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1 Problem 3.5.11(e,f)

Which of the following series satisfy the M–test and hence converge uniformly on the interval
𝐼 = [0, 1]?

(e) ∑∞
𝑘=1

𝑒𝑘𝑥

𝑘2 , (f) ∑
∞
𝑘=1

𝑒−𝑘𝑥

𝑘2

Solution

1.1 Part e

Using theorem 3.27, we need to find |𝑢𝑘 (𝑥)| ≤ 𝑚𝑘 for all 𝑥 ∈ 𝐼 such that ∑∞
𝑘=1𝑚𝑘 < ∞ to show

that series ∑∞
𝑘=1 𝑢𝑘 (𝑥) converges uniformly. In this case 𝑢𝑘 (𝑥) =

𝑒𝑘𝑥

𝑘2 . At 𝑥 = 0, 𝑢𝑘 (0) =
1
𝑘2 and

at 𝑥 = 1, 𝑢𝑘 (1) =
𝑒𝑘

𝑘2 . Hence if we pick 𝑚𝑘 =
𝑒𝑘

𝑘2 then this will satisfy the condition |𝑢𝑘 (𝑥)| ≤ 𝑚𝑘.
But

∞
�
𝑘=1

𝑚𝑘 =
∞
�
𝑘=1

𝑒𝑘

𝑘2

does not converge. This can be shown by ratio test. 𝑚𝑘+1
𝑚𝑘

=
𝑒𝑘+1

(𝑘+1)2

𝑒𝑘

𝑘2

= 𝑒𝑘+1𝑘2

𝑒𝑘(𝑘+1)2
= 𝑒 𝑘2

(𝑘+1)2
and as

𝑘 → ∞ this goes to 𝑒. Which is larger than 1. Therefore ∑∞
𝑘=1

𝑒𝑘𝑥

𝑘2 is not uniform convergent.

1.2 Part e

In this case 𝑢𝑘 (𝑥) =
𝑒−𝑘𝑥

𝑘2 . At 𝑥 = 0, 𝑢𝑘 (0) =
1
𝑘2 and at 𝑥 = 1, 𝑢𝑘 (1) =

1
𝑒𝑘𝑘2

. Hence if we pick

𝑚𝑘 =
1

𝑒𝑘𝑘2
then this will satisfy the condition |𝑢𝑘 (𝑥)| ≤ 𝑚𝑘.

∞
�
𝑘=1

𝑚𝑘 =
∞
�
𝑘=1

1
𝑒𝑘𝑘2

Using the ratio test 𝑚𝑘+1
𝑚𝑘

=
1

𝑒𝑘+1(𝑘+1)2

1
𝑒𝑘𝑘2

= 𝑒𝑘𝑘2

𝑒𝑘+1(𝑘+1)2
= 1

𝑒
𝑘2

(𝑘+1)2
and as 𝑘 → ∞ this goes to 1

𝑒 .

Which is smaller than 1. Hence by the ratio test ∑∞
𝑘=1𝑚𝑘 converges. Therefore ∑∞

𝑘=1
𝑒−𝑘𝑥

𝑘2
is uniform convergent.
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2 Problem 3.5.21(a,c,e)

First, without explicitly evaluating them, how fast do you expect the Fourier coe�cients of
the following functions to go to zero as 𝑘 → ∞ ? Then prove your claim by evaluating the
coe�cients. (a) 𝑥 − 𝜋, (c) 𝑥2, (e) sin2 𝑥.

Solution

2.1 Part a

𝑓 (𝑥) = 𝑥 − 𝜋. This is an odd function. Hence 𝑓 (−𝜋) ≠ 𝑓 (𝜋). Because of this, there will be a
jump discontinuity in the 2𝜋 periodic extension. This also implies that the Fourier series is
not uniform convergent.

Due to the jump discontinuity the convergence will be slow relative to a Fourier series which
converges uniformly, and therefore we expect the 𝑏𝑛 terms to be of the form 1

𝑛 instead of 1
𝑛𝑟

with 𝑟 > 1, as would be the case with the faster uniform convergence.

Now we will find the Fourier series to confirm this.

𝑏𝑛 =
1
𝜋 �

𝜋

−𝜋
(𝑥 − 𝜋) sin 𝑛𝑥𝑑𝑥

=
1
𝜋 �

𝜋

−𝜋
𝑥 sin 𝑛𝑥𝑑𝑥 − 1

𝜋 �
𝜋

−𝜋
𝜋 sin 𝑛𝑥𝑑𝑥

But ∫
𝜋

−𝜋
𝜋 sin 𝑛𝑥𝑑𝑥 = 0 since this is an integration over one period. Therefore the above

becomes

𝑏𝑛 =
1
𝜋 �

𝜋

−𝜋
𝑥 sin 𝑛𝑥𝑑𝑥

=
1
𝜋 �

−
1
𝑛
[𝑥 cos 𝑛𝑥]𝜋−𝜋 +

1
𝑛 �

𝜋

−𝜋
cos 𝑛𝑥𝑑𝑥�

But ∫
𝜋

−𝜋
cos 𝑛𝑥𝑑𝑥 = 0 since this is an integration over one period. The above becomes

𝑏𝑛 =
−1
𝑛𝜋

[𝑥 cos 𝑛𝑥]𝜋−𝜋

=
−1
𝑛𝜋

[𝜋 cos 𝑛𝜋 + 𝜋 cos 𝑛𝜋]

=
−1
𝑛𝜋

�2𝜋 (−1)𝑛�

=
−2 (−1)𝑛

𝑛
Hence the Fourier series is

𝑥 − 𝜋 ∼
∞
�
𝑛=1

−2 (−1)𝑛

𝑛
sin 𝑛𝑥
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The coe�cient is 𝑏𝑛 =
−2(−1)𝑛

𝑛 . We see now that
∞
�
𝑛=1

�𝑏2𝑛 = 4
∞
�
𝑛=1

1
𝑛

But ∑∞
𝑛=1

1
𝑛 does not converge, which implies it is not uniform convergent as expected.

