑋𝑘 (𝑥) = cos �
𝑘𝜋
𝑎
𝑥� 𝑘 = 1, 2, 3,⋯ (5)

Solving ODE (2) 𝑌′′ + 𝛾𝑌 = 0

The same steps are repeated as above. The only di�erence is that now we obtain eigenvalues
𝛾 = 0 also and corresponding eigenfunction constant, say 𝐷0 and also obtain

𝛾𝑚 = �
𝑚𝜋
𝑏
�
2

𝑚 = 1, 2, 3,⋯ (6)

and corresponding eigenfunctions

𝑌𝑚 �𝑦� = cos �𝑚𝜋
𝑏
𝑦� 𝑚 = 1, 2, 3,⋯ (7)

From (4,6) we see that the eigenvalues for ∇ 2𝑢 = −𝜆𝑢 are

𝜆𝑘,𝑚 =

⎧⎪⎪⎨
⎪⎪⎩

0 𝑘 = 0,𝑚 = 0
𝜇𝑘 + 𝛾𝑚 𝑘 = 1, 2, 3,⋯ ,𝑚 = 1, 2, 3,⋯

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 𝑘 = 0,𝑚 = 0

� 𝑘𝜋
𝑎
�
2
+ �𝑚𝜋𝑏 �

2
𝑘 = 1, 2, 3,⋯ ,𝑚 = 1, 2, 3,⋯

And the eigenfunctions are from (5,7) are

Φ𝑛 �𝑥, 𝑦� =

⎧⎪⎪⎨
⎪⎪⎩

1 𝑘 = 0,𝑚 = 0

cos � 𝑘𝜋𝑎 𝑥� cos �𝑚𝜋𝑏 𝑦� 𝑘 = 1, 2, 3,⋯ ,𝑚 = 1, 2, 3,⋯

Where in the above the constant eigenfunction that corresponds to the zero eigenvalue is
taken as 1.

2.9.2 Problem 2

Prove that the wave equation 𝑢𝑡𝑡 (𝑥, 𝑡) = 𝑐2∇ 2𝑢, 𝑡 > 0, 𝑥 ∈ Ω ∈ ℜ𝑑 with the Dirichlet boundary
conditions 𝑢 (𝑥, 𝑡) = 0 for 𝑥 ∈ 𝜕Ω, 𝑡 > 0 has solution

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

�𝐴𝑛 cos ��𝜆𝑛𝑐𝑡� + 𝐵𝑛 sin ��𝜆𝑛𝑐𝑡�� 𝑣𝑛 (𝑥) (1)

Where 𝜆𝑛, 𝑣𝑛 are respectively, eigenvalues and eigenfunctions of the Dirichlet problem
for the Laplacian in Ω. Write in an analogous form the solution to the heat equation
𝑢𝑡 (𝑥, 𝑡) = 𝑐∇ 2𝑢, 𝑡 > 0, 𝑥 ∈ Ω ∈ ℜ𝑑 with Dirichlet boundary conditions 𝑢 (𝑥, 𝑡) = 0 for
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𝑥 ∈ 𝜕Ω, 𝑡 > 0.

For the wave PDE

We will show the solution given solves the PDE by substituting it into the PDE and see if
it gives an identity.

𝑢𝑡 (𝑥, 𝑡) =
𝜕
𝜕𝑡

∞
�
𝑛=1

�𝐴𝑛 cos ��𝜆𝑛𝑐𝑡� + 𝐵𝑛 sin ��𝜆𝑛𝑐𝑡�� 𝑣𝑛 (𝑥)

Assuming continuouseigenfunctions, term by term di�erential is allowed, and the above
becomes

𝑢𝑡 (𝑥, 𝑡) =
∞
�
𝑛=1

𝜕
𝜕𝑡
�𝐴𝑛 cos ��𝜆𝑛𝑐𝑡� + 𝐵𝑛 sin ��𝜆𝑛𝑐𝑡�� 𝑣𝑛 (𝑥)

=
∞
�
𝑛=1

�−𝐴𝑛�𝜆𝑛𝑐 sin ��𝜆𝑛𝑐𝑡� + 𝐵𝑛�𝜆𝑛𝑐 cos ��𝜆𝑛𝑐𝑡�� 𝑣𝑛 (𝑥)

Taking one more time derivatives gives

𝑢𝑡𝑡 (𝑥, 𝑡) =
∞
�
𝑛=1

�−𝐴𝑛𝜆𝑛𝑐2 cos ��𝜆𝑛𝑐𝑡� − 𝐵𝑛𝜆𝑛𝑐2 sin ��𝜆𝑛𝑐𝑡�� 𝑣𝑛 (𝑥) (2)

Similarly for the spatial coordinate

𝑢𝑥 (𝑥, 𝑡) =
𝜕
𝜕𝑥

∞
�
𝑛=1

�𝐴𝑛 cos ��𝜆𝑛𝑐𝑡� + 𝐵𝑛 sin ��𝜆𝑛𝑐𝑡�� 𝑣𝑛 (𝑥)

=
∞
�
𝑛=1

�𝐴𝑛 cos ��𝜆𝑛𝑐𝑡� + 𝐵𝑛 sin ��𝜆𝑛𝑐𝑡�� 𝑣′𝑛 (𝑥)

Taking one more space derivatives gives

∇ 2𝑢 =
∞
�
𝑛=1

�𝐴𝑛 cos ��𝜆𝑛𝑐𝑡� + 𝐵𝑛 sin ��𝜆𝑛𝑐𝑡�� 𝑣′′𝑛 (𝑥)

But since 𝑣𝑛 (𝑥) is an eigenfunction, then −𝑣′′𝑛 (𝑥) = 𝜆𝑛𝑣𝑛 and the above simplifies to

∇ 2𝑢 = −
∞
�
𝑛=1

�𝐴𝑛 cos ��𝜆𝑛𝑐𝑡� + 𝐵𝑛 sin ��𝜆𝑛𝑐𝑡�� 𝜆𝑛𝑣𝑛 (𝑥) (3)

Substituting (2,3) into 𝑢𝑡𝑡 (𝑥, 𝑡) = 𝑐2∇ 2𝑢 gives
∞
�
𝑛=1

�−𝐴𝑛𝜆𝑛𝑐2 cos ��𝜆𝑛𝑐𝑡� − 𝐵𝑛𝜆𝑛𝑐2 sin ��𝜆𝑛𝑐𝑡�� 𝑣𝑛 (𝑥) = 𝑐2 �−
∞
�
𝑛=1

�𝐴𝑛 cos ��𝜆𝑛𝑐𝑡� + 𝐵𝑛 sin ��𝜆𝑛𝑐𝑡�� 𝜆𝑛𝑣𝑛 (𝑥)�

𝑐2
∞
�
𝑛=1

�−𝐴𝑛 cos ��𝜆𝑛𝑐𝑡� − 𝐵𝑛 sin ��𝜆𝑛𝑐𝑡�� 𝜆𝑛𝑣𝑛 (𝑥) = −𝑐2
∞
�
𝑛=1

�𝐴𝑛 cos ��𝜆𝑛𝑐𝑡� + 𝐵𝑛 sin ��𝜆𝑛𝑐𝑡�� 𝜆𝑛𝑣𝑛 (𝑥)

−𝑐2
∞
�
𝑛=1

�𝐴𝑛 cos ��𝜆𝑛𝑐𝑡� + 𝐵𝑛 sin ��𝜆𝑛𝑐𝑡�� 𝜆𝑛𝑣𝑛 (𝑥) = −𝑐2
∞
�
𝑛=1

�𝐴𝑛 cos ��𝜆𝑛𝑐𝑡� + 𝐵𝑛 sin ��𝜆𝑛𝑐𝑡�� 𝜆𝑛𝑣𝑛 (𝑥)

The LHS is the same as the RHS. Hence the solution given satisfies the wave PDE.

For the heat PDE

For the heat PDE, we want to show that the following solution

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

𝐴𝑛𝑒−𝜆𝑛𝑐𝑡𝑣𝑛 (𝑥) (4)

Satisfies 𝑢𝑡 (𝑥, 𝑡) = 𝑐∇ 2𝑢.

𝑢𝑡 (𝑥, 𝑡) =
𝜕
𝜕𝑡

∞
�
𝑛=1

𝐴𝑛𝑒−𝜆𝑛𝑐𝑡𝑣𝑛 (𝑥)

Assuming term by term di�erential is allowed the above becomes

𝑢𝑡 (𝑥, 𝑡) =
∞
�
𝑛=1

𝜕
𝜕𝑡
𝐴𝑛𝑒−𝜆𝑛𝑐𝑡𝑣𝑛 (𝑥)

=
∞
�
𝑛=1

−𝐴𝑛𝜆𝑛𝑐𝑒−𝜆𝑛𝑐𝑡𝑣𝑛 (𝑥) (5)
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Similarly for the spatial coordinate

𝑢𝑥 (𝑥, 𝑡) =
𝜕
𝜕𝑥

∞
�
𝑛=1

𝐴𝑛𝑒−𝜆𝑛𝑐𝑡𝑣𝑛 (𝑥)

=
∞
�
𝑛=1

𝐴𝑛𝑒−𝜆𝑛𝑐𝑡𝑣′𝑛 (𝑥)

Taking one more space derivatives gives

∇ 2𝑢 =
∞
�
𝑛=1

𝐴𝑛𝑒−𝜆𝑛𝑐𝑡𝑣′′𝑛 (𝑥)

But since 𝑣𝑛 (𝑥) is an eigenfunction, then −𝑣′′𝑛 (𝑥) = 𝜆𝑛𝑣𝑛. The above becomes

∇ 2𝑢 = −
∞
�
𝑛=1

𝐴𝑛𝑒−𝜆𝑛𝑐𝑡𝜆𝑛𝑣𝑛 (𝑥) (6)

Substituting (5,6) into 𝑢𝑡 (𝑥, 𝑡) = 𝑐∇ 2𝑢 gives
∞
�
𝑛=1

−𝐴𝑛𝜆𝑛𝑐𝑒−𝜆𝑛𝑐𝑡𝑣𝑛 (𝑥) = 𝑐 �−
∞
�
𝑛=1

𝐴𝑛𝑒−𝜆𝑛𝑐𝑡𝜆𝑛𝑣𝑛 (𝑥)�

−𝑐
∞
�
𝑛=1

𝐴𝑛𝜆𝑛𝑒−𝜆
2
𝑛𝑐𝑡𝑣𝑛 (𝑥) = −𝑐

∞
�
𝑛=1

𝐴𝑛𝑒−𝜆𝑛𝑐𝑡𝜆𝑛𝑣𝑛 (𝑥)

The LHS is the same as the RHS. Hence the solution (4) satisfies the heat PDE.

2.9.3 Problem 6.3.9

Suppose 𝑓 �𝑥, 𝑦� =

⎧⎪⎪⎨
⎪⎪⎩
1 3𝑥 − 2𝑦 > 1
0 3𝑥 − 2𝑦 < 1

Compute its partial derivatives 𝜕𝑓
𝜕𝑥 and

𝜕𝑓
𝜕𝑦 the sense

of generalized functions.

Solution

The following is a plot of the above function in 3D

Figure 2.66: Plot of 𝑓(𝑥, 𝑦)

f[x_, y_] := Piecewise[{{1, 3 x - 2 y > 1}, {0, 3 x - 2 y > 1}}]

p = ParametricPlot3D[{x, y, f[x, y]}, {x, -3, 3}, {y, -3, 3},

AxesLabel → {"x", "y", "f(x,y)"}, ImageSize → 400,

BaseStyle → 12, Exclusions → True,

ExclusionsStyle → LightGray, PlotTheme -> "Classic", PlotPoints → 50];

Figure 2.67: Code used for the above plot

Similar to what we did in 1D, when taking a derivative and there is a jump discontinuity,
an impulse 𝛿 (𝑥) is generated at the location where the jump discontinuity is located. The
location of the jump here is on the line 3𝑥 − 2𝑦 − 1 = 0. This is a step function but in 3D.
Hence by chain rule
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𝜕𝑓 �𝑥, 𝑦�
𝜕𝑥

=
𝜕
𝜕𝑥

�3𝑥 − 2𝑦 − 1� 𝛿 �3𝑥 − 2𝑦 − 1�

= 3𝛿 �3𝑥 − 2𝑦 − 1�

= 𝛿 �𝑥 −
2
3
𝑦 −

1
3�

And

𝜕𝑓 �𝑥, 𝑦�
𝜕𝑦

=
𝜕
𝜕𝑦

�3𝑥 − 2𝑦 − 1� 𝛿 �3𝑥 − 2𝑦 − 1�

= −2𝛿 �3𝑥 − 2𝑦 − 1�

= 𝛿 �−
3
2
𝑥 + 𝑦 +

1
2�

2.9.4 Problem 6.3.10

Find a series solution to the rectangular boundary value problem 4.91-92 which is

∇ 2𝑢 = 0 on a rectangle 𝑅 = �0 < 𝑥 < 𝑎, 0 < 𝑦 < 𝑏�

𝑢 (𝑥, 0) = 𝑓 (𝑥)
𝑢 (𝑥, 𝑏) = 0

𝑢 �0, 𝑦� = 0

𝑢 �𝑎, 𝑦� = 0

when the boundary data 𝑓 (𝑥) = 𝛿 (𝑥 − 𝜉) is a delta function at a point 0 < 𝜉 < 𝑎. Is your
solution infinitely di�erentiable inside the rectangle?

Solution

∇2u(x, y) = 0

a

b

x

y

u = 0 u = 0

δ(x− ξ)

u = 0

Figure 2.68: The problem to solve. Laplace PDE in rectangle

Let 𝑢 �𝑥, 𝑦� = 𝑋 (𝑥) 𝑌 (𝑥). Substituting this into the PDE 𝜕2𝑢
𝜕𝑥2 +

𝜕2𝑢
𝜕𝑦2 = 0 and simplifying gives

𝑋′′

𝑋
= −

𝑌′′

𝑌
Each side depends on di�erent independent variable and they are equal, therefore they
must be equal to same constant.

𝑋′′

𝑋
= −

𝑌′′

𝑌
= ±𝜆

Since the boundary conditions along the 𝑥 direction are the homogeneous ones, −𝜆 is
selected in the above.
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𝑋′′

𝑋
= −

𝑌′′

𝑌
= −𝜆

Two ODE’s are obtained

𝑋′′ + 𝜆𝑋 = 0 (1)

With the boundary conditions

𝑋 (0) = 0
𝑋 (𝑎) = 0

And

𝑌′′ − 𝜆𝑌 = 0 (2)

With the boundary conditions

𝑌 (0) = 𝑓 (𝑥)
𝑌 (𝑏) = 0

In all these cases 𝜆 will turn out to be positive. This is shown below.

Case 𝜆 < 0

The solution to (1) is

𝑋 = 𝐴 cosh �√|𝜆|𝑥� + 𝐵 sinh �√|𝜆|𝑥�

At 𝑥 = 0, the above gives 0 = 𝐴. Hence 𝑋 = 𝐵 sinh �√|𝜆|𝑥�. At 𝑥 = 𝑎 this gives 𝑋 =
𝐵 sinh �√|𝜆|𝑎�. But sinh �√|𝜆|𝑎� = 0 only at 0 and √|𝜆|𝑎 ≠ 0, therefore 𝐵 = 0 and this leads to
trivial solution. Hence 𝜆 < 0 is not an eigenvalue.

Case 𝜆 = 0

𝑋 = 𝐴𝑥 + 𝐵

Hence at 𝑥 = 0 this gives 0 = 𝐵 and the solution becomes 𝑋 = 𝐵. At 𝑥 = 𝑎, 𝐵 = 0. Hence the
trivial solution. 𝜆 = 0 is not an eigenvalue.