Piecewise convergence is of order 𝑂� 1𝑛� (slow).

2.2 Part c

𝑓 (𝑥) = 𝑥2. This is an even function and 𝑓 (−𝜋) = 𝑓 (𝜋). Hence there will be no jump disconti-
nuity in the 2𝜋 periodic extension. Therefore this is uniform convergent. Hence we expect
the coe�cient to have 1

𝑛𝑟 where 𝑟 > 1. For example 1
𝑛2 . This is because ∑

∞
𝑛=1�𝑎

2
𝑛 should

now converge. This is considered fast convergence. Now we will find the Fourier series to
confirm this. Since 𝑓 (𝑥) is an even function then only 𝑎𝑛 exist.

𝑎0 =
1
𝜋 �

𝜋

−𝜋
𝑥2𝑑𝑥 =

1
𝜋 �

𝑥3

3 �
𝜋

−𝜋
=

1
3𝜋

�𝜋3 + 𝜋3� =
2
3
𝜋2

And

𝑎𝑛 =
1
𝜋 �

𝜋

−𝜋
𝑥2 cos 𝑛𝑥𝑑𝑥

Integration by parts. Let 𝑢 = 𝑥2, cos (𝑛𝑥) = 𝑑𝑣. Then 𝑑𝑢 = 2𝑥, 𝑣 = 1
𝑛 sin (𝑛𝑥). Then using

∫𝑢𝑑𝑣 = 𝑢𝑣 − ∫𝑣𝑑𝑢 the above becomes

𝑏𝑛 =
1
𝜋 �

1
𝑛
�𝑥2 sin (𝑛𝑥)�

𝜋

0
−
2
𝑛 �

𝜋

0
𝑥 sin (𝑛𝑥) 𝑑𝑥�

=
1
𝜋 �

−
2
𝑛 �

𝜋

0
𝑥 sin (𝑛𝑥) 𝑑𝑥�

= −
2
𝑛𝜋 �

𝜋

0
𝑥 sin (𝑛𝑥) 𝑑𝑥
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Integration by parts again. Let 𝑢 = 𝑥, sin (𝑛𝑥) = 𝑑𝑣. Then 𝑑𝑢 = 1, 𝑣 = −1
𝑛 cos (𝑛𝑥). Then using

∫𝑢𝑑𝑣 = 𝑢𝑣 − ∫𝑣𝑑𝑢 the above becomes

𝑏𝑛 = −
2
𝑛𝜋 �

−1
𝑛
[𝑥 cos (𝑛𝑥)]𝜋0 +

1
𝑛 �

𝜋

0
cos (𝑛𝑥)�

= − −
2
𝑛𝜋

⎛
⎜⎜⎜⎜⎝
−1
𝑛
[𝜋 cos (𝑛𝜋)] + 1

𝑛 �
sin 𝑛𝑥
𝑛 �

𝜋

0

⎞
⎟⎟⎟⎟⎠

= −
2
𝑛𝜋 �

−1
𝑛
�𝜋 (−1)𝑛��

=
2
𝑛2𝜋

�𝜋 (−1)𝑛�

=
2
𝑛2
(−1)𝑛

Hence

𝑥2 ∼
1
3
𝜋2 +

∞
�
𝑛=1

2
𝑛2
(−1)𝑛 cos (𝑛𝑥) (1)

We see that the coe�cient is 𝑎𝑛 =
2
𝑛2
(−1)𝑛, therefore
∞
�
𝑛=1

�𝑎2𝑛 = 4
∞
�
𝑛=1

1
𝑛2

But now ∑∞
𝑛=1

1
𝑛2 now converges since the power on 𝑛 is larger than 1, which implies uniform

convergent. Piecewise convergence is of order 𝑂� 1
𝑛2
� (fast).

2.3 Part e

𝑓 (𝑥) = sin2 𝑥. This is an even function and 𝑓 (−𝜋) = 𝑓 (𝜋). This is the same as part c. There will
be no jump discontinuity in the 2𝜋 periodic extension. Therefore this is uniform convergent.
Hence we expect the coe�cient to have 1

𝑛𝑟 where 𝑟 > 1. For example 1
𝑛2 this is because

∑∞
𝑛=1�𝑎

2
𝑛 should converge. This is fast convergence. Now we will find the Fourier series to

confirm this.

But sin2 𝑥 = 1
2 −

1
2 cos 2𝑥, hence this is the Fourier series for sin2 𝑥. If we need to show this
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explicitly, then since even function only 𝑎𝑛 exist.

𝑎0 =
1
𝜋 �

𝜋

−𝜋
sin2 𝑥𝑑𝑥

=
1
𝜋 �

𝜋

−𝜋
�
1
2
−
1
2

cos 2𝑥� 𝑑𝑥

=
1
2𝜋

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
�

𝜋

−𝜋
𝑑𝑥 −

0

�����������������
�

𝜋

−𝜋
cos 2𝑥𝑑𝑥

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
1
2𝜋
2𝜋

= 1

And

𝑎𝑛 =
1
𝜋 �

𝜋

−𝜋
sin2 𝑥 cos 𝑛𝑥𝑑𝑥

=
1
𝜋 �

𝜋

−𝜋
�
1
2
−
1
2

cos 2𝑥� cos 𝑛𝑥𝑑𝑥

=
1
2𝜋 ��

𝜋

−𝜋
cos 𝑛𝑥𝑑𝑥 −�

𝜋

−𝜋
cos 2𝑥 cos 𝑛𝑥𝑑𝑥�

But ∫
𝜋

−𝜋
cos 𝑛𝑥𝑑𝑥 = 0 since integration over one period, and ∫𝜋

−𝜋
cos 2𝑥 cos 𝑛𝑥𝑑𝑥 = 0 for all

values other than 𝑛 = 2 by orthogonality. Hence the above simplifies to

𝑎2 =
1
2𝜋 �

−�
𝜋

−𝜋
cos2 2𝑥𝑑𝑥�

=
1
2𝜋

(−𝜋)