Case 𝜆 > 0

Solution is

𝑋 = 𝐴 cos �√𝜆𝑥� + 𝐵 sin �√𝜆𝑥�

At 𝑥 = 0 this gives 0 = 𝐴 and the solution becomes 𝑋 = 𝐵 sin �√𝜆𝑥�. At 𝑥 = 𝑎

0 = 𝐵 sin �√𝜆𝑎�

For non-trivial solution sin �√𝜆𝑎� = 0 or √𝜆𝑎 = 𝑛𝜋 where 𝑛 = 1, 2, 3,⋯, therefore

𝜆𝑛 = �
𝑛𝜋
𝑎
�
2

𝑛 = 1, 2, 3,⋯

Eigenfunctions are

𝑋𝑛 (𝑥) = 𝐵𝑛 sin �𝑛𝜋
𝑎
𝑥� 𝑛 = 1, 2, 3,⋯ (3)

For the 𝑌 ODE, the solution is

𝑌𝑛 = 𝐶𝑛 cosh �𝑛𝜋
𝑎
𝑦� + 𝐷𝑛 sinh �𝑛𝜋

𝑎
𝑦� (4)
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Applying B.C. at 𝑦 = 𝑏 gives

0 = 𝐶𝑛 cosh �𝑛𝜋
𝑎
𝑏� + 𝐷𝑛 sinh �𝑛𝜋

𝑎
𝑏�

𝐶𝑛 = −𝐷𝑛
sinh �𝑛𝜋𝑎 𝑏�

cosh �𝑛𝜋𝑎 𝑏�

= −𝐷𝑛 tanh �𝑛𝜋
𝑎
𝑏�

Hence (4) becomes

𝑌𝑛 = −𝐷𝑛 tanh �𝑛𝜋
𝑎
𝑏� cosh �𝑛𝜋

𝑎
𝑦� + 𝐷𝑛 sinh �𝑛𝜋

𝑎
𝑦�

= 𝐷𝑛 �sinh �𝑛𝜋
𝑎
𝑦� − tanh �𝑛𝜋

𝑎
𝑏� cosh �𝑛𝜋

𝑎
𝑦��

Now the complete solution is produced

𝑢𝑛 �𝑥, 𝑦� = 𝑌𝑛𝑋𝑛

= 𝐷𝑛 �sinh �𝑛𝜋
𝑎
𝑦� − tanh �𝑛𝜋

𝑎
𝑏� cosh �𝑛𝜋

𝑎
𝑦�� 𝐵𝑛 sin �𝑛𝜋

𝑎
𝑥�

Let 𝐷𝑛𝐵𝑛 = 𝐵𝑛 since a constant. (no need to make up a new symbol).

𝑢𝑛 �𝑥, 𝑦� = 𝐵𝑛 �sinh �𝑛𝜋
𝑎
𝑦� − tanh �𝑛𝜋

𝑎
𝑏� cosh �𝑛𝜋

𝑎
𝑦�� sin �𝑛𝜋

𝑎
𝑥�

Sum of eigenfunctions is the solution, hence

𝑢 �𝑥, 𝑦� =
∞
�
𝑛=1

𝐵𝑛 �sinh �𝑛𝜋
𝑎
𝑦� − tanh �𝑛𝜋

𝑎
𝑏� cosh �𝑛𝜋

𝑎
𝑦�� sin �𝑛𝜋

𝑎
𝑥� (5)

The nonhomogeneous boundary condition is now resolved. At 𝑦 = 0

𝑢 (𝑥, 0) = 𝑓 (𝑥) = 𝛿 (𝑥 − 𝜉)

Therefore (5) becomes

𝛿 (𝑥 − 𝜉) =
∞
�
𝑛=1

−𝐵𝑛 tanh �𝑛𝜋
𝑎
𝑏� sin �𝑛𝜋

𝑎
𝑥�

Multiplying both sides by sin �𝑚𝜋𝑎 𝑥� and integrating gives

�
𝑎

0
𝛿 (𝑥 − 𝜉) sin �𝑚𝜋

𝑎
𝑥� 𝑑𝑥 = −�

𝑎

0
sin �𝑚𝜋

𝑎
𝑥�

∞
�
𝑛=1

𝐵𝑛 tanh �𝑛𝜋
𝑎
𝑏� sin �𝑛𝜋

𝑎
𝑥� 𝑑𝑥

= −
∞
�
𝑛=1

𝐵𝑛 tanh �𝑛𝜋
𝑎
𝑏��

𝑎

0
sin �𝑛𝜋

𝑎
𝑥� sin �𝑚𝜋

𝑎
𝑥� 𝑑𝑥

= −𝐵𝑛 tanh �𝑚𝜋
𝑎
𝑏� �

𝑎
2
�

Hence

𝐵𝑛 = −
2
𝑎

∫𝑎
0
𝛿 (𝑥 − 𝜉) sin �𝑛𝜋𝑎 𝑥� 𝑑𝑥

tanh �𝑛𝜋𝑎 𝑏�

But ∫
𝑎

0
𝛿 (𝑥 − 𝜉) sin �𝑚𝜋𝐿 𝑥� 𝑑𝑥 = sin �𝑚𝜋𝐿 𝜉� by the property delta function. Therefore

𝐵𝑛 = −
2
𝑎

sin �𝑛𝜋𝑎 𝜉�

tanh �𝑛𝜋𝑎 𝑏�
This completes the solution. (4) becomes

𝑢 �𝑥, 𝑦� = −
2
𝑎

∞
�
𝑛=1

sin �𝑛𝜋𝑎 𝜉�

tanh �𝑛𝜋𝑎 𝑏�
�sinh �𝑛𝜋

𝑎
𝑦� − tanh �𝑛𝜋

𝑎
𝑏� cosh �𝑛𝜋

𝑎
𝑦�� sin �𝑛𝜋

𝑎
𝑥�

= −
2
𝑎

∞
�
𝑛=1

sin �𝑛𝜋
𝑎
𝜉� sin �𝑛𝜋

𝑎
𝑥�

⎛
⎜⎜⎜⎜⎜⎝

sinh �𝑛𝜋𝑎 𝑦�

tanh �𝑛𝜋𝑎 𝑏�
− cosh �𝑛𝜋

𝑎
𝑦�

⎞
⎟⎟⎟⎟⎟⎠

Looking at the solution above, it is composed of functions that are all di�erentiable. Hence
the solution is infinitely di�erentiable inside the rectangle.

Here is a plot of the above solution using 𝑎 = 𝜋, 𝑏 = 1
2 , 𝜉 = 1.
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Figure 2.69: Plot of 𝑢(𝑥, 𝑦)

u[x_, y_, ξ_] :=
-2

a


n=1

300

Sin
n π

a
ξ Sin

n π

a
x

Sinh n π

a
y

Tanh n π

a
b

- Cosh
n π

a
y ;

a = Pi; b = 1  2; ξ = 1;

p = Plot3Du[x, y, ξ], {x, 0, a}, {y, 0, b}, PlotRange → {Automatic, Automatic, {-3, 7}},

PlotPoints → 40, AxesLabel → {"x", "y", "u(x,y)"},

ColorFunction → Function{x, y, z}, Hue.45 1 - z;

Figure 2.70: Code used for the above plot

2.9.5 Problem 6.3.18

(a) Use the Method of Images to construct the Green’s function for a half-plane {𝑦 > 0}
that is subject to homogeneous Dirichlet boundary conditions. Hint : The image point is
obtained by reflection. (b) Use your Green’s function to solve the boundary value problem
With 𝑦 > 0, 𝑢 (𝑥, 0) = 0

−Δ𝑢 =
1

1 + 𝑦

Solution

2.9.5.1 Part (a)

The first step is to find Green function in the half-plane 𝐺�𝑥, 𝑦; 𝑥0, 𝑦0�. To do this we will

use Green function in the whole plane, called Γ �𝑥, 𝑦; 𝑥0, 𝑦0�. There �𝑥, 𝑦� is an arbitrary

point in upper half plane and �𝑥0, 𝑦0� is fixed point where the impulse is located. We set

an impulse at the point �𝑥0, 𝑦0� and a negative impulse at �𝑥0, −𝑦0�. This way the end e�ect
is that at the boundary which is 𝑥 = 0 the half plane Green function is zero which satisfies
the boundary conditions of the given PDE. The following diagram helps illustrate this
setup
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x

y

(x, y)

(x0, y0)

(x0,−y0)

positive impulse here

negative impulse here

x0

Γ(x, y;x0, y0) = − 1
2π ln

√
(x− x0)2 + (y − y0)2

Γ(x, y;x0,−y0) = − 1
2π ln

√
(x− x0)2 + (y + y0)2

G(x, y;x0, y0) = Γ(x, y;x0, y0) − Γ(x, y;x0,−y0)

Green function for
upper half-plane

Green function for
whole plane

Figure 2.71: Using method of images

Hence

𝐺�𝑥, 𝑦; 𝑥0, 𝑦0� = −
1
2𝜋

ln
⎛
⎜⎜⎜⎜⎝�

(𝑥 − 𝑥0)
2 + �𝑦 − 𝑦0�

2
⎞
⎟⎟⎟⎟⎠ +

1
2𝜋

ln
⎛
⎜⎜⎜⎜⎝�

(𝑥 − 𝑥0)
2 + �𝑦 + 𝑦0�

2
⎞
⎟⎟⎟⎟⎠

= −
1
4𝜋

ln �(𝑥 − 𝑥0)2 + �𝑦 − 𝑦0�
2
� +

1
4𝜋

ln �(𝑥 − 𝑥0)2 + �𝑦 + 𝑦0�
2
�

=
1
4𝜋

ln
(𝑥 − 𝑥0)

2 + �𝑦 + 𝑦0�
2

(𝑥 − 𝑥0)
2 + �𝑦 − 𝑦0�

2

2.9.5.2 Part b

Now that the Green function is known, the solution is

𝑢 �𝑥, 𝑦� = �
𝑥

−∞
�

𝑦

0
𝐺�𝑥, 𝑦; 𝑥0, 𝑦0� 𝑓 �𝑥0, 𝑦0� 𝑑𝑥0𝑑𝑦0

= �
𝑥

−∞
�

𝑦

0

1
4𝜋

ln

⎛
⎜⎜⎜⎜⎜⎜⎝
(𝑥 − 𝑥0)

2 + �𝑦 + 𝑦0�
2

(𝑥 − 𝑥0)
2 + �𝑦 − 𝑦0�

2

⎞
⎟⎟⎟⎟⎟⎟⎠ �

1
1 + 𝑦0

� 𝑑𝑥0𝑑𝑦0

=
1
4𝜋 �

𝑦

0
�

1
1 + 𝑦0

�

⎛
⎜⎜⎜⎜⎜⎜⎝�

𝑥

−∞
ln

⎛
⎜⎜⎜⎜⎜⎜⎝
(𝑥 − 𝑥0)

2 + �𝑦 + 𝑦0�
2

(𝑥 − 𝑥0)
2 + �𝑦 − 𝑦0�

2

⎞
⎟⎟⎟⎟⎟⎟⎠ 𝑑𝑥0

⎞
⎟⎟⎟⎟⎟⎟⎠ 𝑑𝑦0 (1)

But

�
𝑥

−∞
ln

⎛
⎜⎜⎜⎜⎜⎜⎝
(𝑥 − 𝑥0)

2 + �𝑦 + 𝑦0�
2

(𝑥 − 𝑥0)
2 + �𝑦 − 𝑦0�

2

⎞
⎟⎟⎟⎟⎟⎟⎠ 𝑑𝑥0 = 2𝑦0𝜋 − 𝑥 ln ��𝑦 + 𝑦0�

2
� + 𝑥 ln

⎛
⎜⎜⎜⎜⎜⎜⎝
�𝑦 + 𝑦0�

2

�𝑦 − 𝑦0�
2

⎞
⎟⎟⎟⎟⎟⎟⎠ + 𝑥 ln ��𝑦 − 𝑦0�

2
�

= 2𝑦0𝜋 − 2𝑥 ln �𝑦 + 𝑦0� + 2𝑥 ln �
𝑦 + 𝑦0
𝑦 − 𝑦0

� + 2𝑥 ln �𝑦 − 𝑦0�

= 2𝑦0𝜋 + 2𝑥 ln �
𝑦 − 𝑦0
𝑦 + 𝑦0

� + 2𝑥 ln 𝑦 + 𝑦0
𝑦 − 𝑦0

= 2𝑦0𝜋 + 2𝑥 �ln
𝑦 − 𝑦0
𝑦 + 𝑦0

+ ln 𝑦 + 𝑦0
𝑦 − 𝑦0

�

= 2𝑦0𝜋 + 2𝑥 ln �
𝑦 − 𝑦0
𝑦 + 𝑦0

𝑦 + 𝑦0
𝑦 − 𝑦0

�

= 2𝑦0𝜋
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Hence (1) becomes

𝑢 �𝑥, 𝑦� =
1
2 �

𝑦

0

𝑦0
1 + 𝑦0

𝑑𝑦0

=
1
2
�𝑦0 − ln �𝑦0 + 1��

𝑦

0

=
1
2
�𝑦 − ln �𝑦 + 1��

Checking: When 𝑦 = 0 then 𝑢 �𝑥, 𝑦� = −12 ln (1) = 0. Ok. Solution does not depend on 𝑥 but
only on 𝑦.

2.9.6 Problem 6.3.21

Provide the details for the following alternative method for solving the homogeneous
Dirichlet boundary value problem for the Poisson equation on the unit square:

𝑢𝑥𝑥 + 𝑢𝑦𝑦 = −𝑓 �𝑥, 𝑦� 0 < 𝑥, 𝑦 < 1
𝑢 (𝑥, 0) = 0
𝑢 (𝑥, 1) = 0

𝑢 �0, 𝑦� = 0

𝑢 �1, 𝑦� = 0

(a) Write both 𝑢(𝑥, 𝑦) and 𝑓(𝑥, 𝑦) as Fourier sine series in 𝑦 whose coe�cients depend on 𝑥.
(b) Substitute these series into the di�erential equation, and equate Fourier coe�cients to
obtain an infinite system of ordinary boundary value problems for the 𝑥-dependent Fourier
coe�cients of 𝑢. (c) Use the Green’s functions for each boundary value problem to write
out the solution and hence a series for the solution to the original boundary value problem.
(d) Implement this method for the following forcing functions (i) 𝑓 �𝑥, 𝑦� = sin �𝜋𝑦�, (ii)
𝑓 �𝑥, 𝑦� = sin (𝜋𝑥) sin �2𝜋𝑦�, (iii) 𝑓 �𝑥, 𝑦� = 1.

Solution

2.9.6.1 Part a

Let

𝑢 �𝑥, 𝑦� =
∞
�
𝑛=1

𝐴𝑛 (𝑥) sin ��𝜆𝑛𝑦�

𝑓 �𝑥, 𝑦� =
∞
�
𝑛=1

𝐵𝑛 (𝑥) sin ��𝜆𝑛𝑦�

The eigenvalues are known to be 𝜆𝑛 = 𝑛2𝜋2 for 𝑛 = 1, 2,⋯ for these boundary conditions
on 𝑥 = 0 to 𝑥 = 1. Hence the above becomes

𝑢 �𝑥, 𝑦� =
∞
�
𝑛=1

𝐴𝑛 (𝑥) sin �𝑛𝜋𝑦� (1)

𝑓 �𝑥, 𝑦� =
∞
�
𝑛=1

𝐵𝑛 (𝑥) sin �𝑛𝜋𝑦� (2)

2.9.6.2 Part b

From (1)

𝑢𝑥 =
∞
�
𝑛=1

𝐴′𝑛 (𝑥) sin �𝑛𝜋𝑦�

𝑢𝑥𝑥 =
∞
�
𝑛=1

𝐴′′𝑛 (𝑥) sin �𝑛𝜋𝑦�

𝑢𝑦 =
∞
�
𝑛=1

𝑛𝜋𝐴𝑛 (𝑥) cos �𝑛𝜋𝑦�

𝑢𝑦𝑦 = −
∞
�
𝑛=1

𝑛2𝜋2𝐴𝑛 (𝑥) sin �𝑛𝜋𝑦�
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Substituting the above back into the original 𝑢𝑥𝑥 + 𝑢𝑦𝑦 = −𝑓 �𝑥, 𝑦� gives
∞
�
𝑛=1

𝐴′′𝑛 (𝑥) sin �𝑛𝜋𝑦� −
∞
�
𝑛=1

𝑛2𝜋2𝐴𝑛 (𝑥) sin �𝑛𝜋𝑦� = −
∞
�
𝑛=1

𝐵𝑛 (𝑥) sin �𝑛𝜋𝑦�
∞
�
𝑛=1

�𝐴′′𝑛 (𝑥) − 𝑛2𝜋2𝐴𝑛 (𝑥)� sin �𝑛𝜋𝑦� = −
∞
�
𝑛=1

𝐵𝑛 (𝑥) sin �𝑛𝜋𝑦�

Equating coe�cients in the above gives

𝐴′′𝑛 (𝑥) − 𝑛2𝜋2𝐴𝑛 (𝑥) = −𝐵𝑛 (𝑥)

For all 𝑛 = 1, 2,⋯. This is an infinite system of ordinary boundary value problems in 𝐴 (𝑥)
where 𝐵𝑛 (𝑥) acts as the external input.