= −
1
2

Hence

sin2 𝑥 =
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos 𝑛𝑥

=
1
2
−
1
2

cos 2𝑥

We see that ∑∞
𝑛=1�𝑎

2
𝑛 =

1
2 < ∞. Uniform convergence. Only 2 terms are needed. Very fast

convergence.
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3 Problem 3.5.22(a,f)

Using the criteria of Theorem 3.31, determine howmany continuous derivatives the functions

represented by the following Fourier series have (a) ∑∞
𝑘=−∞

𝑒𝑖𝑘𝑥

1+𝑘4
, (f) ∑∞

𝑘=1 �1 − cos 1
𝑘2
� 𝑒𝑖𝑘𝑥

Theorem 3.31. Let 0 ≤ 𝑛 ∈ ℤ. If the Fourier coe�cients of 𝑓(𝑥) satisfy
∞
�
𝑘=−∞

|𝑘|𝑚 |𝑐𝑘| < ∞

Then the Fourier series 𝑓 (𝑥) = ∑∞
𝑘=−∞ 𝑐𝑘𝑒

𝑖𝑘𝑥 converges uniformly to an 𝑛–times continuously
di�erentiable function ̃𝑓 (𝑥) ∈ 𝐶𝑛, which is the 2𝜋 periodic extension of 𝑓(𝑥).

Solution

3.1 Part a

𝑓 (𝑥) ∼
∞
�
𝑘=−∞

𝑒𝑖𝑘𝑥

1 + 𝑘4

Therefore 𝑐𝑘 =
1

1+𝑘4
, hence the series to consider is

∞
�
𝑘=−∞

|𝑘|𝑛 |𝑐𝑘| =
∞
�
𝑘=−∞

�
𝑘𝑛

1 + 𝑘4
�

=
∞
�
𝑘=−∞

�
1

1
𝑘𝑛 + 𝑘

4−𝑛
�

As 𝑘 → ∞ the term 1
𝑘𝑛 → 0. Then we just need to consider 𝑘4−𝑛. We want 4−𝑛 > 1 for uniform

convergence. Hence

4 − 𝑛 > 1
𝑛 < 4

Therefore 𝑛 = 3. The Fourier series converges uniformly to an 3–times continuously di�er-
entiable function

3.2 Part f

𝑓 (𝑥) ∼
∞
�
𝑘=1

�1 − cos 1
𝑘2 �

𝑒𝑖𝑘𝑥

Therefore 𝑐𝑘 = 1 − cos 1
𝑘2 , hence the series to consider is

∞
�
𝑘=−∞

|𝑘|𝑚 |𝑐𝑘| =
∞
�
𝑘=−∞

|𝑘𝑚| ��1 − cos 1
𝑘2 �

�



8

But �cos 1
𝑘2 � ≤ 1, hence

∞
�
𝑘=−∞

|𝑘𝑚| ��1 − cos 1
𝑘2 �

� ≤ 2
∞
�
𝑘=−∞

|𝑘𝑚|

There is no 𝑛 ≥ 0which will make∑∞
𝑘=−∞ |𝑘

𝑛| < ∞. The Fourier series does not converges uniformly
to any continuously di�erentiable function.
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4 Problem 3.5.26(c,e)

Which of the following sequences converge in norm to the zero function for 𝑥 ∈ ℝ? (c)

𝑣𝑛 (𝑥) =

⎧⎪⎪⎨
⎪⎪⎩
1 𝑛 < 𝑥 < 𝑛 + 1

𝑛
0 otherwise

, (e) 𝑣𝑛 (𝑥) =

⎧⎪⎪⎨
⎪⎪⎩

1

√𝑛
𝑛 < 𝑥 < 2𝑛

0 otherwise

solution

4.1 Part c

Using definition 3.35: A sequence 𝑣𝑛 (𝑥) is said to converge in the norm to 𝑓 if �𝑣𝑛 − 𝑓� → 0
as 𝑛 → ∞. Therefore, we need to show, since 𝑓 = 0 here, that

lim
𝑛→∞

‖𝑣𝑛‖ → 0

The norm is 𝐿2 which is defined as ‖𝑣𝑛‖ = �
1
2𝜋
∫𝜋

−𝜋
|𝑣𝑛 (𝑥)|

2 𝑑𝑥, hence

‖𝑣𝑛‖ =

�
⃓
⃓
⃓
⎷

1
2𝜋 �

𝜋

−𝜋
�

⎧⎪⎪⎨
⎪⎪⎩
1 𝑛 < 𝑥 < 𝑛 + 1

𝑛
0 otherwise

�

2

𝑑𝑥

=
�
⃓⃓
⃓
⎷

1
2𝜋 �

𝜋

−𝜋

⎧⎪⎪⎨
⎪⎪⎩
1 𝑛 < 𝑥 < 𝑛 + 1

𝑛
0 otherwise

𝑑𝑥

Let us look at the integral ∫
𝜋

−𝜋

⎧⎪⎪⎨
⎪⎪⎩
1 𝑛 < 𝑥 < 𝑛 + 1

𝑛
0 otherwise

𝑑𝑥. The maximum value of top branch

integral is ∫
𝜋

−𝜋
𝑑𝑥 which will occur when 𝑥 = 𝑛 > 0 and 𝑥 = 𝑛 + 1

𝑛 < 𝜋. As this is when the

whole pulse is between [−𝜋, 𝜋]. When 𝑥 = 𝑛 + 1
𝑛 > 𝜋 the area will be smaller as part of the

above will be outside [−𝜋, 𝜋] . So we could now consider the integral (its maximum) to be