2.9.6.3 Part c

We now want to find Green function for 𝐴′′𝑛 (𝑥) − 𝑛2𝜋2𝐴𝑛 (𝑥) = 0 with 𝐴𝑛 (0) = 0,𝐴𝑛 (1) = 0.
The solution is

𝐴𝑛 (𝑥) = 𝐴 cosh (𝑛𝜋𝑥) + 𝐵 sinh (𝑛𝜋𝑥)
Hence the Green function is

𝐺 (𝑥; 𝑥0) =

⎧⎪⎪⎨
⎪⎪⎩
𝐴1 cosh (𝑛𝜋𝑥) + 𝐵1 sinh (𝑛𝜋𝑥) 𝑥 < 𝑥0
𝐴2 cosh (𝑛𝜋𝑥) + 𝐵2 sinh (𝑛𝜋𝑥) 𝑥 > 𝑥0

At 𝑥 = 0, the top branch gives 0 = 𝐴1 and at 𝑥 = 1 the lower branch gives 𝐴2 cosh (𝑛𝜋) +
𝐵2 sinh (𝑛𝜋) = 0 or 𝐴2 = −𝐵2 tanh (𝑛𝜋). Using these in the above gives

𝐺 (𝑥; 𝑥0) =

⎧⎪⎪⎨
⎪⎪⎩

𝐵1 sinh (𝑛𝜋𝑥) 𝑥 < 𝑥0
−𝐵2 tanh (𝑛𝜋) cosh (𝑛𝜋𝑥) + 𝐵2 sinh (𝑛𝜋𝑥) 𝑥 > 𝑥0

=

⎧⎪⎪⎨
⎪⎪⎩

𝐵1 sinh (𝑛𝜋𝑥) 𝑥 < 𝑥0
𝐵2 (sinh (𝑛𝜋𝑥) − tanh (𝑛𝜋) cosh (𝑛𝜋𝑥)) 𝑥 > 𝑥0

(1A)

There are two unknowns 𝐵1, 𝐵2 to solve for. Hence we need two equations. The first equation
is found by equating the above Green function at 𝑥 = 𝑥0. This gives

𝐵1 sinh (𝑛𝜋𝑥0) = 𝐵2 (sinh (𝑛𝜋𝑥0) − tanh (𝑛𝜋) cosh (𝑛𝜋𝑥0)) (1)

Taking derivatives of 𝐺 (𝑥; 𝑥0) gives

𝑑
𝑑𝑥
𝐺 (𝑥; 𝑥0) =

⎧⎪⎪⎨
⎪⎪⎩

𝑛𝜋𝐵1 cosh (𝑛𝜋𝑥) 𝑥 < 𝑥0
𝐵2 (𝑛𝜋 cosh (𝑛𝜋𝑥) − 𝑛𝜋 tanh (𝑛𝜋) sinh (𝑛𝜋𝑥)) 𝑥 > 𝑥0

The second equation is found by the condition of the jump discontinutiy on the above
derivative at 𝑥 = 𝑥0 . Hence

𝑛𝜋𝐵1 cosh (𝑛𝜋𝑥0) − 𝐵2 (𝑛𝜋 cosh (𝑛𝜋𝑥0) − 𝑛𝜋 tanh (𝑛𝜋) sinh (𝑛𝜋𝑥0)) = 1 (2)

Solving (1,2) for 𝐵1, 𝐵2 gives

𝐵1 =
cosh (𝑛𝜋𝑥0) − coth (𝑛𝜋) sinh (𝑛𝜋𝑥0)

𝑛𝜋
=

1
𝑛𝜋 sinh (𝑛𝜋) sinh (𝑛𝜋 (𝑥0 − 1))

𝐵2 =
coth (𝑛𝜋) sinh (𝑛𝜋𝑥0)

𝑛𝜋
=

sinh (𝑛𝜋𝑥0)
𝑛𝜋 tanh (𝑛𝜋)

Substituting these back in (1A) gives the final Green function

𝐺 (𝑥; 𝑥0) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎧⎪⎪⎨
⎪⎪⎩

1
𝑛𝜋 sinh(𝑛𝜋) sinh (𝑛𝜋 (𝑥0 − 1)) sinh (𝑛𝜋𝑥) 𝑥 < 𝑥0

sinh(𝑛𝜋𝑥0)
𝑛𝜋 tanh(𝑛𝜋) (sinh (𝑛𝜋𝑥) − tanh (𝑛𝜋) cosh (𝑛𝜋𝑥)) 𝑥 > 𝑥0

𝑥 < 𝑥0

𝑥 > 𝑥0

=

⎧⎪⎪⎨
⎪⎪⎩

1
𝑛𝜋 sinh(𝑛𝜋) sinh (𝑛𝜋 (𝑥0 − 1)) sinh (𝑛𝜋𝑥) 𝑥 < 𝑥0

sinh (𝑛𝜋𝑥) sinh(𝑛𝜋𝑥0)
𝑛𝜋 tanh(𝑛𝜋) −

sinh(𝑛𝜋𝑥0)
𝑛𝜋 cosh (𝑛𝜋𝑥) 𝑥 > 𝑥0

=

⎧⎪⎪⎨
⎪⎪⎩

1
𝑛𝜋 sinh(𝑛𝜋) sinh (𝑛𝜋 (𝑥0 − 1)) sinh (𝑛𝜋𝑥) 𝑥 < 𝑥0

1
𝑛𝜋 sinh(𝑛𝜋) sinh (𝑛𝜋 (𝑥 − 1)) sinh (𝑛𝜋𝑥0) 𝑥 > 𝑥0
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Now that the Green function is found, the solution to 𝐴′′𝑛 (𝑥) − 𝑛2𝜋2𝐴𝑛 (𝑥) = 𝐵𝑛 (𝑥) is given
by

𝐴𝑛 (𝑥) = �
𝑥

0

1
𝑛𝜋 sinh (𝑛𝜋) sinh (𝑛𝜋 (𝑥 − 1)) sinh (𝑛𝜋𝑥0) 𝐵𝑛 (𝑥0) 𝑑𝑥0

+�
1

𝑥

1
𝑛𝜋 sinh (𝑛𝜋) sinh (𝑛𝜋 (𝑥0 − 1)) sinh (𝑛𝜋𝑥) 𝐵𝑛 (𝑥0) 𝑑𝑥0

Or

𝐴𝑛 (𝑥) =
1

𝑛𝜋 sinh (𝑛𝜋) sinh (𝑛𝜋 (𝑥 − 1))�
𝑥

0
sinh (𝑛𝜋𝑥0) 𝐵𝑛 (𝑥0) 𝑑𝑥0 (3)

+
1

𝑛𝜋 sinh (𝑛𝜋) sinh (𝑛𝜋𝑥)�
1

𝑥
sinh (𝑛𝜋 (𝑥0 − 1)) 𝐵𝑛 (𝑥0) 𝑑𝑥0

Now that 𝐴𝑛 (𝑥) is found, the solution to the PDE is found from

𝑢 �𝑥, 𝑦� =
∞
�
𝑛=1

𝐴𝑛 (𝑥) sin �𝑛𝜋𝑦�

Where 𝐴𝑛 (𝑥) is given by (3). 𝐵𝑛 (𝑥) is the Fourier series coe�cient of 𝑓 �𝑥, 𝑦� which needs

to be found depending on 𝑓 �𝑥, 𝑦�. This is done below.

2.9.6.4 Part d

(i) 𝑓 �𝑥, 𝑦� = sin �𝜋𝑦�

We first need to find the Fourier coe�cients 𝐵𝑛 (𝑥). Since 𝑓 �𝑥, 𝑦� = ∑∞
𝑛=1 𝐵𝑛 (𝑥) sin �𝑛𝜋𝑦�,

then multiplying both sides by sin �𝑚𝜋𝑦� and integrating gives

�
1

0
sin �𝜋𝑦� sin �𝑚𝜋𝑦� 𝑑𝑦 =

∞
�
𝑛=1

𝐵𝑛 (𝑥)�
1

0
sin �𝑚𝜋𝑦� sin �𝑛𝜋𝑦� 𝑑𝑦

=
1
2
𝐵𝑚 (𝑥)

Therefore

𝐵𝑛 (𝑥) = 2�
1

0
sin �𝜋𝑦� sin �𝑛𝜋𝑦� 𝑑𝑦

For 𝑛 = 1 the above becomes

𝐵1 (𝑥) = 2�
1

0
sin2 �𝜋𝑦� 𝑑𝑦 = 1

And for all other terms 𝐵𝑛 = 0 due to orthogonality of sin functions. Therefore now that
𝐵𝑛 (𝑥) is found, then from (3) 𝐴𝑛 (𝑥) can be found. Only 𝑛 = 1 term is needed.

𝐴1 (𝑥) =
1

𝜋 sinh (𝜋) sinh (𝜋 (𝑥 − 1))�
𝑥

0
sinh (𝜋𝑥0) 𝑑𝑥0 +

1
𝜋 sinh (𝜋) sinh (𝜋𝑥)�

1

𝑥
sinh (𝜋 (𝑥0 − 1)) 𝑑𝑥0

=
1

𝜋 sinh (𝜋) sinh (𝜋 (𝑥 − 1)) �
cosh (𝜋𝑥0)

𝜋 �
𝑥

0
+

1
𝜋 sinh (𝜋) sinh (𝜋𝑥) �

cosh (𝜋 (𝑥0 − 1))
𝜋 �

1

𝑥

=
1

𝜋2 sinh (𝜋) sinh (𝜋 (𝑥 − 1)) (cosh (𝜋𝑥) − 1) + 1
𝜋2 sinh (𝜋) sinh (𝜋𝑥) (1 − cosh (𝜋 (𝑥 − 1)))

Hence the solution to the PDE is

𝑢 �𝑥, 𝑦� =
∞
�
𝑛=1

𝐴𝑛 (𝑥) sin �𝑛𝜋𝑦�

= 𝐴1 (𝑥) sin �𝜋𝑦�

= �
1

𝜋2 sinh (𝜋) sinh (𝜋 (𝑥 − 1)) (cosh (𝜋𝑥) − 1) + 1
𝜋2 sinh (𝜋) sinh (𝜋𝑥) (1 − cosh (𝜋 (𝑥 − 1)))� sin �𝜋𝑦�

=
1

𝜋2 sinh𝜋 (sinh (𝜋 (𝑥 − 1)) − sinh (𝜋𝑥) + sinh𝜋) sin �𝜋𝑦�

The following is a plot of the above solution
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Figure 2.72: Plot of above solution

u[x_, y_] :=
1

π2 Sinh[π]
Sinhπ x - 1 - Sinh[π x] + Sinh[π] Sin[π y]

p = Plot3D[u[x, y], {x, 0, 1}, {y, 0, 1},

AxesLabel → {"x", "y", "u(x,y}"},

BaseStyle → 12];

Figure 2.73: Code for the above plot

(ii) 𝑓 �𝑥, 𝑦� = sin (𝜋𝑥) sin �2𝜋𝑦�

We first need to find the Fourier coe�cients 𝐵𝑛 (𝑥). Since 𝑓 �𝑥, 𝑦� = ∑∞
𝑛=1 𝐵𝑛 (𝑥) sin �𝑛𝜋𝑦�,

then multiplying both sides by sin �𝑚𝜋𝑦� and integrating gives

�
1

0
sin (𝜋𝑥) sin �2𝜋𝑦� sin �𝑚𝜋𝑦� 𝑑𝑦 =

∞
�
𝑛=1

𝐵𝑛 (𝑥)�
1

0
sin �𝑚𝜋𝑦� sin �𝑛𝜋𝑦� 𝑑𝑦

sin (𝜋𝑥)�
1

0
sin �2𝜋𝑦� sin �𝑚𝜋𝑦� 𝑑𝑦 = 1

2
𝐵𝑚 (𝑥)

Therefore

𝐵𝑛 (𝑥) = 2 sin (𝜋𝑥)�
1

0
sin �2𝜋𝑦� sin �𝑛𝜋𝑦� 𝑑𝑦

For 𝑛 = 2 the above gives

𝐵2 (𝑥) = 2 sin (𝜋𝑥)�
1

0
sin2 �2𝜋𝑦� 𝑑𝑦

= sin (𝜋𝑥)
And for all other terms 𝐵𝑛 = 0 due to orthogonality. Hence from (3) when 𝑛 = 2

𝐴2 (𝑥) =
1

2𝜋 sinh (2𝜋) sinh (2𝜋 (𝑥 − 1))�
𝑥

0
sinh (2𝜋𝑥0) sin (𝜋𝑥0) 𝑑𝑥0

+
1

2𝜋 sinh (2𝜋) sinh (2𝜋𝑥)�
1

𝑥
sinh (2𝜋 (𝑥0 − 1)) sin (𝜋𝑥0) 𝑑𝑥0

But

�
𝑥

0
sinh (2𝜋𝑥0) sin (𝜋𝑥0) 𝑑𝑥0 =

1
5𝜋

(2 cosh (2𝜋𝑥) sin (𝜋𝑥) − cos (𝜋𝑥) sinh (2𝜋𝑥))

And

�
1

𝑥
sinh (2𝜋 (𝑥0 − 1)) sin (𝜋𝑥0) 𝑑𝑥0 =

−1
5𝜋

(2 cosh (2𝜋 (𝑥 − 1)) sin (𝜋𝑥) + cos (𝜋𝑥) sinh (2𝜋 (1 − 𝑥)))
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Hence

𝐴2 (𝑥) =
1

2𝜋 sinh (2𝜋) sinh (2𝜋 (𝑥 − 1)) �
1
5𝜋

(2 cosh (2𝜋𝑥) sin (𝜋𝑥) − cos (𝜋𝑥) sinh (2𝜋𝑥))�

+
1

2𝜋 sinh (2𝜋) sinh (2𝜋𝑥) �
−1
5𝜋

(2 cosh (2𝜋 (𝑥 − 1)) sin (𝜋𝑥) + cos (𝜋𝑥) sinh (2𝜋 (1 − 𝑥)))�

Or

𝐴2 (𝑥) = −
1
5𝜋2

sin (𝜋𝑥)

Hence the PDE solution is

𝑢 �𝑥, 𝑦� =
∞
�
𝑛=1

𝐴𝑛 (𝑥) sin �𝑛𝜋𝑦�

= 𝐴2 (𝑥) sin �2𝜋𝑦�

=
−1
5𝜋2

sin (𝜋𝑥) sin �2𝜋𝑦�

The following is a plot of the above solution

Figure 2.74: Plot of above solution

u[x_, y_] :=
-Sin[Pi x] Sin[2 Pi y]

5 π2

p = Plot3D[u[x, y], {x, 0, 1}, {y, 0, 1},

AxesLabel → {"x", "y", "u(x,y}"},

BaseStyle → 12];

Figure 2.75: Code for the above plot

(iii) 𝑓 �𝑥, 𝑦� = 1

We first need to find the Fourier coe�cients 𝐵𝑛 (𝑥). Since 𝑓 �𝑥, 𝑦� = ∑∞
𝑛=1 𝐵𝑛 (𝑥) sin �𝑛𝜋𝑦�,
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then multiplying both sides by sin �𝑚𝜋𝑦� and integrating gives

−�
1

0
sin �𝑚𝜋𝑦� 𝑑𝑦 =

∞
�
𝑛=1

𝐵𝑛 (𝑥)�
1

0
sin �𝑚𝜋𝑦� sin �𝑛𝜋𝑦� 𝑑𝑦

−�
1

0
sin �𝑛𝜋𝑦� 𝑑𝑦 = 𝐵𝑛 (𝑥)

1
2

𝐵𝑛 (𝑥) =
2
𝑛𝜋

�cos �𝑛𝜋𝑦��
1

0

=
2
𝑛𝜋

(cos (𝑛𝜋) − 1)

=
2
𝑛𝜋

�(−1)𝑛 − 1�

Hence from (3)

𝐴𝑛 (𝑥) =
2
𝑛𝜋

�(−1)𝑛 − 1�
1

𝑛𝜋 sinh (𝑛𝜋) sinh (𝑛𝜋 (𝑥 − 1))�
𝑥

0
sinh (𝑛𝜋𝑥0) 𝑑𝑥0

+
2
𝑛𝜋

�(−1)𝑛 − 1�
1

𝑛𝜋 sinh (𝑛𝜋) sinh (𝑛𝜋𝑥)�
1

𝑥
sinh (𝑛𝜋 (𝑥0 − 1)) 𝑑𝑥0

Or

𝐴𝑛 (𝑥) =
2
𝑛𝜋

�(−1)𝑛 − 1�
1

𝑛𝜋 sinh (𝑛𝜋) sinh (𝑛𝜋 (𝑥 − 1)) �
cosh (𝑛𝜋𝑥0)

𝑛𝜋 �
𝑥

0

+
2
𝑛𝜋

�(−1)𝑛 − 1�
1

𝑛𝜋 sinh (𝑛𝜋) sinh (𝑛𝜋𝑥) �
cosh (𝑛𝜋 (𝑥0 − 1))

𝑛𝜋 �
1

𝑥

Or

𝐴𝑛 (𝑥) =
2
𝑛𝜋

�(−1)𝑛 − 1�
1

𝑛2𝜋2 sinh (𝑛𝜋) sinh (𝑛𝜋 (𝑥 − 1)) (cosh (𝑛𝜋𝑥) − 1)

+
2
𝑛𝜋

�(−1)𝑛 − 1�
1

𝑛2𝜋2 sinh (𝑛𝜋) sinh (𝑛𝜋𝑥) (1 − cosh (𝑛𝜋 (𝑥 − 1)))

Or

𝐴𝑛 (𝑥) =
2 �(−1)𝑛 − 1�
𝑛3𝜋3 sinh (𝑛𝜋) (sinh (𝑛𝜋 (𝑥 − 1)) (cosh (𝑛𝜋𝑥) − 1) + sinh (𝑛𝜋𝑥) (1 − cosh (𝑛𝜋 (𝑥 − 1))))

=
2 �(−1)𝑛 − 1�
𝑛3𝜋3 sinh (𝑛𝜋) (sinh (𝜋𝑛𝑥) − sinh (𝜋𝑛) − sinh (𝜋𝑛𝑥 − 𝜋𝑛))

Hence the solution is

𝑢 �𝑥, 𝑦� =
∞
�
𝑛=1

𝐴𝑛 (𝑥) sin �𝑛𝜋𝑦�

=
2
𝜋3

∞
�
𝑛=1

�(−1)𝑛 − 1�
𝑛3 sinh (𝑛𝜋) [sinh (𝜋𝑛𝑥) − sinh (𝜋𝑛) − sinh (𝜋𝑛 (𝑥 − 1))] sin �𝑛𝜋𝑦�

The following is a plot of the above solution
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Figure 2.76: Plot of above solution

u[x_, y_] :=

2

π3
Sum

-1n - 1

n3 Sinh[n π]

Sinh[n π x] - Sinh[n π] - Sinhn π x - 1 Sin[n π y], {n, 1, 30};

p = Plot3D[u[x, y], {x, 0, 1}, {y, 0, 1},

AxesLabel → {"x", "y", "u(x,y}"},

BaseStyle → 12];

Figure 2.77: Code for the above plot

2.9.7 Problem 6.3.23

Write out the details of how to derive (6.134) from (6.133).

𝐺 (𝒙; 𝝃) = −
1
2𝜋

log ‖𝒙 − 𝝃‖ + 1
2𝜋

log
�‖𝝃‖2 𝒙 − 𝝃�

‖𝝃‖

=
1
2𝜋

log
�‖𝝃‖2 𝒙 − 𝝃�
‖𝝃‖ ‖𝒙 − 𝝃‖

(6.133)

𝐺�𝑟, 𝜃; 𝜌, 𝜙� =
1
4𝜋

log
⎛
⎜⎜⎜⎜⎝
1 + 𝑟2𝜌2 − 2𝑟𝜌 cos �𝜃 − 𝜙�
𝑟2 + 𝜌2 − 2𝑟𝜌 cos �𝜃 − 𝜙�

⎞
⎟⎟⎟⎟⎠ (6.134)

Solution

Since 𝑥 = (𝑟 cos𝜃, 𝑟 sin𝜃) and 𝝃 = �𝜌 cos𝜙, 𝜌 sin𝜙�, then

‖𝝃‖2 = 𝜌2 cos2 𝜙 + 𝜌2 sin2 𝜙
= 𝜌2

Hence

‖𝝃‖2 𝒙 = 𝜌2 (𝑟 cos𝜃, 𝑟 sin𝜃)
= �𝑟𝜌2 cos𝜃, 𝑟𝜌2 sin𝜃�

And therefore

‖𝝃‖2 𝒙 − 𝝃 = �𝑟𝜌2 cos𝜃, 𝑟𝜌2 sin𝜃� − �𝜌 cos𝜙, 𝜌 sin𝜙�

= �𝑟𝜌2 cos𝜃 − 𝜌 cos𝜙, 𝑟𝜌2 sin𝜃 − 𝜌 sin𝜙�
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Hence

�‖𝝃‖2 𝒙 − 𝝃� =
�
�𝑟𝜌2 cos𝜃 − 𝜌 cos𝜙�

2
+ �𝑟𝜌2 sin𝜃 − 𝜌 sin𝜙�

2

= ��𝑟
2𝜌4 cos2 𝜃 + 𝜌2 cos2 𝜙 − 2𝑟𝜌3 cos𝜃 cos𝜙� + �𝑟2𝜌4 sin2 𝜃 + 𝜌2 sin2 𝜙 − 2𝑟𝜌3 sin𝜃 sin𝜙�

= �𝑟
2𝜌4 �cos2 𝜃 + sin2 𝜃� + 𝜌2 �cos2 𝜙 + sin2 𝜙� − 2𝑟𝜌3 �cos𝜃 cos𝜙 + sin𝜃 sin𝜙�

= �𝑟
2𝜌4 + 𝜌2 − 2𝑟𝜌3 �cos𝜃 cos𝜙 + sin𝜃 sin𝜙�

But cos𝜃 cos𝜙 + sin𝜃 sin𝜙 = cos �𝜃 − 𝜙�. The above becomes

�‖𝝃‖2 𝒙 − 𝝃� = �𝑟
2𝜌4 + 𝜌2 − 2𝑟𝜌3 cos �𝜃 − 𝜙�

= 𝜌�𝑟
2𝜌2 + 1 − 2𝑟𝜌 cos �𝜃 − 𝜙� (1)

The above is the numerator of 6.133. Now we find the denominator ‖𝝃‖ ‖𝒙 − 𝝃‖.

‖𝝃‖ = �𝜌
2 cos2 𝜙 + 𝜌2 sin2 𝜙

= 𝜌

And

‖𝒙 − 𝝃‖ = �(𝑟 cos𝜃, 𝑟 sin𝜃) − �𝜌 cos𝜙, 𝜌 sin𝜙��

=
�
�𝑟 cos𝜃 − 𝜌 cos𝜙�

2
+ �𝑟 sin𝜃 − 𝜌 sin𝜙�

2

= ��𝑟
2 cos2 𝜃 + 𝜌2 cos2 𝜙 − 2𝑟𝜌 cos𝜃 cos𝜙� + �𝑟2 sin2 𝜃 + 𝜌2 sin2 𝜙 − 2𝑟𝜌 sin𝜃 sin𝜙�

= �𝑟
2 �cos2 𝜃 + sin2 𝜃� + 𝜌2 �cos2 𝜙 + sin2 𝜙� − 2𝑟𝜌 �cos𝜃 cos𝜙 + sin𝜃 sin𝜙�

= �𝑟
2 + 𝜌2 − 2𝑟𝜌 cos �𝜃 − 𝜙�

Hence

‖𝝃‖ ‖𝒙 − 𝝃‖ = 𝜌�𝑟
2 + 𝜌2 − 2𝑟𝜌 cos �𝜃 − 𝜙� (2)

From (1,2)

1
2𝜋

log
�‖𝝃‖2 𝒙 − 𝝃�
‖𝝃‖ ‖𝒙 − 𝝃‖

=
1
2𝜋

log
𝜌�𝑟

2𝜌2 + 1 − 2𝑟𝜌 cos �𝜃 − 𝜙�

𝜌�𝑟
2 + 𝜌2 − 2𝑟𝜌 cos �𝜃 − 𝜙�

=
1
4𝜋

1 + 𝑟2𝜌2 − 2𝑟𝜌 cos �𝜃 − 𝜙�
𝑟2 + 𝜌2 − 2𝑟𝜌 cos �𝜃 − 𝜙�

Which is what required to show.

2.9.8 Problem 6.3.27

Consider the wave equation 𝑢𝑡𝑡 = 𝑐2𝑢𝑥𝑥 on the line −∞ < 𝑥 < ∞. Use the d’Alembert formula
(2.82) to solve the initial value problem 𝑢 (𝑥, 0) = 𝛿 (𝑥 − 𝑎) , 𝑢𝑡 (𝑥, 0) = 0. Can you realize your
solution as the limit of classical solutions?

𝑢 (𝑥, 𝑡) =
1
2
�𝑓 (𝑥 − 𝑐𝑡) + 𝑓 (𝑥 + 𝑐𝑡)� +

1
2𝑐 �

𝑥+𝑐𝑡

𝑥−𝑐𝑡
𝑔 (𝑠) 𝑑𝑠 (2.82)

Solution

In (2.82), the function 𝑓 is the initial conditions and the function 𝑔 is the initial velocity.
Hence the above becomes

𝑢 (𝑥, 𝑡) =
1
2
(𝛿 ((𝑥 − 𝑎) − 𝑐𝑡) + 𝛿 ((𝑥 − 𝑎) + 𝑐𝑡))

But 𝛿 ((𝑥 − 𝑎) − 𝑐𝑡) = 𝛿 (𝑥 − 𝑎 − 𝑐𝑡) = 𝛿 (𝑥 − (𝑎 + 𝑐𝑡)) and 𝛿 ((𝑥 − 𝑎) + 𝑐𝑡) = 𝛿 (𝑥 − 𝑎 + 𝑐𝑡) = 𝛿 (𝑥 − (𝑎 − 𝑐𝑡)).
Hence the above becomes

𝑢 (𝑥, 𝑡) =
1
2
𝛿 (𝑥 − (𝑎 + 𝑐𝑡)) +

1
2
𝛿 (𝑥 − (𝑎 − 𝑐𝑡)) (1)

The above is two half strength delta pulses, one traveling to the left and one traveling to
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the right from the starting position. Using the limiting definition of delta function, the
solution is the limit of sequence of classical solutions lim𝑛→∞ 𝑢𝑛 (𝑥, 𝑡) → 𝑢 (𝑥, 𝑡) which has
initial position that converges to the delta function and initial velocity which converges to
zero as given in this problem. Hence

lim
𝑛→∞

𝑢𝑛 (𝑥, 0) = 𝛿 (𝑥 − 𝑎)

lim
𝑛→∞

𝜕
𝜕𝑡
𝑢𝑛 (𝑥, 0) = 0

Using one such definition of limiting function given in 6.10, page 218

𝑢𝑛 (𝑥) =
𝑛

𝜋 �1 + 𝑛2𝑥2�

Then

𝑢𝑛 (𝑥 − 𝑎) =
𝑛

𝜋 �1 + 𝑛2 (𝑥 − 𝑎)2�

Hence

𝑢𝑛 (𝑥 − (𝑎 + 𝑐𝑡)) =
𝑛

𝜋 �1 + 𝑛2 (𝑥 − (𝑎 + 𝑐𝑡))2�

𝑢𝑛 (𝑥 − (𝑎 − 𝑐𝑡)) =
𝑛

𝜋 �1 + 𝑛2 (𝑥 − (𝑎 − 𝑐𝑡))2�

Using the classical solution 𝑢 (𝑥, 𝑡) = 1
2
(𝑢𝑛 (𝑥 − (𝑎 + 𝑐𝑡)) + 𝑢𝑛 (𝑥 − (𝑎 − 𝑐𝑡))) becomes

𝑢 (𝑥, 𝑡) =
1
2

𝑛
𝜋 �1 + 𝑛2 (𝑥 − (𝑎 + 𝑐𝑡))2�

+
1
2

𝑛
𝜋 �1 + 𝑛2 (𝑥 − (𝑎 − 𝑐𝑡))2�

Which converges to (1) 𝑢 (𝑥, 𝑡) = 1
2𝛿 (𝑥 − (𝑎 + 𝑐𝑡)) +

1
2𝛿 (𝑥 − (𝑎 − 𝑐𝑡)) as 𝑛 → ∞.

2.9.9 Problem 6.3.31

(a) Write down a Fourier series for the solution to the initial-boundary value problem

𝑢𝑡𝑡 = 𝑢𝑥𝑥
𝑢 (−1, 𝑡) = 0
𝑢 (1, 𝑡) = 0
𝑢 (𝑥, 0) = 𝛿 (𝑥)

𝜕𝑢 (𝑥, 0)
𝜕𝑡

= 0

(b) Write down an analytic formula for the solution, i.e., sum your series. (c) In what sense
does the series solution in part (a) converge to the true solution? Do the partial sums
provide a good approximation to the actual solution?

Solution

2.9.9.1 Part (a)

Since the boundary conditions are at 𝑥 = −1 and at 𝑥 = 1, it is a little easier to solve this
by first shifting the boundaries to 𝑥 = 0 and 𝑥 = 2. This is done by transformation. Let

𝑧 = 𝑥 + 1

When 𝑥 = −1 then 𝑧 = 0 and when 𝑥 = 1 then 𝑧 = 2. The PDE in terms of 𝑧 remains the
same but the B.C. are shifted. Hence we want to solve for 𝑣 (𝑧, 𝑥) in

𝑣𝑡𝑡 = 𝑣𝑧𝑧
𝑣 (0, 𝑡) = 0
𝑣 (2, 𝑡) = 0

No need to worry about initial conditions now, since we will transform back to 𝑥 before
applying initial conditions and therefore will use the original initial conditions. This PDE
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is now solved by separation. Let 𝑣 = 𝑍 (𝑧) 𝑇 (𝑡). Substituting into the PDE gives

𝑇′′𝑍 = 𝑍′′𝑇
𝑇′′

𝑇
=
𝑍′′

𝑍
= −𝜆

This gives the boundary value ODE

𝑍′′ + 𝜆𝑍 = 0 (1)

𝑍 (0) = 0
𝑍 (2) = 0

And the time ODE

𝑇′′ + 𝜆𝑇 = 0 (2)

Solving (1). From the boundary conditions we know only 𝜆 > 0 is an eigenvalue. Hence
for 𝜆 > 0 the solution is

𝑍 (𝑧) = 𝐴 cos �√𝜆𝑧� + 𝐵 sin �√𝜆𝑧�

At 𝑧 = 0 this gives 𝐴 = 0. Hence the solution now becomes 𝑍 (𝑧) = 𝐵 sin �√𝜆𝑧�. At 𝑧 = 2 the
above gives 0 = 𝐵 sin �2√𝜆�. For non-trivial solution we want sin �2√𝜆� = 0 which implies

2√𝜆 = 𝑛𝜋 or

𝜆𝑛 = �
𝑛𝜋
2
�
2

𝑛 = 1, 2, 3,⋯

And the corresponding eigenfunctions

𝑍𝑛 (𝑧) = sin �𝑛𝜋
2
𝑧� 𝑛 = 1, 2, 3,⋯

The time ODE (2) now becomes

𝑇′′ + �
𝑛𝜋
2
�
2
𝑇 = 0

Which has solution

𝑇𝑛 (𝑡) = 𝐴𝑛 cos �𝑛𝜋
2
𝑡� + 𝐵𝑛 sin �𝑛𝜋

2
𝑡�

Hence the complete solution is

𝑣 (𝑧, 𝑡) =
∞
�
𝑛=1

�𝐴𝑛 cos �𝑛𝜋
2
𝑡� + 𝐵𝑛 sin �𝑛𝜋

2
𝑡�� sin �𝑛𝜋

2
𝑧�

We are now ready to switch back from 𝑧 to 𝑥. Since 𝑧 = 𝑥 + 1 then the above becomes

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

�𝐴𝑛 cos �𝑛𝜋
2
𝑡� + 𝐵𝑛 sin �𝑛𝜋

2
𝑡�� sin �𝑛𝜋

2
(𝑥 + 1)� (3)

Now we apply initial conditions to find 𝐴𝑛, 𝐵𝑛. At 𝑡 = 0, 𝑢 (𝑥, 0) = 𝛿 (𝑥). Hence the above
gives

𝛿 (𝑥) =
∞
�
𝑛=1

𝐴𝑛 sin �𝑛𝜋
2
(𝑥 + 1)�

Multiplying both sides by sin �𝑚𝜋2 (𝑥 + 1)� and Integrating gives

�
1

−1
𝛿 (𝑥) sin �𝑚𝜋

2
(𝑥 + 1)� 𝑑𝑥 =

∞
�
𝑛=1

𝐴𝑛�
1

−1
sin �𝑛𝜋

2
(𝑥 + 1)� sin �𝑚𝜋

2
(𝑥 + 1)� 𝑑𝑥

By orthogonality of sin functions only term survives and the above simplifies to

�
1

−1
𝛿 (𝑥) sin �𝑚𝜋

2
(𝑥 + 1)� 𝑑𝑥 = 𝐴𝑚

1

���������������������������������
�

1

−1
sin2 �𝑚𝜋

2
(𝑥 + 1)� 𝑑𝑥

= 𝐴𝑚

But ∫
1

−1
𝛿 (𝑥) sin �𝑚𝜋2 (𝑥 + 1)� 𝑑𝑥 = sin �𝑚𝜋2 � since that is where 𝑥 = 0. The above reduces to

𝐴𝑛 = sin �𝑛𝜋
2
� 𝑛 = 1, 2, 3,⋯
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The solution (1) becomes

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

�sin �𝑛𝜋
2
� cos �𝑛𝜋

2
𝑡� + 𝐵𝑛 sin �𝑛𝜋

2
𝑡�� sin �𝑛𝜋

2
(𝑥 + 1)� (4)

Taking time derivatives

𝜕
𝜕𝑡
𝑢 (𝑥, 𝑡) =

∞
�
𝑛=1

�−
𝑛𝜋
2

sin �𝑛𝜋
2
� sin �𝑛𝜋

2
𝑡� +

𝑛𝜋
2
𝐵𝑛 cos �𝑛𝜋

2
𝑡�� sin �𝑛𝜋

2
(𝑥 + 1)�

At 𝑡 = 0 the above becomes

0 =
∞
�
𝑛=1

𝑛𝜋
2
𝐵𝑛 sin �𝑛𝜋

2
(𝑥 + 1)�

Therefore 𝐵𝑛 = 0. Hence the solution (4) becomes

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

sin �𝑛𝜋
2
� cos �𝑛𝜋

2
𝑡� sin �𝑛𝜋

2
(𝑥 + 1)� (5)

Notice that sin �𝑛𝜋2 � is zero when 𝑛 is even.