�
𝜋

−𝜋
𝑑𝑥 ≤ �

𝑛+ 1
𝑛

𝑛
𝑑𝑥

= �𝑛 +
1
𝑛�
− 𝑛

=
1
𝑛

Therefore

lim
𝑛→∞

‖𝑣𝑛‖ ≤
�
⃓⃓
⃓
⎷

1
2𝜋

⎧⎪⎪⎨
⎪⎪⎩

1
𝑛 0 < 𝑛, 𝑛

2+1
𝑛 < 𝜋

0 otherwise

=

⎧⎪⎪⎨
⎪⎪⎩
�

1
2𝜋𝑛 0 < 𝑛, 𝑛

2+1
𝑛 < 𝜋

0 otherwise

= 0
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Hence this sequence converges to 0 function in the norm

4.2 Part e

Using definition 3.35: A sequence 𝑣𝑛 (𝑥) is said to converge in the norm to 𝑓 if �𝑣𝑛 − 𝑓� → 0
as 𝑛 → ∞. Therefore, we need to show, since 𝑓 = 0 here, that

lim
𝑛→∞

‖𝑣𝑛‖ → 0

The norm is 𝐿2 which is defined as ‖𝑣𝑛‖ = �
1
2𝜋
∫𝜋

−𝜋
|𝑣𝑛 (𝑥)|

2 𝑑𝑥, hence

‖𝑣𝑛‖ =

�
⃓
⃓
⃓
⎷

1
2𝜋 �

𝜋

−𝜋
�

⎧⎪⎪⎨
⎪⎪⎩

1

√𝑛
𝑛 < 𝑥 < 2𝑛

0 otherwise
�

2

𝑑𝑥

=
�
⃓⃓
⃓
⎷

1
2𝜋 �

𝜋

−𝜋

⎧⎪⎪⎨
⎪⎪⎩

1
𝑛 𝑛 < 𝑥 < 2𝑛
0 otherwise

𝑑𝑥

Let us look at the integral ∫
𝜋

−𝜋

⎧⎪⎪⎨
⎪⎪⎩

1
𝑛 𝑛 < 𝑥 < 2𝑛
0 otherwise

𝑑𝑥. The maximum value of this integral is

1
𝑛
∫𝜋

−𝜋
𝑑𝑥 which will occur when 𝑥 = 𝑛 > 0 and 𝑥 = 2𝑛 < 𝜋 As this is when the whole pulse is

between [−𝜋, 𝜋]. So we could now consider the integral (its maximum) to be

�
𝜋

−𝜋

1
𝑛
𝑑𝑥 ≤

1
𝑛 �

2𝑛

𝑛
𝑑𝑥

=
1
𝑛
(2𝑛 − 𝑛)

=
𝑛
𝑛

= 1

Therefore

‖𝑣𝑛‖ ≤ �
1
2𝜋

⎧⎪⎪⎨
⎪⎪⎩
1 0 < 𝑛, 2𝑛 < 𝜋
0 otherwise

=

⎧⎪⎪⎨
⎪⎪⎩
�

1
2𝜋 0 < 𝑛 < 𝜋

2
0 otherwise

Therefore as 𝑛 → ∞ then ‖𝑣𝑛‖ → 0 as the top branch will not be consider as it is limited to
0 < 𝑛, 2𝑛 < 𝜋 or 0 < 𝑛 < 𝜋

2 only. Hence this sequence converges to 0 function in the norm
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5 Problem 3.5.43

For each 𝑛 = 1, 2,⋯, define the function 𝑓𝑛 (𝑥) =

⎧⎪⎪⎨
⎪⎪⎩
1 𝑘

𝑚 ≤ 𝑥 ≤ 𝑘+1
𝑚

0 otherwise
, where 𝑛 = 1

2𝑚 (𝑚 + 1)+𝑘

and 0 ≤ 𝑘 ≤ 𝑚. (a) Show first that 𝑚, 𝑘 are uniquely determined by 𝑛. (b) Then prove that, on
the interval [0, 1] the sequence 𝑓𝑛 (𝑥) converges in norm to 0 but does not converge pointwise
anywhere.

solution

5.1 Part a

Proof by contradiction. Assuming there exist 𝑚1, 𝑚2 ≥ 0 where 𝑚1 ≠ 𝑚2 such that

𝑛 =
1
2
𝑚1 (𝑚1 + 1) + 𝑘

𝑛 =
1
2
𝑚2 (𝑚2 + 1) + 𝑘

Therefore
1
2
𝑚1 (𝑚1 + 1) + 𝑘 =

1
2
𝑚2 (𝑚2 + 1) + 𝑘

1
2
𝑚1 (𝑚1 + 1) =

1
2
𝑚2 (𝑚2 + 1)

𝑚1 (𝑚1 + 1) = 𝑚2 (𝑚2 + 1)

The above is true if 𝑚1 = 𝑚2 or if 𝑚2 = −𝑚1 − 1. But 𝑚 has to be positive. Hence we take the
case 𝑚1 = 𝑚2. Therefore assumption is not valid. Hence 𝑚 is unique.

Same proof for 𝑘. Assuming there exist 𝑘1, 𝑘2 ≥ 0 where 𝑘1 ≠ 𝑘2 such that

𝑛 =
1
2
𝑚 (𝑚 + 1) + 𝑘1

𝑛 =
1
2
𝑚 (𝑚 + 1) + 𝑘2

Then
1
2
𝑚 (𝑚 + 1) + 𝑘1 =

1
2
𝑚 (𝑚 + 1) + 𝑘2

Hence 𝑘1 = 𝑘2. Therefore assumption is not valid. Hence 𝑘 is unique.

5.2 Part b

𝑓𝑛 (𝑥) =

⎧⎪⎪⎨
⎪⎪⎩
1 𝑘

𝑚 ≤ 𝑥 ≤ 𝑘+1
𝑚

0 otherwise
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On the interval [0, 1], the norm is 𝐿2 which is defined as �𝑓𝑛� =
�

1
1
2

∫1

0
|𝑣𝑛 (𝑥)|

2 𝑑𝑥, hence

�𝑓𝑛� =

�
⃓
⃓
⃓
⎷
2�

1

0
�

⎧⎪⎪⎨
⎪⎪⎩
1 𝑘

𝑚 ≤ 𝑥 ≤ 𝑘+1
𝑚

0 otherwise
�

2

𝑑𝑥

=
�
⃓⃓
⃓
⎷
2�

1

0

⎧⎪⎪⎨
⎪⎪⎩
1 𝑘

𝑚 ≤ 𝑥 ≤ 𝑘+1
𝑚

0 otherwise
𝑑𝑥

Let us look at few values of 𝑛 and see what happens.