2.9.9.2 Part b

sin �𝑛𝜋
2
(𝑥 + 1)� = sin �𝑛𝜋

2
𝑥 +

𝑛𝜋
2
�

Using sin (𝐴 + 𝐵) = cos𝐴 sin𝐵 + sin𝐴 cos𝐵, the above becomes, where 𝐴 = 𝑛𝜋
2 𝑥 and 𝐵 =

𝑛𝜋
2

sin �𝑛𝜋
2
(𝑥 + 1)� = cos �𝑛𝜋

2
𝑥� sin �𝑛𝜋

2
� + sin �𝑛𝜋

2
𝑥� cos �𝑛𝜋

2
�

Hence (5) becomes

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

sin �𝑛𝜋
2
� cos �𝑛𝜋

2
𝑡� �cos �𝑛𝜋

2
𝑥� sin �𝑛𝜋

2
� + sin �𝑛𝜋

2
𝑥� cos �𝑛𝜋

2
��

=
∞
�
𝑛=1

cos �𝑛𝜋
2
𝑡� �cos �𝑛𝜋

2
𝑥� sin2 �𝑛𝜋

2
� + sin �𝑛𝜋

2
𝑥� sin �𝑛𝜋

2
� cos �𝑛𝜋

2
�� (6)

But sin �𝑛𝜋2 � cos �𝑛𝜋2 � = 0, since using sin𝐴 cos𝐵 = 1
2
(sin (𝐴 + 𝐵) + sin (𝐴 − 𝐵)) gives

sin �𝑛𝜋
2
� cos �𝑛𝜋

2
� =

1
2
(sin (𝑛𝜋) + sin (0))

= 0

Therefore (6) simplifies to

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

cos �𝑛𝜋
2
𝑡� cos �𝑛𝜋

2
𝑥� sin2 �𝑛𝜋

2
�

But sin2 �𝑛𝜋2 � = 0 when 𝑛 is even and 1 when 𝑛 is odd. Hence the above becomes

𝑢 (𝑥, 𝑡) =
∞
�

𝑛=1,3,5,⋯
cos �𝑛𝜋

2
𝑡� cos �𝑛𝜋

2
𝑥�

=
∞
�
𝑛=0

cos �
(2𝑛 + 1) 𝜋

2
𝑡� cos �

(2𝑛 + 1) 𝜋
2

𝑥�

Using cos𝐴 cos𝐵 = 1
2
(cos (𝐴 + 𝐵) + cos (𝐴 − 𝐵)), then using 𝐴 = (2𝑛+1)𝜋

2 𝑡, 𝐵 = (2𝑛+1)𝜋
2 𝑥 the

above becomes

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=0

1
2 �

cos �
(2𝑛 + 1) 𝜋

2
𝑡 +

(2𝑛 + 1) 𝜋
2

𝑥� + cos �
(2𝑛 + 1) 𝜋

2
𝑡 −

(2𝑛 + 1) 𝜋
2

𝑥��

=
1
2

∞
�
𝑛=0

cos �
(2𝑛 + 1) 𝜋

2
(𝑡 + 𝑥)� +

1
2

∞
�
𝑛=0

cos �
(2𝑛 + 1) 𝜋

2
(𝑡 − 𝑥)� (7)

But with help of the computer, found that the sums give
∞
�
𝑛=0

cos �
(2𝑛 + 1) 𝜋

2
(𝑡 + 𝑥)� = 0

∞
�
𝑛=0

cos �
(2𝑛 + 1) 𝜋

2
(𝑡 − 𝑥)� = 0
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Hence (7) becomes

𝑢 (𝑥, 𝑡) = 0

2.9.9.3 Part c

The solution given by the part b converges to the true solution in the mean sense. Since
with wave PDE, there will two pulses, each of half strength moving back and forth on the
string each wave with very small width but large amplitude. Solution in part b is giving
an averaging value for the solution as zero.

2.9.10 Key solution for HW 9

Problem   1  
a) 

 
b)  

   
 

Problem   2  
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2.10.1 Problem 1

Show that (assuming su�cient smoothness of the domain and the data) 𝑢 is a solution to
the Dirichlet boundary value problem

−Δ𝑢 = 𝑓

In Ω with B.C. 𝑢 = 𝑔 on 𝜕Ω i� 𝑢 is a minimizer of the energy functional, that is

𝐸 (𝑢) = min �𝐸 (𝑣) ∶ 𝑣 ∈ 𝐶2 �Ω̄�� such that 𝑢 = 𝑔 on 𝜕Ω

Here

𝐸 (𝑢) = �
Ω
�
1
2
|∇𝑢|2 − 𝑓𝑢� 𝑑𝐴

(note, I will be using 𝑑𝐴 in the above integral assuming we are in ℝ2. But the above can
also be 𝑑𝑉 for ℝ3 just as well and nothing will change in the derivation below. This is
easier that writing 𝑑𝑥 and saying that 𝑥 is a vector).

Solution

Since the proof is an i�, then we need to show both direction.

Forward direction Given that 𝑢 solves

−Δ𝑢 = 𝑓 (1)

with 𝑢|𝜕Ω = 𝑔. Then we need to show that 𝐸 (𝑣) ≥ 𝐸 (𝑢) for all 𝑣 ∈ 𝐶2 �Ω̄� that also satisfy
same B.C.

Multiplying both sides of (1) by 𝑢 − 𝑣 and integrating over the domain gives

−�
Ω
(Δ𝑢) (𝑢 − 𝑣) 𝑑𝐴 = �

Ω
(𝑢 − 𝑣) 𝑓𝑑𝐴 (2)

For the left integral ∫
Ω
(Δ𝑢) (𝑢 − 𝑣) 𝑑𝐴, we will do integration by parts. Let Δ𝑢 ≡ 𝑑𝑉, 𝑢−𝑣 = 𝑈,

then ∫
Ω
𝑈𝑑𝑉 = ∫

𝜕Ω
𝑈𝑉 − ∫

Ω
𝑉𝑑𝑈. Therefore 𝑑𝑈 = ∇ (𝑢 − 𝑣) and 𝑉 = ∇𝑢. After applying

integration by parts the (2) now becomes

− ��
𝜕Ω
(𝑢 − 𝑣)

𝜕𝑢
𝜕𝒏

𝑑𝐿 −�
Ω
∇𝑢 ⋅ ∇ (𝑢 − 𝑣) 𝑑𝐴� = �

Ω
(𝑢 − 𝑣) 𝑓𝑑𝐴

But ∫
𝜕Ω
(𝑢 − 𝑣) 𝜕𝑢𝜕𝒏 𝑑𝐿 = 0 because 𝑢 = 𝑣 on the boundary 𝜕Ω as both are 𝑔. The above now

simplifies to

�
Ω
∇𝑢 ⋅ ∇ (𝑢 − 𝑣) 𝑑𝐴 = �

Ω
�𝑢𝑓 − 𝑣𝑓� 𝑑𝐴

�
Ω
∇𝑢 ⋅ (∇𝑢 − ∇𝑣) 𝑑𝐴 = �

Ω
�𝑢𝑓 − 𝑣𝑓� 𝑑𝐴

�
Ω
|∇𝑢|2 − ∇𝑢 ⋅ ∇𝑣 𝑑𝐴 = �

Ω
�𝑢𝑓 − 𝑣𝑓� 𝑑𝐴

�
Ω
|∇𝑢|2 −�

Ω
𝑓𝑢 𝑑𝐴 = �

Ω
(∇𝑢 ⋅ ∇𝑣) − 𝑣𝑓 𝑑𝐴

Now we use Schwarz triangle inequality and write ∇𝑢 ⋅ ∇𝑣 ≤ 1
2
�|∇𝑢|2 + |∇𝑣|2�. This comes
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from using 𝑎𝑏 ≤ 1
2
�𝑎2 + 𝑏2�. Using this in the RHS of the above gives

�
Ω
|∇𝑢|2 𝑑𝐴 −�

Ω
𝑓𝑢 𝑑𝐴 ≤ �

Ω

1
2
�|∇𝑢|2 + |∇𝑣|2� − 𝑓𝑣 𝑑𝐴

�
Ω
|∇𝑢|2 𝑑𝐴 −�

Ω
𝑓𝑢 𝑑𝐴 ≤ �

Ω

1
2
|∇𝑢|2 𝑑𝐴 + �

1
2 �Ω

|∇𝑣|2 − 𝑓𝑣 𝑑𝐴�

�
Ω

1
2
|∇𝑢|2 𝑑𝐴 −�

Ω
𝑓𝑢 𝑑𝐴 ≤

1
2 �Ω

|∇𝑣|2 − 𝑓𝑣 𝑑𝐴

�
Ω

1
2
|∇𝑢|2 − 𝑓𝑢 𝑑𝐴 ≤

1
2 �Ω

|∇𝑣|2 − 𝑓𝑣 𝑑𝐴

But by definition ∫
Ω
1
2 |∇𝑢|

2 −𝑓𝑢 𝑑𝐴 = 𝐸 (𝑢) and 1
2
∫
Ω
|∇𝑣|2 −𝑓𝑣 𝑑𝐴 = 𝐸 (𝑣), therefore the above

becomes

𝐸 (𝑢) ≤ 𝐸 (𝑣)

Which is what we wanted to show. Now we will do the other direction.

Reverse direction Given that 𝑢 minimizes energy among all test functions, i.e. given that
𝐸 (𝑢) = min𝐸 (𝑤), then need to show that −Δ𝑢 = 𝑓.

Consider 𝑤 = 𝑢 + 𝜀𝑣 where 𝑣 is any test function 𝑣 ∈ 𝐶2 �Ω̄� and 𝑣 = 𝑔 at 𝜕Ω. Hence

min (𝐸 (𝑤)) = min (𝐸 (𝑢 + 𝜀𝑣))
Therefore min (𝐸 (𝑢 + 𝜀𝑣)) is achieved when 𝜀 = 0, since this then gives 𝐸 (𝑢) which by
assumption is the minimum. Therefore

𝑑
𝑑𝜀
𝐸 (𝑢 + 𝜀𝑣) = 0

At 𝜀 = 0. But the above can be written as the following, using the definition of energy

𝑑
𝑑𝜀 ��Ω

1
2
|∇ (𝑢 + 𝜀𝑣)|2 − 𝑓 (𝑢 + 𝜀𝑣) 𝑑𝐴� = 0

𝑑
𝑑𝜀 ��Ω

1
2
(∇ (𝑢 + 𝜀𝑣) ⋅ ∇ (𝑢 + 𝜀𝑣)) − 𝑓 (𝑢 + 𝜀𝑣) 𝑑𝐴� = 0 (3)

Expanding ∇ (𝑢 + 𝜀𝑣) ⋅ ∇ (𝑢 + 𝜀𝑣) gives

∇ (𝑢 + 𝜀𝑣) ⋅ ∇ (𝑢 + 𝜀𝑣) = (∇𝑢 + 𝜀∇𝑣) ⋅ (∇𝑢 + 𝜀∇𝑣)

= |∇𝑢|2 + 2𝜀∇𝑢 ⋅ ∇𝑣 + 𝜀2 |∇𝑣|2 (4)

Substituting (4) into (3) gives

𝑑
𝑑𝜀 ��Ω

𝑣 �|∇𝑢|2 + 2𝜀∇𝑢 ⋅ ∇𝑣 + 𝜀2 |∇𝑣|2� − 𝑓𝑢 − 𝜀𝑓𝑣 𝑑𝐴� = 0

Now we move the derivative inside the take derivative w.r.t. 𝜀 giving

��
Ω

1
2
�2∇𝑢 ⋅ ∇𝑣 + 2𝜀 |∇𝑣|2� − 𝑓𝑣 𝑑𝐴� = 0

Evaluate at 𝜀 = 0 the above becomes

�
Ω
(∇𝑢 ⋅ ∇𝑣) 𝑑𝐴 −�

Ω
𝑓𝑣 𝑑𝐴 = 0

Integration by parts for the first integral. Let ∇𝑢 = 𝑈, 𝑑𝑉 = ∇𝑣, then ∫
Ω
𝑈𝑑𝑉 = ∫

𝜕Ω
𝑈𝑉 −

∫
Ω
𝑉𝑑𝑈. Hence the above becomes

��
𝜕Ω
𝑣
𝜕𝑢
𝜕𝒏

𝑑𝐿 −�
Ω
𝑣Δ𝑢 𝑑𝐴� −�

Ω
𝑓𝑣 𝑑𝐴 = 0

But 𝑣 = 0 at boundary 𝜕Ω. The above simplifies to

−�
Ω
𝑣Δ𝑢 𝑑𝐴 −�

Ω
𝑓𝑣 𝑑𝐴 = 0

�
Ω
𝑣 �−Δ𝑢 − 𝑓 � 𝑑𝐴 = 0

Since the above is true for all 𝑣 test function then this implies that −Δ𝑢 − 𝑓 = 0 or

−Δ𝑢 = 𝑓
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Which is what we wanted to show.

2.10.2 Problem 7.1.1 f

Find the Fourier transform of (f) 𝑓 (𝑥) =

⎧⎪⎪⎨
⎪⎪⎩
𝑒−𝑥 sin 𝑥 𝑥 > 0

0 𝑥 ≤ 0

Solution

̂𝑓 (𝑘) =
1

√2𝜋
�

∞

−∞
𝑓 (𝑥) 𝑒−𝑖𝑘𝑥𝑑𝑥

=
1

√2𝜋
�

∞

0
𝑒−𝑥 sin 𝑥𝑒−𝑖𝑘𝑥𝑑𝑥

=
1

√2𝜋
�

∞

0
sin 𝑥𝑒−𝑖𝑘𝑥−𝑥𝑑𝑥

=
1

√2𝜋
�

∞

0
sin 𝑥𝑒−𝑥(1+𝑖𝑘)𝑑𝑥 (1)

Integration by parts. ∫𝑢𝑑𝑣 = 𝑢𝑣 − ∫𝑣𝑑𝑢. Let 𝑑𝑣 = 𝑒−𝑥(1+𝑖𝑘), 𝑣 = 𝑒−𝑥(1+𝑖𝑘)

−(1+𝑖𝑘) , 𝑢 = sin 𝑥, 𝑑𝑢 = cos 𝑥.
Hence

𝐼 = �
∞

0
sin 𝑥𝑒−𝑥(1+𝑖𝑘)𝑑𝑥

= �sin 𝑥
𝑒−𝑥(1+𝑖𝑘)

− (1 + 𝑖𝑘)�
∞

0
−�

∞

0
cos 𝑥 𝑒

−𝑥(1+𝑖𝑘)

− (1 + 𝑖𝑘)
𝑑𝑥

=
−1
1 + 𝑖𝑘

�sin 𝑥𝑒−𝑥(1+𝑖𝑘)�
∞

0
+

1
1 + 𝑖𝑘 �

∞

0
cos 𝑥𝑒−𝑥(1+𝑖𝑘)𝑑𝑥

But 𝑒−𝑥(1+𝑖𝑘) = 𝑒−𝑥𝑒−𝑖𝑘𝑥 and this goes to zero as 𝑥 → ∞ and since sin 𝑥 = 0 at 𝑥 = 0 then the
first term above is zero. The above reduces to

𝐼 =
1

1 + 𝑖𝑘 �
∞

0
cos 𝑥𝑒−𝑥(1+𝑖𝑘)𝑑𝑥

Integration by parts. ∫𝑢𝑑𝑣 = 𝑢𝑣 − ∫𝑣𝑑𝑢. Let 𝑑𝑣 = 𝑒−𝑥(1+𝑖𝑘), 𝑣 = 𝑒−𝑥(1+𝑖𝑘)

−(1+𝑖𝑘) , 𝑢 = cos 𝑥, 𝑑𝑢 = − sin 𝑥.
The above becomes

𝐼 =
1

1 + 𝑖𝑘

⎛
⎜⎜⎜⎜⎝�cos 𝑥 𝑒

−𝑥(1+𝑖𝑘)

− (1 + 𝑖𝑘)�
∞

0
−�

∞

0
(− sin 𝑥) 𝑒

−𝑥(1+𝑖𝑘)

− (1 + 𝑖𝑘)
𝑑𝑥
⎞
⎟⎟⎟⎟⎠

=
1

1 + 𝑖𝑘

⎛
⎜⎜⎜⎜⎝�cos 𝑥 𝑒

−𝑥(1+𝑖𝑘)

− (1 + 𝑖𝑘)�
∞

0
−

1
1 + 𝑖𝑘 �

∞

0
sin 𝑥𝑒−𝑥(1+𝑖𝑘)𝑑𝑥

⎞
⎟⎟⎟⎟⎠

But ∫
∞

0
sin 𝑥𝑒−𝑥(1+𝑖𝑘)𝑑𝑥 = 𝐼. The above becomes

𝐼 =
1

1 + 𝑖𝑘

⎛
⎜⎜⎜⎜⎝�cos 𝑥 𝑒

−𝑥(1+𝑖𝑘)

− (1 + 𝑖𝑘)�
∞

0
−

1
1 + 𝑖𝑘

𝐼
⎞
⎟⎟⎟⎟⎠

=
1

1 + 𝑖𝑘 �
cos 𝑥 𝑒

−𝑥(1+𝑖𝑘)

− (1 + 𝑖𝑘)�
∞

0
− �

1
1 + 𝑖𝑘�

2

𝐼

𝐼 + �
1

1 + 𝑖𝑘�
2

𝐼 =
−1

(1 + 𝑖𝑘)2
�cos 𝑥𝑒−𝑥(1+𝑖𝑘)�

∞

0
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Now �cos 𝑥𝑒−𝑥(1+𝑖𝑘)�
∞

0
= 0 − 1 = −1. Hence the above reduces to

𝐼
⎛
⎜⎜⎜⎜⎝1 + �

1
1 + 𝑖𝑘�

2⎞⎟⎟⎟⎟⎠ =
1

(1 + 𝑖𝑘)2

𝐼 =

1
(1+𝑖𝑘)2

1 + � 1
1+𝑖𝑘

�
2

=
1

1 + (1 + 𝑖𝑘)2

=
1

2 − 𝑘2 + 2𝑖𝑘
Therefore

�
∞

0
sin 𝑥𝑒−𝑥(1+𝑖𝑘)𝑑𝑥 = 1

2 − 𝑘2 + 2𝑖𝑘
Using (1) the Fourier transform becomes

̂𝑓 (𝑘) =
1

√2𝜋
1

2 − 𝑘2 + 2𝑖𝑘
This can be written as real and imaginary parts

̂𝑓 (𝑘) =
1

√2𝜋

�2 − 𝑘2� − 2𝑖𝑘

��2 − 𝑘2� + 2𝑖𝑘� ��2 − 𝑘2� − 2𝑖𝑘�

=
1

√2𝜋

�2 − 𝑘2� − 2𝑖𝑘

�2 − 𝑘2�
2
+ 4𝑘2

=
1

√2𝜋
�
2 − 𝑘2

𝑘4 + 4
− 𝑖

2𝑘
𝑘4 + 4�

2.10.3 Problem 7.1.3 (a,b)

Find the inverse Fourier transform of the function 1
𝑘+𝑐 when (a) 𝑐 = 𝑎 is real (b) 𝑐 = 𝑖𝑏 is

pure imaginary.

Solution

2.10.3.1 Part a

Using shifting property where ℱ�𝑓 (𝑥)� = ̂𝑓 (𝑘) and let ̂𝑓 (𝑘) = 1
𝑘 then by shifting property

ℱ�𝑒𝑖𝑎𝑥𝑓 (𝑥)� = ̂𝑓 (𝑘 − 𝑎), (Theorem 7.4) therefore

ℱ�𝑒−𝑖𝑎𝑥𝑓 (𝑥)� = ̂𝑓 (𝑘 + 𝑎)

=
1

𝑘 + 𝑎
(1)

We now just need to find 𝑓 (𝑥). From table of Fourier transforms on page 272, we see that

ℱ[sgn (𝑥)] = 1
𝑖�

2
𝜋
1
𝑘 . Hence

ℱ�𝑖
�
𝜋
2

sgn (𝑥)� =
1
𝑘

Therefore 𝑓 (𝑥) = 𝑖�
𝜋
2 sgn (𝑥). Substituting this back into (1) gives

ℱ�𝑖𝑒−𝑖𝑎𝑥
�
𝜋
2

sgn (𝑥)� =
1

𝑘 + 𝑎
Or

ℱ −1 �
1

𝑘 + 𝑎�
= 𝑖𝑒−𝑖𝑎𝑥

�
𝜋
2

sgn (𝑥)
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2.10.3.2 Part b

Using shifting property, given that ℱ�𝑓 (𝑥)� = ̂𝑓 (𝑘), let ̂𝑓 (𝑘) = 1
𝑘 then by shifting property

(Theorem 7.4) ℱ�𝑒𝑖(𝑖𝑏)𝑥𝑓 (𝑥)� = ̂𝑓 (𝑘 − 𝑖𝑏), then

ℱ�𝑒𝑏𝑥𝑓 (𝑥)� = ̂𝑓 (𝑘 + 𝑖𝑏)

=
1

𝑘 + 𝑖𝑏
(1)

We now just need to find 𝑓 (𝑥). From table of Fourier transforms on page 272, we see that

ℱ[sgn (𝑥)] = 1
𝑖�

2
𝜋
1
𝑘 . Hence

ℱ�𝑖
�
𝜋
2

sgn (𝑥)� =
1
𝑘

Therefore 𝑓 (𝑥) = 𝑖�
𝜋
2 sgn (𝑥). Substituting this back into (1) gives

ℱ�𝑖𝑒𝑏𝑥
�
𝜋
2

sgn (𝑥)� =
1

𝑘 + 𝑖𝑏
Or

ℱ −1 �
1

𝑘 + 𝑖𝑏�
= 𝑖𝑒𝑏𝑥

�
𝜋
2

sgn (𝑥)

2.10.4 Problem 7.1.13

Prove the Shift Theorem 7.4 which is

Theorem 7.4: if 𝑓 (𝑥) has Fourier transform ̂𝑓 (𝑘), then the Fourier transform of the shifted
function 𝑓 (𝑥 − 𝜉) is 𝑒−𝑖𝑘𝜉 ̂𝑓 (𝑘). Similarly the transform of the product function 𝑒𝑖𝛼𝑥𝑓 (𝑥) for
real 𝛼 is the shifted transform ̂𝑓 (𝑘 − 𝛼) (note: using 𝛼 in place of the strange second 𝑘 that
the book uses)

2.10.4.1 Part a

Showing if 𝑓 (𝑥) has Fourier transform ̂𝑓 (𝑘), then Fourier transform of the shifted function
𝑓 (𝑥 − 𝜉) is 𝑒−𝑖𝑘𝜉 ̂𝑓 (𝑘). From definition, the Fourier transform of 𝑓 (𝑥 − 𝜉) is given by

ℱ�𝑓 (𝑥 − 𝜉)� =
1

√2𝜋
�

∞

−∞
𝑓 (𝑥 − 𝜉) 𝑒−𝑖𝑘𝑥𝑑𝑥

Let 𝑥 − 𝜉 = 𝑢. Then 𝑑𝑢
𝑑𝑥 = 1. The above becomes (limits do not change)

ℱ�𝑓 (𝑥 − 𝜉)� =
1

√2𝜋
�

∞

−∞
𝑓 (𝑢) 𝑒−𝑖𝑘(𝑢+𝜉)𝑑𝑢

=
1

√2𝜋
�

∞

−∞
𝑓 (𝑢) 𝑒−𝑖𝑘𝑢𝑒−𝑖𝑘𝜉𝑑𝑢

= 𝑒−𝑖𝑘𝜉

̂𝑓(𝑘)

�����������������������������1

√2𝜋
�

∞

−∞
𝑓 (𝑢) 𝑒−𝑖𝑘𝑢𝑑𝑢

Therefore

ℱ�𝑓 (𝑥 − 𝜉)� = 𝑒−𝑖𝑘𝜉 ̂𝑓 (𝑘)

Which is what asked to show.

2.10.4.2 Part b

Showing that the Fourier transform of 𝑒𝑖𝛼𝑥𝑓 (𝑥) is ̂𝑓 (𝑘 − 𝛼). From definition, the Fourier
transform of 𝑒𝑖𝛼𝑥𝑓 (𝑥) is

ℱ�𝑒𝑖𝛼𝑥𝑓 (𝑥)� =
1

√2𝜋
�

∞

−∞
𝑒𝑖𝛼𝑥𝑓 (𝑥) 𝑒−𝑖𝑘𝑥𝑑𝑥

=
1

√2𝜋
�

∞

−∞
𝑓 (𝑥) 𝑒−𝑖𝑥(𝑘−𝛼)𝑑𝑥
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But 1

√2𝜋
∫∞
−∞
𝑓 (𝑥) 𝑒−𝑖𝑥(𝑘−𝛼)𝑑𝑥 is ̂𝑓 (𝑘 − 𝛼) by replacing 𝑘 with 𝑘 − 𝛼 in the definition of Fourier

transform. Hence

ℱ�𝑒𝑖𝛼𝑥𝑓 (𝑥)� = ̂𝑓 (𝑘 − 𝛼)

Which is what asked to show.

2.10.5 Problem 7.1.20 (a)

The two-dimensional Fourier transform of a function 𝑓 �𝑥, 𝑦� defined for �𝑥, 𝑦� ∈ ℝ2 is

ℱ�𝑓 �𝑥, 𝑦�� = ̂𝑓 (𝑘, 𝑙)

=
1
2𝜋 �

∞

−∞
�

∞

−∞
𝑓 �𝑥, 𝑦� 𝑒−𝑖�𝑘𝑥+𝑙𝑦�𝑑𝑥𝑑𝑦

(a) compute the Fourier transform of the following functions (i) 𝑒−|𝑥|−�𝑦�, (iii) The delta
function 𝛿 (𝑥 − 𝜉) 𝛿 �𝑦 − 𝜂�

(b) Show that if 𝑓 �𝑥, 𝑦� = 𝑔 (𝑥) ℎ �𝑦� then ̂𝑓 (𝑘, 𝑙) = �̂� (𝑘) ℎ̂ (𝑙)

Solution

2.10.5.1 Part a

(i) The Fourier transform of 𝑒−|𝑥|−�𝑦� is

̂𝑓 (𝑘, 𝑙) =
1
2𝜋 �

∞

−∞
�

∞

−∞
𝑒−|𝑥|−�𝑦�𝑒−𝑖�𝑘𝑥+𝑙𝑦�𝑑𝑥𝑑𝑦

=
1
2𝜋 �

∞

−∞
�

∞

−∞
𝑒−|𝑥|𝑒−�𝑦�𝑒−𝑖𝑘𝑥𝑒−𝑖𝑙𝑦𝑑𝑥𝑑𝑦

=
1
2𝜋 �

∞

−∞
𝑒−�𝑦�𝑒−𝑖𝑙𝑦 ��

∞

−∞
𝑒−|𝑥|𝑒−𝑖𝑘𝑥𝑑𝑥� 𝑑𝑦 (1)

But ∫
∞

−∞
𝑒−|𝑥|𝑒−𝑖𝑘𝑥𝑑𝑥 is the Fourier transform of 𝑓 (𝑥) = 𝑒−|𝑥| with √2𝜋 factor. In other words

�
∞

−∞
𝑒−|𝑥|𝑒−𝑖𝑘𝑥𝑑𝑥 = √2𝜋�̂� (𝑘)

Where �̂� (𝑘) is used to indicate the Fourier transform of 𝑒−|𝑥|. Hence (1) becomes

̂𝑓 (𝑘, 𝑙) = √2𝜋
2𝜋

̂𝑓1 (𝑘)�
∞

−∞
𝑒−�𝑦�𝑒−𝑖𝑙𝑦𝑑𝑦

But ∫
∞

−∞
𝑒−�𝑦�𝑒−𝑖𝑙𝑦𝑑𝑦 = √2𝜋ℎ̂ (𝑙) Where ℎ̂ (𝑙) is used to indicate the Fourier transform of 𝑒−�𝑦�.

The above becomes

̂𝑓 (𝑘, 𝑙) = √2𝜋
2𝜋

�̂� (𝑘)√2𝜋ℎ̂ (𝑙)

= �̂� (𝑘) ℎ̂ (𝑙) (2)
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So now we need to determine �̂� (𝑘) and ℎ̂ (𝑙) and multiply the result.

�̂� (𝑘) =
1

√2𝜋
�

∞

−∞
𝑒−|𝑥|𝑒−𝑖𝑘𝑥𝑑𝑥

=
1

√2𝜋
��

0

−∞
𝑒𝑥𝑒−𝑖𝑘𝑥𝑑𝑥 +�

∞

0
𝑒−𝑥𝑒−𝑖𝑘𝑥𝑑𝑥�

=
1

√2𝜋
��

0

−∞
𝑒−𝑖𝑘𝑥+𝑥𝑑𝑥 +�

∞

0
𝑒−𝑖𝑘𝑥−𝑥𝑑𝑥�

=
1

√2𝜋

⎛
⎜⎜⎜⎜⎝�
𝑒−𝑖𝑘𝑥+𝑥

1 − 𝑖𝑘 �
0

−∞
+ �

𝑒−𝑖𝑘𝑥−𝑥

−1 − 𝑖𝑘�
∞

0

⎞
⎟⎟⎟⎟⎠

=
1

√2𝜋
�

1
1 − 𝑖𝑘

�𝑒−𝑖𝑘𝑥𝑒𝑥�
0

−∞
−

1
1 + 𝑖𝑘

�𝑒−𝑖𝑘𝑥𝑒−𝑥�
∞

0
�

=
1

√2𝜋
�

1
1 − 𝑖𝑘

(1 − 0) −
1

1 + 𝑖𝑘
(0 − 1)�

=
1

√2𝜋
�

1
1 − 𝑖𝑘

+
1

1 + 𝑖𝑘�

=
1

√2𝜋
�
(1 + 𝑖𝑘) + (1 − 𝑖𝑘)
(1 − 𝑖𝑘) (1 + 𝑖𝑘) �

=
1

√2𝜋
�

2
1 + 𝑘2 �

=
�
2
𝜋

1
1 + 𝑘2

Similarly

ℎ̂ (𝑙) =
1

√2𝜋
�

∞

−∞
𝑒−�𝑦�𝑒−𝑖𝑙𝑦𝑑𝑦

=
�
2
𝜋

1
1 + 𝑙2

Hence from (2) the Fourier transform of 𝑒−|𝑥|−�𝑦� is
̂𝑓 (𝑘, 𝑙) = �̂� (𝑘) ℎ̂ (𝑙)

=
�
2
𝜋

1
1 + 𝑘2�

2
𝜋

1
1 + 𝑙2

=
2
𝜋

1
�1 + 𝑘2� �1 + 𝑙2�

(ii) The Fourier transform of 𝛿 (𝑥 − 𝜉) 𝛿 �𝑦 − 𝜂�. First we find the Fourier transform of 𝛿 (𝑥 − 𝜉)
and then the Fourier transform of 𝛿 �𝑦 − 𝜂�

�̂� (𝑘) =
1

√2𝜋
�

∞

−∞
𝛿 (𝑥 − 𝜉) 𝑒−𝑖𝑘𝑥𝑑𝑥

=
1

√2𝜋
𝑒−𝑖𝑘𝜉

And

ℎ̂ (𝑙) =
1

√2𝜋
�

∞

−∞
𝛿 �𝑦 − 𝜂� 𝑒−𝑖𝑙𝑦𝑑𝑦

=
1

√2𝜋
𝑒−𝑖𝑙𝜂

Hence the Fourier transform of the product 𝛿 (𝑥 − 𝜉) 𝛿 �𝑦 − 𝜂� is (Using the product rule,
which will be proofed in part b also).