For 𝑛 = 1, 𝑛 = 1
2𝑚 (𝑚 + 1) + 𝑘. Hence if 𝑚 = 1 then 𝑛 = 1

2
(2) + 0 = 1, Hence 𝑚 = 1, 𝑘 = 0.

Therefore 𝑘
𝑚 ≤ 𝑥 ≤ 𝑘+1

𝑚 becomes 0 ≤ 𝑥 ≤ 1.

For 𝑛 = 2, 𝑛 = 1
2𝑚 (𝑚 + 1) + 𝑘. Hence if 𝑚 = 1 then 𝑛 = 1

2
(2) + 1 = 1, Hence 𝑚 = 1, 𝑘 = 1.

Therefore 𝑘
𝑚 ≤ 𝑥 ≤ 𝑘+1

𝑚 becomes 1 ≤ 𝑥 ≤ 2.

For 𝑛 = 3, 𝑛 = 1
2𝑚 (𝑚 + 1) + 𝑘. Hence if 𝑚 = 1 then 𝑛 = 1

2
(2) + 2 = 1, But 𝑘 ≤ 𝑚. Try 𝑚 = 2 then

𝑛 = 1
2
(2) (3) + 0 = 1. Hence 𝑚 = 2, 𝑘 = 0. Therefore 𝑘

𝑚 ≤ 𝑥 ≤ 𝑘+1
𝑚 becomes 0 ≤ 𝑥 ≤ 1

2 .

It looks like the width is becoming smaller as 𝑛 increases. To verify this, I wrote a small
program which determines the width (we only need the width which remains inside [0, 1].
Here is the code
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� �
1 #problem 3.5.43
2

3 f:= proc(num_terms)
4 local data,m,k,n;
5 data:=Array(1..num_terms);
6 for n from 1 to num_terms do
7 for m from 1 to num_terms do
8 if (m/2)*(m+1) = n then
9 k:=0;
10 data(n):=[m,k];
11 break;
12 else
13 for k from 1 to m do
14 if (m/2)*(m+1)+k=n then
15 data(n):=[m,k];
16 break;
17 fi;
18 od;
19 fi;
20 od;
21 od;
22 return data;
23 end proc:
24

25 data:=f(50):
26 #process the k,m found to see how the width changes as n increases.
27 out_file_name := cat(currentdir(),"/output.txt"):
28 file_id := fopen(out_file_name,WRITE):
29 for n from 1 to numelems(data) do
30 item:=data(n);
31 if item[2]/item[1]<1 then
32 the_width:=(item[2]+1)/item[1] - item[2]/item[1];
33 the_values:=cat("k=",convert(item[2],string),
34 " m=",convert(item[1],string));
35 the_string:=cat(convert(item[2]/item[1],string),
36 "<= x <=",convert((item[2]+1)/item[1],string)
37 );
38 the_width:=cat("Width=",convert(the_width,string));
39 print(the_string);
40 fprintf(file_id,"n=%-5d%-10s%-15s%-20s\n",
41 n,the_values,the_string,the_width);
42 fi;
43 od:
44 fclose(file_id);� �

And the output obtained



14

� �
1 n=1 k=0 m=1 0<= x <=1 Width=1
2 n=3 k=0 m=2 0<= x <=1/2 Width=1/2
3 n=4 k=1 m=2 1/2<= x <=1 Width=1/2
4 n=6 k=0 m=3 0<= x <=1/3 Width=1/3
5 n=7 k=1 m=3 1/3<= x <=2/3 Width=1/3
6 n=8 k=2 m=3 2/3<= x <=1 Width=1/3
7 n=10 k=0 m=4 0<= x <=1/4 Width=1/4
8 n=11 k=1 m=4 1/4<= x <=1/2 Width=1/4
9 n=12 k=2 m=4 1/2<= x <=3/4 Width=1/4
10 n=13 k=3 m=4 3/4<= x <=1 Width=1/4
11 n=15 k=0 m=5 0<= x <=1/5 Width=1/5
12 n=16 k=1 m=5 1/5<= x <=2/5 Width=1/5
13 n=17 k=2 m=5 2/5<= x <=3/5 Width=1/5
14 n=18 k=3 m=5 3/5<= x <=4/5 Width=1/5
15 n=19 k=4 m=5 4/5<= x <=1 Width=1/5
16 n=21 k=0 m=6 0<= x <=1/6 Width=1/6
17 n=22 k=1 m=6 1/6<= x <=1/3 Width=1/6
18 n=23 k=2 m=6 1/3<= x <=1/2 Width=1/6
19 n=24 k=3 m=6 1/2<= x <=2/3 Width=1/6
20 n=25 k=4 m=6 2/3<= x <=5/6 Width=1/6
21 n=26 k=5 m=6 5/6<= x <=1 Width=1/6
22 n=28 k=0 m=7 0<= x <=1/7 Width=1/7
23 n=29 k=1 m=7 1/7<= x <=2/7 Width=1/7
24 n=30 k=2 m=7 2/7<= x <=3/7 Width=1/7
25 n=31 k=3 m=7 3/7<= x <=4/7 Width=1/7
26 n=32 k=4 m=7 4/7<= x <=5/7 Width=1/7
27 n=33 k=5 m=7 5/7<= x <=6/7 Width=1/7
28 n=34 k=6 m=7 6/7<= x <=1 Width=1/7
29 n=36 k=0 m=8 0<= x <=1/8 Width=1/8
30 n=37 k=1 m=8 1/8<= x <=1/4 Width=1/8
31 n=38 k=2 m=8 1/4<= x <=3/8 Width=1/8
32 n=39 k=3 m=8 3/8<= x <=1/2 Width=1/8
33 n=40 k=4 m=8 1/2<= x <=5/8 Width=1/8
34 n=41 k=5 m=8 5/8<= x <=3/4 Width=1/8
35 n=42 k=6 m=8 3/4<= x <=7/8 Width=1/8
36 n=43 k=7 m=8 7/8<= x <=1 Width=1/8
37 n=45 k=0 m=9 0<= x <=1/9 Width=1/9
38 n=46 k=1 m=9 1/9<= x <=2/9 Width=1/9
39 n=47 k=2 m=9 2/9<= x <=1/3 Width=1/9
40 n=48 k=3 m=9 1/3<= x <=4/9 Width=1/9
41 n=49 k=4 m=9 4/9<= x <=5/9 Width=1/9
42 n=50 k=5 m=9 5/9<= x <=2/3 Width=1/9� �

We see from the above that as 𝑛 increases the range 𝑘
𝑚 ≤ 𝑥 ≤ 𝑘+1

𝑚 either goes outside the
[0, 1] domain as in the case of 𝑛 = 2, 5, 9 or stays inside [0, 1] but it becomes smaller with
𝑛 = 10 giving 0 ≤ 𝑥 ≤ 1

4 while 𝑛 = 1 it was 0 ≤ 𝑥 ≤ 1.
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Since we are integrating 1 over this range, and the width of integration is getting smaller
and smaller, then for very large 𝑛 the integral goes to zero as the width goes to zero.

In other words, we can bound the integral from above as
�
⃓⃓
⃓
⎷
2�

1

0

⎧⎪⎪⎨
⎪⎪⎩
1 𝑘

𝑚 ≤ 𝑥 ≤ 𝑘+1
𝑚

0 otherwise
𝑑𝑥 ≤ lim

𝑛→∞�
2�

1
𝑛

0
𝑑𝑥

= lim
𝑛→∞

√2
1
𝑛

= 0

Hence the sequence 𝑓𝑛 (𝑥) converges in norm to 0. For piecewise convergence. The definition
is that for any 𝜀 > 0, there exist 𝑁 (𝜀, 𝑥) such that �𝑓𝑛 (𝑥)� < 𝜀 for all 𝑛 ≥ 𝑁 for 𝑥 ∈ [0, 1]. This
means if we fix 𝑥 then lim𝑛→∞ �𝑓𝑛 (𝑥)� = 0. But this does not happen here. Since the pulse
shifts left and right all the time as the width gets smaller as 𝑛 increases. For example, if we

look at 𝑥 = 1
2 and then increase 𝑛, we see that 𝑓𝑛 �

1
2
� do not go to zero there as the function

moves around due to changing of the domain. Hence it is not piecewise convergent.
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6 Problem 4.1.7

The convection-di�usion equation 𝑢𝑡 + 𝑐𝑢𝑥 = 𝛾𝑢𝑥𝑥 is a simple model for the di�usion of a
pollutant in a fluid flow moving with constant speed 𝑐. Show that 𝑣 (𝑡, 𝑥) = 𝑢 (𝑡, 𝑥 + 𝑐𝑡) solves
the heat equation. What is the physical interpretation of this change of variables?

solution

𝜕𝑣
𝜕𝑡

=
𝜕𝑢
𝜕𝑡

+
𝜕𝑢
𝜕𝑥

𝑑𝑥
𝑑𝑡

But 𝑑𝑥
𝑑𝑡 = 𝑐, the speed of fluid. Hence the above becomes

𝜕𝑣
𝜕𝑡

=
𝜕𝑢
𝜕𝑡

+ 𝑐
𝜕𝑢
𝜕𝑥

But 𝜕𝑢
𝜕𝑡 + 𝑐

𝜕𝑢
𝜕𝑥 = 𝛾𝑢𝑥𝑥, hence the above becomes

𝜕𝑣
𝜕𝑡

= 𝛾𝑢𝑥𝑥

But 𝜕𝑢
𝜕𝑥 =

𝜕𝑣
𝜕𝑡

𝑑𝑡
𝑑𝑥 +

𝜕𝑣
𝜕𝑥

𝑑𝑥
𝑑𝑥 =

𝜕𝑣
𝜕𝑥 and 𝜕2𝑢

𝜕𝑥2 =
𝜕2𝑣
𝜕2𝑡

𝑑𝑡
𝑑𝑥 +

𝜕2𝑣
𝜕𝑥2

𝑑𝑥
𝑑𝑥 =

𝜕2𝑣
𝜕𝑥2 . Hence the above gives

𝜕𝑣
𝜕𝑡

= 𝛾𝑣𝑥𝑥

Which is the heat equation. The change of variable puts the observer as moving with the
same speed as fluid instead of stationary observer. It is a coordinates transformation.
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7 Problem 4.1.10(a,c)

For each of the following initial temperature distributions, (i ) write out the Fourier series
solution to the heated ring (4.30–32), and (ii ) find the resulting equilibrium temperature
(a) 𝑓 (𝑥) = cos 𝑥, (c) 𝑓 (𝑥) = |𝑥|.

The heated ring problem (4.30–32) is: Solve for 𝑢 (𝑥, 𝑡) in
𝜕𝑢
𝜕𝑡

=
𝜕2𝑢
𝜕𝑥2

− 𝜋 < 𝑥 < 𝜋, 𝑡 > 0

With periodic BC 𝑢 (−𝜋, 𝑡) = 𝑢 (𝜋, 𝑡) , 𝑢𝑥 (−𝜋, 𝑡) = 𝑢𝑥 (𝜋, 𝑡) for 𝑡 ≥ 0. With initial conditions
𝑢 (𝑥, 0) = 𝑓 (𝑥)

solution

7.1 Part a

Starting with the series solution as given in (4.34)

𝑢 (𝑥, 𝑡) =
𝑎0
2
+

∞
�
𝑛=1

𝑒−𝑛2𝑡 (𝑎𝑛 cos 𝑛𝑥 + 𝑏𝑛 sin 𝑛𝑥) (1)

At 𝑡 = 0 the above becomes (using 𝑢 (𝑥, 0) = cos 𝑥)

cos 𝑥 = 𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos 𝑛𝑥 + 𝑏𝑛 sin 𝑛𝑥

Hence 𝑎𝑛, 𝑏𝑛 are the Fourier series coe�cients of cos 𝑥. Therefore 𝑎1 = 1 and all other 𝑎𝑛, 𝑏𝑛
are zero in order to match the left side with the right side.

The solution in (1) now becomes

𝑢 (𝑥, 𝑡) = 𝑒−𝑡 cos 𝑥
The above is the Fourier series solution. To answer (ii), we let 𝑡 → ∞ in the above. This
shows that equilibrium temperature will be zero.

7.2 Part b

Starting with the series solution as given in (4.34)

𝑢 (𝑥, 𝑡) =
𝑎0
2
+

∞
�
𝑛=1

𝑒−𝑛2𝑡 (𝑎𝑛 cos 𝑛𝑥 + 𝑏𝑛 sin 𝑛𝑥) (1)

At 𝑡 = 0 the above becomes (using 𝑢 (𝑥, 0) = |𝑥|)

|𝑥| =
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos 𝑛𝑥 + 𝑏𝑛 sin 𝑛𝑥

Hence 𝑎𝑛, 𝑏𝑛 are the Fourier series coe�cients of |𝑥|. But |𝑥| is even. Hence 𝑏𝑛 = 0. So we only
need to find 𝑎0, 𝑎𝑛

𝑎0 =
1
𝜋 �

𝜋

−𝜋
𝑓 (𝑥) 𝑑𝑥
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Because 𝑓 (𝑥) is even the above simplifies to

𝑎0 =
2
𝜋 �

𝜋

0
𝑓 (𝑥) 𝑑𝑥

=
2
𝜋 �

𝜋

0
𝑥𝑑𝑥

=
1
𝜋
�𝑥2�

𝜋

0

=
1
𝜋
�𝜋2�

= 𝜋

And

𝑎𝑛 =
1
𝜋 �

𝜋

−𝜋
𝑓 (𝑥) cos 𝑛𝑥𝑑𝑥

But 𝑓 (𝑥) is even and cos 𝑛𝑥 is even, hence product is even. The above simplifies to

𝑎𝑛 =
2
𝜋 �

𝜋

0
𝑓 (𝑥) cos 𝑛𝑥𝑑𝑥

=
2
𝜋 �

𝜋

0
𝑥 cos 𝑛𝑥𝑑𝑥

Integration by parts gives

𝑎𝑛 =
2
𝜋

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

�������������
�𝑥

sin 𝑛𝑥
𝑛 �

𝜋

0
−�

𝜋

0

sin 𝑛𝑥
𝑛

𝑑𝑥

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
2
𝜋 �

1
𝑛 �

cos 𝑛𝑥
𝑛 �

𝜋

0
�

=
2
𝜋𝑛2

(cos 𝑛𝜋 − 1)

=
2
𝜋𝑛2

�(−1)𝑛 − 1�

Therefore (1) becomes

𝑢 (𝑥, 𝑡) =
𝜋
2
+

∞
�
𝑛=1

𝑒−𝑛2𝑡 �
2
𝜋𝑛2

�(−1)𝑛 − 1� cos 𝑛𝑥� (1A)

The above is the Fourier series solution. To answer (ii), we let 𝑡 → ∞ in the above. This
shows that equilibrium temperature will become

𝑢𝑒𝑞 (𝑥, 𝑡) =
𝜋
2
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8 Problem 4.1.16(a,b)

The cable equation 𝑣𝑡 = 𝛾𝑣𝑥𝑥 − 𝛼𝑣 with 𝛾, 𝑣 > 0, also known as the lossy heat equation,was
derived by the nineteenth-century Scottish physicist William Thomson to model propagation
of signals in a transatlantic cable. Later, in honor of his work on thermodynamics, including
determining the value of absolute zero temperature, he was named Lord Kelvin by Queen
Victoria. The cable equation was later used to model the electrical activity of neurons. (a)
Show that the general solution to the cable equation is given by 𝑣 (𝑥, 𝑡) = 𝑒−𝛼𝑡𝑢 (𝑥, 𝑡) where
𝑢 (𝑥, 𝑡) solves the heat equation 𝑢𝑡 = 𝛾𝑢𝑥𝑥.

(b) Find a Fourier series solution to the Dirichlet initial-boundary value problem 𝑣𝑡 = 𝛾𝑣𝑥𝑥−𝛼𝑣,
with initial conditions 𝑣 (𝑥, 0) = 𝑓 (𝑥) and boundary conditions 𝑣 (0, 𝑡) = 0, 𝑣 (1, 𝑡) = 0 for
0 ≤ 𝑥 ≤ 1, 𝑡 > 0. Does your solution approach an equilibrium value? If so, how fast?

solution

8.1 Part a

Given

𝑣 (𝑥, 𝑡) = 𝑒−𝛼𝑡𝑢 (𝑥, 𝑡) (1)

Hence
𝜕𝑣
𝜕𝑡

= −𝛼𝑒−𝛼𝑡𝑢 + 𝑒−𝛼𝑡
𝜕𝑢
𝜕𝑡

(2)

And
𝜕𝑣
𝜕𝑥

= 𝑒−𝛼𝑡
𝜕𝑢
𝜕𝑥

𝜕2𝑣
𝜕𝑥2

= 𝑒−𝛼𝑡
𝜕2𝑢
𝜕𝑥2

(3)

Substituting (1,2,3) into 𝑣𝑡 = 𝛾𝑣𝑥𝑥 − 𝛼𝑣 gives

−𝛼𝑒−𝛼𝑡𝑢 + 𝑒−𝛼𝑡
𝜕𝑢
𝜕𝑡

= 𝛾𝑒−𝛼𝑡
𝜕2𝑢
𝜕𝑥2

− 𝛼𝑒−𝛼𝑡𝑢

Canceling 𝑒−𝛼𝑡 ≠ 0 from all the terms gives

−𝛼𝑢 +
𝜕𝑢
𝜕𝑡

= 𝛾
𝜕2𝑢
𝜕𝑥2

− 𝛼𝑢

𝜕𝑢
𝜕𝑡

= 𝛾
𝜕2𝑢
𝜕𝑥2

Which is what problem asked to show.