̂𝑓 (𝑘, 𝑙) = �̂� (𝑘) ℎ̂ (𝑙)

=
1
2𝜋
𝑒−𝑖𝑘𝜉𝑒−𝑖𝑙𝜂

The above could be rewritten in terms of trig functions using Euler relation if needed.
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2.10.5.2 Part b

By definition, the Fourier transform of 𝑓 �𝑥, 𝑦� is

̂𝑓 (𝑘, 𝑙) =
1
2𝜋 �

∞

−∞
�

∞

−∞
𝑓 �𝑥, 𝑦� 𝑒−𝑖�𝑘𝑥+𝑙𝑦�𝑑𝑥𝑑𝑦

But 𝑓 �𝑥, 𝑦� = 𝑔 (𝑥) ℎ �𝑦�. Hence the above becomes

̂𝑓 (𝑘, 𝑙) =
1
2𝜋 �

∞

−∞
�

∞

−∞
𝑔 (𝑥) ℎ �𝑦� 𝑒−𝑖�𝑘𝑥+𝑙𝑦�𝑑𝑥𝑑𝑦

=
1
2𝜋 �

∞

−∞
�

∞

−∞
𝑔 (𝑥) ℎ �𝑦� 𝑒−𝑖𝑘𝑥𝑒−𝑖𝑙𝑦𝑑𝑥𝑑𝑦

=
1
2𝜋 �

∞

−∞
ℎ �𝑦� 𝑒−𝑖𝑙𝑦 ��

∞

−∞
𝑔 (𝑥) 𝑒−𝑖𝑘𝑥𝑑𝑥� 𝑑𝑦

But ∫
∞

−∞
𝑔 (𝑥) 𝑒−𝑖𝑘𝑥𝑑𝑥 = √2𝜋�̂� (𝑘). The above reduces to

̂𝑓 (𝑘, 𝑙) =
1
2𝜋√

2𝜋�̂� (𝑘)�
∞

−∞
ℎ �𝑦� 𝑒−𝑖𝑙𝑦𝑑𝑦

But ∫
∞

−∞
ℎ �𝑦� 𝑒−𝑖𝑙𝑦𝑑𝑦 = √2𝜋ℎ̂ (𝑙). Hence the above becomes

̂𝑓 (𝑘, 𝑙) =
1
2𝜋√

2𝜋�̂� (𝑘)√2𝜋ℎ̂ (𝑙)

= �̂� (𝑘) ℎ̂ (𝑙)

Which is what asked to show.

2.10.6 Problem 7.2.2 (a)

Find the Fourier transform of (a) the error function erf (𝑥) = 2

√𝜋
∫𝑥
0
𝑒−𝑧2𝑑𝑧

Solution

2.10.6.1 Part a

Using

1 + erf (𝑥) = 2

√𝜋
�

𝑥

−∞
𝑒−𝑧2𝑑𝑧 (1)

Taking Fourier transform of both sides, and using the known relation from tables which
says

ℱ��
𝑥

−∞
𝑓 (𝑢) 𝑑𝑢� =

1
𝑖𝑘

̂𝑓 (𝑘) + 𝜋 ̂𝑓 (0) 𝛿 (𝑘)

And using that Fourier transform of 1 is √2𝜋𝛿 (𝑘) then (1) becomes

√2𝜋𝛿 (𝑘) + ℱ [erf (𝑥)] = 2

√𝜋
�
1
𝑖𝑘

̂𝑓 (𝑘) + 𝜋 ̂𝑓 (0) 𝛿 (𝑘)�

Where ̂𝑓 (𝑘) is the Fourier transform of 𝑒−𝑢2 (Gaussian) we derived in class as 𝑒−𝑢2 ⇔ 1

√2
𝑒
−𝑘2
4 .

The above becomes

√2𝜋𝛿 (𝑘) + ℱ [erf (𝑥)] = 2

√𝜋

⎛
⎜⎜⎜⎜⎝
1
𝑖𝑘

1

√2
𝑒
−𝑘2
4 + 𝜋 �

1

√2
𝑒
−𝑘2
4 �

𝑘=0

𝛿 (𝑘)
⎞
⎟⎟⎟⎟⎠

=
2

√𝜋
�
1
𝑖𝑘

1

√2
𝑒
−𝑘2
4 +

𝜋

√2
𝛿 (𝑘)�

=
2

√𝜋
1
𝑖𝑘

1

√2
𝑒
−𝑘2
4 + √2𝜋𝛿 (𝑘)
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Therefore the above simplifies to

ℱ[erf (𝑥)] = 2

√𝜋
1
𝑖𝑘

1

√2
𝑒
−𝑘2
4

=
�
2
𝜋
1
𝑖𝑘
𝑒
−𝑘2
4

= −𝑖
�
2
𝜋
1
𝑘
𝑒
−𝑘2
4

2.10.7 Problem 7.2.3 (d)

Find the inverse Fourier transform of the following functions (d) 𝑘2

𝑘−𝑖

Solution

Using property that

ℱ�𝑓′ (𝑥)� = 𝑖𝑘 ̂𝑓 (𝑘)

ℱ �𝑓′′ (𝑥)� = −𝑘2 ̂𝑓 (𝑘) (1)

Where in the above ℱ�𝑓 (𝑥)� = ̂𝑓 (𝑘). Comparing the above with 𝑘2

𝑘−𝑖 , we see that

̂𝑓 (𝑘) =
1

𝑘 − 𝑖
Hence we need to find inverse Fourier transform of −1

𝑘−𝑖 first in order to find 𝑓 (𝑥), and then
take second derivative of the result. Writing

1
𝑘 − 𝑖

=
1

𝑖 � 𝑘𝑖 − 1�

=
1

𝑖 (−𝑖𝑘 − 1)

=
−1

𝑖 (𝑖𝑘 + 1)

= 𝑖
1

(1 + 𝑖𝑘)
From table (page 272 in textbook) we see that

ℱ −1 �
1

(𝑖𝑘 + 1)�
= √2𝜋𝑒−𝑥𝜎 (𝑥)

Using 𝑎 = 1 in the table entry. Where 𝜎 (𝑥) is the step function. Hence

𝑖ℱ −1 �
1

(𝑖𝑘 + 1)�
= 𝑖√2𝜋𝑒−𝑥𝜎 (𝑥)

Therefore

𝑓 (𝑥) = 𝑖√2𝜋𝑒−𝑥𝜎 (𝑥)

Now we take derivative of the above (using product rule)

𝑓′ (𝑥) = −𝑖√2𝜋𝑒−𝑥𝜎 (𝑥) + 𝑖√2𝜋𝑒−𝑥𝛿 (𝑥)

Where 𝛿 (𝑥) is added since derivative of 𝜎 (𝑥) has jump discontinuity at 𝑥 = 0. Taking one
more derivative gives

𝑓′′ (𝑥) = 𝑖√2𝜋𝑒−𝑥𝜎 (𝑥) − 𝑖√2𝜋𝑒−𝑥𝛿 (𝑥) − 𝑖√2𝜋𝑒−𝑥𝛿 (𝑥) + 𝑖√2𝜋𝑒−𝑥𝛿′ (𝑥)

= 𝑖√2𝜋𝑒−𝑥𝜎 (𝑥) − 2𝑖√2𝜋𝑒−𝑥𝛿 (𝑥) + 𝑖√2𝜋𝑒−𝑥𝛿′ (𝑥)

Therefore

ℱ −1 �
𝑘2

𝑘 − 𝑖�
= 𝑖√2𝜋𝑒−𝑥𝜎 (𝑥) − 2𝑖√2𝜋𝑒−𝑥𝛿 (𝑥) + 𝑖√2𝜋𝑒−𝑥𝛿′ (𝑥)

2.10.8 Problem 7.2.12

(a) Explain why the Fourier transform of a 2𝜋 periodic function 𝑓 (𝑥) is a linear combina-
tions of delta functions ̂𝑓 (𝑘) = ∑∞

𝑛=−∞ 𝑐𝑛𝛿 (𝑘 − 𝑛) where 𝑐𝑛 are the complex Fourier series

198



2.10. HW 10 CHAPTER 2. HWS

coe�cients (3.65) of 𝑓 (𝑥) on [−𝜋, 𝜋]

𝑐𝑛 = �𝑓, 𝑒𝑖𝑛𝑥� =
1
2𝜋 �

𝜋

−𝜋
𝑓 (𝑥) 𝑒−𝑖𝑛𝑥𝑑𝑥 (3.65)

(b) Find the Fourier transform of the following periodic functions (i) sin 2𝑥 (ii) cos3 𝑥 (iii)
The 2𝜋 periodic extension of 𝑓 (𝑥) = 𝑥 (iv) The sawtooth function ℎ (𝑥) = 𝑥mod 1. i.e. the
fractional part of 𝑥

Solution

2.10.8.1 Part a

Since 𝑓 (𝑥) is periodic, then its can be expressed as

𝑓 (𝑥) =
∞
�
𝑛=−∞

𝑐𝑛𝑒
𝑖𝑛� 2𝜋𝑇 �𝑥

But the period 𝑇 = 2𝜋 and the above simplifies to

𝑓 (𝑥) =
∞
�
𝑛=−∞

𝑐𝑛𝑒𝑖𝑛𝑥 (1)

Taking the Fourier transform of the above gives

̂𝑓 (𝑘) =
1

√2𝜋
�

∞

−∞
𝑓 (𝑥) 𝑒−𝑖𝑘𝑥𝑑𝑥 (2)

Substituting (1) into (2) gives

̂𝑓 (𝑘) =
1

√2𝜋
�

∞

−∞
�

∞
�
𝑛=−∞

𝑐𝑛𝑒𝑖𝑛𝑥� 𝑒−𝑖𝑘𝑥𝑑𝑥

=
1

√2𝜋
�

∞

−∞
�

∞
�
𝑛=−∞

𝑐𝑛𝑒−𝑖𝑥(𝑘−𝑛)� 𝑑𝑥

Changing the order of summation and integration

̂𝑓 (𝑘) =
1

√2𝜋

∞
�
𝑛=−∞

��
∞

−∞
𝑐𝑛𝑒−𝑖𝑥(𝑘−𝑛)𝑑𝑥�

=
1

√2𝜋

∞
�
𝑛=−∞

𝑐𝑛 ��
∞

−∞
𝑒−𝑖𝑥(𝑘−𝑛)𝑑𝑥� (3)

But from tables we know that ℱ(1) = √2𝜋𝛿 (𝑘). Which means that
1

√2𝜋
�

∞

−∞
𝑒−𝑖𝑥𝑘𝑑𝑥 = √2𝜋𝛿 (𝑘)

Therefore, replacing 𝑘 by 𝑘 − 𝑛 in the above gives
1

√2𝜋
�

∞

−∞
𝑒−𝑖𝑥(𝑘−𝑛)𝑑𝑥 = √2𝜋𝛿 (𝑘 − 𝑛)

�
∞

−∞
𝑒−𝑖𝑥(𝑘−𝑛)𝑑𝑥 = (2𝜋) 𝛿 (𝑘 − 𝑛) (4)

Substituting (4) into (3) gives

̂𝑓 (𝑘) =
1

√2𝜋

∞
�
𝑛=−∞

𝑐𝑛 (2𝜋) 𝛿 (𝑘 − 𝑛)

= √2𝜋
∞
�
𝑛=−∞

𝑐𝑛𝛿 (𝑘 − 𝑛)

Note: The books seems to have a typo. It gives the above without the factor √2𝜋 at the
front.

2.10.8.2 Part b

(i) sin 2𝑥. Since this is periodic, then 𝑐𝑛 =
1
2𝜋
∫𝜋
−𝜋

sin (2𝑥) 𝑒−𝑖𝑛𝑥𝑑𝑥. For 𝑛 = 2 this gives 𝑐2 = −
𝑖
2

and for 𝑛 = −2 it gives 𝑐−2 =
𝑖
2 and it is zero for all other 𝑛 values due to orthogonality of
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sin functions. Using the above result obtained in part (a)

̂𝑓 (𝑘) = √2𝜋
∞
�
𝑛=−∞

𝑐𝑛𝛿 (𝑘 − 𝑛)

= √2𝜋𝑐−2𝛿 (𝑘 + 2) + √2𝜋𝑐2𝛿 (𝑘 − 2)

= √2𝜋
𝑖
2
𝛿 (𝑘 + 2) − √2𝜋

𝑖
2
𝛿 (𝑘 − 2)

= 𝑖
�
𝜋
2
𝛿 (𝑘 + 2) − 𝑖

�
𝜋
2
𝛿 (𝑘 − 2)

(ii) cos3 𝑥. Since this is periodic, then 𝑐𝑛 =
1
2𝜋
∫𝜋
−𝜋

cos3 (𝑥) 𝑒−𝑖𝑛𝑥𝑑𝑥. But cos3 (𝑥) = 1
4 cos (3𝑥) +

3
4 cos (𝑥). Hence only 𝑛 = ±1, 𝑛 = ±3 will have coe�cients and the rest are zero.

𝑐−1 =
1
2𝜋 �

𝜋

−𝜋

3
4

cos (𝑥) 𝑒𝑖𝑥𝑑𝑥 = 3
8

𝑐1 =
1
2𝜋 �

𝜋

−𝜋

3
4

cos (𝑥) 𝑒−𝑖𝑥𝑑𝑥 = 3
8

𝑐−3 =
1
2𝜋 �

𝜋

−𝜋

1
4

cos (3𝑥) 𝑒−3𝑖𝑥𝑑𝑥 = 1
8

𝑐3 =
1
2𝜋 �

𝜋

−𝜋

1
4

cos (3𝑥) 𝑒−3𝑖𝑥𝑑𝑥 = 1
8

Therefore, using result from part (a)

̂𝑓 (𝑘) = √2𝜋
∞
�
𝑛=−∞

𝑐𝑛𝛿 (𝑘 − 𝑛)

= √2𝜋 �
1
8
𝛿 (𝑘 + 3) +

3
8
𝛿 (𝑘 + 1) +

3
8
𝛿 (𝑘 − 1) +

1
8
𝛿 (𝑘 − 3)�

=
1
4�

𝜋
2
(𝛿 (𝑘 + 3) + 3𝛿 (𝑘 + 1) + 3𝛿 (𝑘 − 1) + 𝛿 (𝑘 − 3))

(iii) The 2𝜋 periodic extension of 𝑓 (𝑥) = 𝑥

Since this is periodic, then

𝑐𝑛 =
1
2𝜋 �

𝜋

−𝜋
𝑥𝑒−𝑖𝑛𝑥𝑑𝑥

=
2𝑖
𝑛2
(𝑛𝜋 cos (𝑛𝜋) − sin (𝑛𝜋))

=
2𝑖
𝑛2
�𝑛𝜋 (−1)𝑛�

=
2𝑖
𝑛
𝜋 (−1)𝑛

Therefore, using result from part (a)

̂𝑓 (𝑘) = √2𝜋
∞
�
𝑛=−∞

𝑐𝑛𝛿 (𝑘 − 𝑛)

= √2𝜋
∞
�
𝑛=−∞

2𝑖
𝑛
𝜋 (−1)𝑛 𝛿 (𝑘 − 𝑛)

= 2𝑖𝜋√2𝜋
∞
�
𝑛=−∞

(−1)𝑛

𝑛
𝛿 (𝑘 − 𝑛) 𝑛 ≠ 0

(iv) The sawtooth function

In[ ]:= Plot[FractionalPart[x], {x, -Pi, Pi}, Ticks → {{-Pi, -Pi / 2, 0, Pi / 2, Pi}, Automatic}]

Out[ ]=
-π - π

2

π

2
π

-1.0

-0.5

0.5

1.0

Figure 2.78: Plot of 𝑓(𝑥) (Fractional part of 𝑥)
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2.10.9 Problem 7.3.4

Find a solution to the di�erential equation −𝑑
2𝑢
𝑑𝑥2 + 4𝑢 = 𝛿 (𝑥) by using the Fourier transform

Solution

Taking Fourier transform of both sides gives

− (𝑖𝑘)2 �̂� (𝑘) + 4�̂� (𝑘) = ℱ [𝛿 (𝑥)]

𝑘2�̂� (𝑘) + 4�̂� (𝑘) =
1

√2𝜋
Solving for �̂� (𝑘)

�̂� (𝑘) �𝑘2 + 4� =
1

√2𝜋

�̂� (𝑘) =
1

√2𝜋
1

𝑘2 + 4

Finding inverse Fourier transform. From tables we see that ℱ�𝑒−𝑎|𝑥|� = �
2
𝜋

𝑎
𝑘2+𝑎2 . Using

𝑎 = 2

ℱ �𝑒−2|𝑥|� =
�
2
𝜋

2
𝑘2 + 4

�
𝜋
2
1
2
ℱ �𝑒−2|𝑥|� =

1
𝑘2 + 4

�
𝜋
2
ℱ �

1
2
𝑒−2|𝑥|� =

1
𝑘2 + 4

1

√2𝜋�
𝜋
2
ℱ�

1
2
𝑒−2|𝑥|� =

1

√2𝜋
1

𝑘2 + 4
1
2
ℱ �

1
2
𝑒−2|𝑥|� =

1

√2𝜋
1

𝑘2 + 4

ℱ �
1
4
𝑒−2|𝑥|� =

1

√2𝜋
1

𝑘2 + 4
Therefore

𝑢 (𝑥) =
1
4
𝑒−2|𝑥|
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2.10.10 Key solution for HW 10

Problem   1  
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4.2 Study notes, cheat sheet

4.2.1 Linear and Nonlinear Waves (Chapter 2)

stationary waves such as 𝑢𝑡 + 3𝑢 = 0

Transport and Traveling Waves such as 𝑢𝑡+𝑐𝑢𝑥 = 𝑢. Uniform transport. Speed 𝑐 is constant.

Characteristics are 𝑑𝑥
𝑑𝑡 = 𝑐. When speed is not constant, we get Nonuniform Transport.

Characteristics is 𝑑𝑥
𝑑𝑡 = 𝑐 (𝑥). Nonlinear Transport: 𝑢𝑡 + 𝑢 𝑢𝑥 = 0 where wave speed depends

not on position 𝑥 but on 𝑢 itself.

d’Almbert

𝑢 (𝑥, 𝑡) =
1
2
�𝑓 (𝑥 − 𝑐𝑡) + 𝑓 (𝑥 + 𝑐𝑡)� +

1
2𝑐 �

𝑥+𝑐𝑡

𝑥−𝑐𝑡
𝑔 (𝑠) 𝑑𝑠

With extranl force 𝑢𝑡𝑡 = 𝑐2𝑢𝑥𝑥+𝐹 (𝑥, 𝑡) we add the term 1
2𝑐
∫𝑡
0
�∫𝑥+𝑐(𝑡−𝑠)
𝑥−𝑐(𝑡−𝑠)

𝐹 �𝑠, 𝑦� 𝑑𝑦� 𝑑𝑠. The limits

are the same as above, but replace 𝑡 by 𝑡 − 𝑠. remeber 𝑑𝑠 goes with 𝑡 and 𝑑𝑦 goes with 𝑥.

4.2.2 Fourier series (Chapter 3)

Just need to know the F.S. definition. Either complex one or standard.

4.2.3 Seperation of variables (Chapter 4)

Theorem 4.2. If 𝑢(𝑡, 𝑥) is a solution to the heat equation with piecewise continuous initial
data 𝑓(𝑥) = 𝑢(𝑡0, 𝑥), or, more generally, initial data satisfying (4.27), then, for any 𝑡 > 𝑡0, the
solution 𝑢(𝑡, 𝑥) is an infinitely di�erentiable function of 𝑥. (page 128) .

"In other words, the heat equation instantaneously smoothes out any discontinuities and
corners in the initial temperature profile by fast damping of the high-frequency modes"

Heat PDE in 1D.

Inhomogeneous Boundary Conditions convert to homogeneous by using reference func-
tion.

Wave PDE in 1D. Fixed ends. d’Alembert Formula for Bounded Intervals: For Dirichlet
do odd extension of initial position. For Neumann (free) boundary conditions, do even
extension.

Laplace PDE on disk and on recrangle. in polar Laplace becomes 𝑢𝑟𝑟 +
1
𝑟𝑢𝑟 +

1
𝑟2𝑢𝜃𝜃 = 0.

When doing seperations, rememebr to use the angular ODE for finding the eigenvalues
first. The radial ODE becomes Euler ODE. Solve using assuming 𝑅 (𝑟) = 𝑟𝑘. For disk, the
solution is 𝑢 (𝑟, 𝜃) = 𝐴0

2 +∑
∞
𝑛=1 𝑟

𝑛 (𝐴𝑛 cos (𝑛𝜃 + 𝐵𝑛 sin 𝑛𝜃))

Laplace PDE maximum principle. Lots of theorem here.

Characteristics and the Cauchy Problem see HW 7, Problem 4.4.16. This is for second

order pde. Write pde as𝐴𝑢𝑥𝑥+𝐵𝑢𝑥𝑦+𝐶𝑢𝑦𝑦 = 𝐺 and then Characteristics is𝐴�𝑑𝑦𝑑𝑥�
2
−𝐵𝑑𝑦𝑑𝑥+𝐶 = 0.

This gives ode 𝑑𝑦
𝑑𝑥 which is the Characteristics.

Laplacian in 3D with no angle dependencty is 𝑢𝑟𝑟 +
2
𝑟𝑢𝑟 = 0

4.2.4 Generalized functions and Green function (Chapter 6)

𝛿 (𝑥 − 𝜉): "In general, a unit impulse at position 𝑎 < 𝜉 < 𝑏 will be described by something
called the delta function".

Two ways to define 𝛿 (𝑥 − 𝜉). one based on limit of function as 𝑛 → ∞ and one based on
how it acts inside integral. For limit, use this one
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𝑔𝑛 (𝑥) =
𝑛

𝜋 �1 + 𝑛2𝑥2�

Then lim𝑛→∞ 𝑔𝑛 (𝑥) = 𝛿0 (𝑥). And the above also meets the integral relation ∫
∞

−∞
𝑔𝑛 (𝑥) 𝑑𝑥 =

1
𝜋 [arctan (𝑛𝑥)]∞−∞ = 1.

For calculus, remember this: When taking derivative of a function with jump discontitty,
we get an impulse at location of the jump with magnitude of the jump. Direction is negative
if the jump is down and positive if the jump is up, this is when moving from left to right.
For example derivative of unit step is 𝛿 (𝑥). And the integral of 𝛿 (𝑥) is unit step (or 1).
Hence if 𝑓 (𝑥) = 𝑔 (𝑥) + 𝜎 (𝑥) where 𝜎 (𝑥) is unit step and 𝑔 (𝑥) is continuous everywhere, then
𝑓′ (𝑥) = 𝑔′ (𝑥) + 𝛿 (𝑥)

Fourier series of 𝛿 (𝑥) = 1
2𝜋 +

1
𝜋
(cos 𝑥 + cos 2𝑥 + cos 3𝑥 +⋯)

Green function for 1D boundary value problems.

Remember when satisfying the jump discontinuity, it is 𝐴 + 1
𝑝 = 𝐵 where 𝑝 is one which

matches when the ODE is written as 𝑝𝑦′′ + 𝑞 (𝑥) 𝑦′ + 𝑟𝑦 = 𝑓 (𝑥) in the original ODE. And 𝐴
is the top term and 𝐵 is the bottom term, as is

�
𝑑
𝑑𝑥
𝐺 (𝑥; 𝜉)�

𝑥=𝜉
=

⎧⎪⎪⎨
⎪⎪⎩
𝐴 𝑥 < 𝜉
𝐵 𝑥 > 𝜉

So the second equation is

𝐴 +
1
𝑝
= 𝐵

That is really the only tricky part in finding Green function. Getting the sign right here. So
if the ODE is −𝑐𝑦′′ = 𝑓 (𝑥) then here 𝑝 = −𝑐 (notice, sign is negative, i.e. 𝑝 = −𝑐 including
the sign) and the jump is 1

𝑝 =
1
−𝑐 = −

1
𝑐 and hence the equation becomes

𝐴 +
1
𝑝
= 𝐵

𝐴 −
1
𝑐
= 𝐵

And if the ODE is given as 𝑐𝑦′′ = 𝑓 (𝑥) then 𝑝 = 𝑐 and the equation becomes

𝐴 +
1
𝑝
= 𝐵

𝐴 +
1
𝑐
= 𝐵

"Thus, the Neumann boundary value problem admits a solution if and only if there is no
net force on the bar." (page 239). This means −𝑢′′ = 𝑓 (𝑥) with 𝑢′ (0) = 0 = 𝑢′ (1) has Green
function and solution if ∫

1

0
𝑓 (𝑥) 𝑑𝑥 = 0. If this holds, the −𝑢′′ = 𝑓 (𝑥) has solution (but the

solution is not unique) and any constant value is a solution.

Green function for Laplace −Δ𝑢 = 𝑓 �𝑥, 𝑦�

Some relations: ∇ ⋅ ∇𝑢 = Δ𝑢 = 𝑢𝑥𝑥 + 𝑢𝑦𝑦. i.e. divergence of the gradient of 𝑢 is Laplacian of
𝑢. Green function in full space for Laplacian in 2D is

𝐺�𝑥, 𝑦; 𝜉, 𝜂� =
−1
2𝜋

ln 𝑟

where 𝑟 is distance from �𝑥, 𝑦� to where the pulse is �𝜉, 𝜂�, i.e. �(𝑥 − 𝜉)
2 + �𝑦 − 𝜂�

2
. In 3D, it

is 1
4𝜋𝑟 .

Method of images To find 𝐺�𝑥, 𝑦; 𝜉, 𝜂� in say upper half, put a negative pulse at �𝜉, −𝜂� and
then use 𝐺𝑢𝑝𝑝𝑒𝑟 �𝑥, 𝑦; 𝜉, 𝜂� = 𝐺𝑓𝑢𝑙𝑙 �𝑥, 𝑦; 𝜉, 𝜂� − 𝐺𝑓𝑢𝑙𝑙 �𝑥, 𝑦; 𝜉, −𝜂�
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For disk

𝐺 (𝒙; 𝝃) =
1
2𝜋

ln

⎛
⎜⎜⎜⎜⎜⎝
�‖𝝃‖2 𝒙 − 𝝃�
‖𝝃‖ ‖𝒙 − 𝝃‖

⎞
⎟⎟⎟⎟⎟⎠

In polar it becomes

𝐺�𝑟, 𝜃; 𝜌, 𝜙� =
1
4𝜋

ln �
1 + 𝑟2𝜌2 − 𝛽
𝑟2 + 𝜌2 − 𝛽 �

Where 𝛽 = 2𝑟𝜌 cos �𝜃 − 𝜙� where (𝑟, 𝜃) is variable point and pulse fixed at �𝜌, 𝜙�, all using
polar coordinates.

4.2.5 Fourier transform (chapter 7)

̂𝑓 (𝑘) =
1

√2𝜋
�

∞

−∞
𝑓 (𝑥) 𝑒−𝑖𝑘𝑥𝑑𝑥

𝑓 (𝑥) =
1

√2𝜋
�

∞

−∞
̂𝑓 (𝑘) 𝑒𝑖𝑘𝑥𝑑𝑘

Table of Fourier transforms on page 272 will be given in exam also. Remember the
shift property

̂𝑓 (𝑘 − 𝑎) ⇔ 𝑒𝑖𝑎𝑥𝑓 (𝑥)
𝑓 (𝑥 − 𝑎) ⇔ 𝑒−𝑖𝑎𝑥 ̂𝑓 (𝑘)

Gaussian integrals, for any 𝑏 is

�
∞

−∞
𝑒−𝑥2𝑑𝑥 = √𝜋

�
∞

−∞
𝑒−(𝑥+𝑏)

2
𝑑𝑥 = √𝜋

�
∞

−∞
𝑒−(𝑥−𝑏)

2
𝑑𝑥 = √𝜋

�
∞

−∞
𝑒−𝑎(𝑥+𝑏)

2
𝑑𝑥 =

�
𝜋
𝑎

𝑎 > 0

�
∞

−∞
𝑒−𝑎(𝑥−𝑏)

2
𝑑𝑥 =

�
𝜋
𝑎

𝑎 > 0

Derivative and integrals

𝑓 (𝑥) ⇔ ̂𝑓 (𝑘)
𝑓′ (𝑥) ⇔ (𝑖𝑘) ̂𝑓 (𝑘)

𝑓′′ (𝑥) ⇔ (𝑖𝑘)2 ̂𝑓 (𝑘) = −𝑘2 ̂𝑓 (𝑘)

Remember this also 𝑥𝑓 (𝑥) ⇔ 𝑖𝑑
̂𝑓(𝑘)
𝑑𝑘 . On smoothness of 𝑓 (𝑥) and relation to decay of ̂𝑓 (𝑘).

see book page 276 "the smoothness of the function 𝑓(𝑥) is manifested in the rate of decay
of its Fourier transform 𝑓(𝑘)." and "Thus, the smoother 𝑓(𝑥), the more rapid the decay of
its Fourier transform" and "This result can be viewed as the Fourier transform version of
the Riemann–Lebesgue Lemma 3.46.)"

Integration

�
𝑥

−∞
𝑓 (𝑥) 𝑑𝑥 ⇔

1
𝑖𝑘

̂𝑓 (𝑘) + 𝜋 ̂𝑓 (0) 𝛿 (𝑘)

Easy to remember when comparing it to 𝑓′ (𝑥) ⇔ (𝑖𝑘) ̂𝑓 (𝑘). Just change (𝑖𝑘) from numerator
to denominator and add 𝜋 ̂𝑓 (0) 𝛿 (𝑘).

In context of generalized functions, we write

�
∞

−∞
𝑓 (𝑥) 𝑑𝑥 = √2𝜋 ̂𝑓 (0)

So if we know the F.T. of 𝑓 (𝑥) we do the above integration by using the above relation
directly by evaluating ̂𝑓 (𝑘) at 𝑘 = 0. This can be handy. For example let us apply this to
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the Gaussian,. ∫
∞

−∞
𝑒−𝑥2𝑑𝑥 = √2𝜋 ̂𝑓 (0) where ̂𝑓 (𝑘) = ℱ �𝑒−𝑥2� = 1

√2
𝑒−

𝑘2
4 . Hence ̂𝑓 (0) = 1

√2
and

therefore ∫
∞

−∞
𝑒−𝑥2𝑑𝑥 = √2𝜋

1

√2
= √𝜋

Green function

Using F.T, to find Green function. Used only for infinite space. Put a 𝛿𝑦 (𝑥) in RHS, solve
for �̂� �𝑦, 𝑡� then find the inverse Fourier transform to get 𝐺 (𝑥, 𝑡). For example for heat pde.

Weyl’s law for eigenvalues convergence for large 𝑛. For 2D

lim
𝑛→∞

𝜆𝑛
𝑛
=
4𝜋
𝐴

Where here 𝜆𝑛 =
𝑙2𝜋2

𝑎2 + 𝑘2𝜋2

𝑏2 , 𝑙 = 1, 2, 3,⋯ , 𝑘 = 1, 2, 3,⋯. So 𝜆𝑛 are sorted in order. This is for
reactangle with width 𝑎 and high 𝑏.
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