8.2 Part b

Now we need to solve

𝑣𝑡 = 𝛾𝑣𝑥𝑥 − 𝛼𝑣 (1)



20

With initial and boundary conditions given. Using separation of variable, let 𝑣 = 𝑇 (𝑡) 𝑋 (𝑥)
where 𝑇 (𝑡) is function that depends on time only and 𝑋 (𝑥) is a function that depends on 𝑥
only. Using this substitution in (1) gives

𝑇′𝑋 = 𝛾𝑋′′𝑇 − 𝛼𝑋𝑇

Dividing by 𝑋𝑇 ≠ 0 gives
1
𝛾
𝑇′

𝑇
+
𝛼
𝛾
=
𝑋′′

𝑋
= −𝜆

Where 𝜆 is the separation constant. The above gives two ODE’s to solve

𝑋′′ + 𝜆𝑋 = 0
𝑋 (0) = 0
𝑋 (1) = 0 (2)

And
1
𝛾
𝑇′

𝑇
+
𝛼
𝛾
= −𝜆

𝑇′ + 𝛼𝑇 = −𝜆𝛾𝑇
𝑇′ + 𝛼𝑇 + 𝜆𝛾𝑇 = 0

𝑇′ + �𝛼 + 𝜆𝛾� 𝑇 = 0 (3)

ODE (2) is the boundary value ODE which will generate the eigenvalues and eigenfunctions.

case 𝜆 < 0

Let −𝜆 = 𝜇2. The solution to (2) becomes

𝑋 = 𝑐1 cosh �𝜇𝑥� + 𝑐2 sinh �𝜇𝑥�
At 𝑥 = 0

0 = 𝑐1
Hence the solution becomes 𝑋 = 𝑐2 sinh �𝜇𝑥�. At 𝑥 = 1 this gives 0 = 𝑐2 sinh �𝜇�. But sinh �𝜇� =
0 only when 𝜇 = 0 which is not the case here. Hence 𝑐2 = 0 leading to trivial solution.
Therefore 𝜆 < 0 is not eigenvalue.

case 𝜆 = 0

The solution is 𝑋 (𝑥) = 𝑐1𝑥 + 𝑐2. At 𝑥 = 0 this becomes 0 = 𝑐2. Hence solution is 𝑋 = 𝑐1𝑥. At
𝑥 = 1 this gives 0 = 𝑐1. Therefore trivial solution. Hence 𝜆 = 0 is not eigenvalue.

case 𝜆 > 0

Solution is

𝑋 (𝑥) = 𝑐1 cos �√𝜆𝑥� + 𝑐2 sin �√𝜆𝑥�

At 𝑥 = 0 this results in 0 = 𝑐1. The above now becomes

𝑋 (𝑥) = 𝑐2 sin �√𝜆𝑥�
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At 𝑥 = 1

0 = 𝑐2 sin �√𝜆�

For non-trivial solution we want sin �√𝜆� = 0 or √𝜆 = 𝑛𝜋, 𝑛 = 1, 2,⋯. Hence

𝜆𝑛 = 𝑛2𝜋2 𝑛 = 1, 2,⋯

And the corresponding eigenfunctions

𝑋𝑛 (𝑥) = sin (𝑛𝜋𝑥) (4)

Now we can solve (3)

𝑇′ + �𝛼 + 𝜆𝛾� 𝑇 = 0

𝑇′
𝑛 + �𝛼 + 𝑛2𝜋2𝛾� 𝑇𝑛 = 0

The solution is

𝑇𝑛 (𝑡) = 𝑏𝑛𝑒
−�𝛼+𝑛2𝜋2𝛾�𝑡 (5)

Where 𝑏𝑛 is arbitrary constant of integration that depends on 𝑏. From (4,5) we obtain the
fundamental solution

𝑣𝑛 (𝑥, 𝑡) = 𝑏𝑛𝑒
−�𝛼+𝑛2𝜋2𝛾�𝑡 sin (𝑛𝜋𝑥)

The general solution is linear combination of the above

𝑣 (𝑥, 𝑡) =
∞
�
𝑛=1

𝑏𝑛𝑒
−�𝛼+𝑛2𝜋2𝛾�𝑡 sin (𝑛𝜋𝑥) (6)

At 𝑡 = 0 the above becomes

𝑓 (𝑥) =
∞
�
𝑛=1

𝑏𝑛 sin (𝑛𝜋𝑥)

We see that 𝑏𝑛 are the Fourier coe�cients of 𝑓 (𝑥), after odd extending it from [−1, 1]. There-
fore, the period of 𝑓 (𝑥) becomes 2.

𝑏𝑛 = �
1

−1
𝑓 (𝑥) sin (𝑛𝜋𝑥) 𝑑𝑥

Since 𝑓 (𝑥) is odd (we did odd extension) and since sin is odd, then the product is even, and
the above becomes

𝑏𝑛 = 2�
1

0
𝑓 (𝑥) sin (𝑛𝜋𝑥) 𝑑𝑥

Using the above in (6) gives

𝑣 (𝑥, 𝑡) =
∞
�
𝑛=1

2 ��
1

0
𝑓 (𝑥) sin (𝑛𝜋𝑥) 𝑑𝑥� 𝑒−�𝛼+𝑛

2𝜋2𝛾�𝑡 sin (𝑛𝜋𝑥)

To find equilibrium, we let 𝑡 → ∞ then 𝑒−�𝛼+𝑛
2𝜋2𝛾�𝑡 → 0 because 𝛼, 𝛾 > 0 and the above

becomes

𝑣𝑒𝑞 (𝑥, 𝑡) = 0
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