Problem 1. (35 points)
Solve the initial-value problem

$$
\dot{x}(t)=\left[\begin{array}{cc}
-2 & 1 \\
-1 & 0
\end{array}\right] x(t), \quad x(0)=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Solution:

1st approach (The eigenvalue-eigenvector method):
The characteristic polynomial of the system matrix

$$
A=\left[\begin{array}{ll}
-2 & 1 \\
-1 & 0
\end{array}\right]
$$

is

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{rr}
-2-\lambda & 1 \\
-1 & -\lambda
\end{array}\right]=\lambda(2+\lambda)+1=\lambda^{2}+2 \lambda+1=(\lambda+1)^{2}
$$

The matrix A has one eigenvalue $\lambda=-1$ with multiplicity 2 .
In order to find $x^{1}(t)$, first we need to find a vector $v=\left[v_{1}, v_{2}\right]^{\top}$ such that $(A-\lambda I) v=0$, i.e.

$$
\left[\begin{array}{ll}
-1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Both equations of this system imply $v_{1}=v_{2}$. We can choose $v=[1,1]^{\top}$ and obtain

$$
x^{1}(t)=\mathrm{e}^{-t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

For finding $x^{2}(t)$, we search for a vector $v=\left[v_{1}, v_{2}\right]^{\top}$ such that $(A-\lambda I)^{2} v=0$ and $(A-\lambda I) v \neq 0$. Since

$$
(A-\lambda I)^{2}=\left[\begin{array}{ll}
-1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ll}
-1 & 1 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

for any vector $v \in \mathbb{R}^{2}$ we have that $(A-\lambda I)^{2} v=0$. We can choose $v=[1,0]^{\top}$ since

$$
(A-\lambda I) v=\left[\begin{array}{ll}
-1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
-1 \\
-1
\end{array}\right] \neq\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Then

$$
x^{2}(t)=\mathrm{e}^{-t}(v+t(A-\lambda I) v)=\mathrm{e}^{-t}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]+t\left[\begin{array}{l}
-1 \\
-1
\end{array}\right]\right)=\mathrm{e}^{-t}\left[\begin{array}{r}
1-t \\
-t
\end{array}\right]
$$

The general solution is

$$
x(t)=c_{1} \mathrm{e}^{-t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-t}\left[\begin{array}{r}
1-t \\
-t
\end{array}\right]
$$

From the initial condition $x(0)=[2,1]^{\top}$ we obtain

$$
\left[\begin{array}{l}
2 \\
1
\end{array}\right]=x(0)=c_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
c_{1}+c_{2} \\
c_{1}
\end{array}\right] .
$$

Then $c_{1}=c_{2}=1$ and the final solution is

$$
x(t)=\mathrm{e}^{-t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\mathrm{e}^{-t}\left[\begin{array}{r}
1-t \\
-t
\end{array}\right]=\mathrm{e}^{-t}\left[\begin{array}{l}
2-t \\
1-t
\end{array}\right] .
$$

2nd approach (Laplace transforms):

We will determine $X(s)=\mathcal{L}(x(t))$ from the condition $(s I-A) X(s)=x(0)$, i.e.

$$
\left[\begin{array}{rr}
s+2 & -1 \\
1 & s
\end{array}\right]\left[\begin{array}{l}
X_{1}(s) \\
X_{2}(s)
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right] .
$$

From the first equation we have $(s+2) X_{1}(s)-X_{2}(s)=2$ and $X_{2}(s)=(s+2) X_{1}(s)-2$. The second equation is now

$$
1=X_{1}(s)+s X_{2}(s)=X_{1}(s)+s(s+2) X_{1}(s)-2 s=X_{1}(s)\left(s^{2}+2 s+1\right)-2 s
$$

Then

$$
X_{1}(s)=\frac{2 s+1}{(s+1)^{2}}=\frac{2}{s+1}-\frac{1}{(s+1)^{2}}
$$

Using

$$
\begin{aligned}
\frac{1}{s+1} & =\mathcal{L}\left\{\mathrm{e}^{-t}\right\} \\
\frac{1}{(s+1)^{2}} & =-\frac{d}{d s}\left(\frac{1}{s+1}\right)=-\frac{d}{d s} \mathcal{L}\left\{\mathrm{e}^{-t}\right\}=\mathcal{L}\left\{t \mathrm{e}^{-t}\right\}
\end{aligned}
$$

we further derive

$$
X_{1}(s)=2 \mathcal{L}\left\{\mathrm{e}^{-t}\right\}-\mathcal{L}\left\{t \mathrm{e}^{-t}\right\}=\mathcal{L}\left\{2 \mathrm{e}^{-t}-t \mathrm{e}^{-t}\right\}
$$

Therefore

$$
x_{1}(t)=(2-t) \mathrm{e}^{-t} .
$$

Now

$$
\begin{aligned}
X_{2}(s) & =(s+2) X_{1}(s)-2=(s+2) \frac{2 s+1}{(s+1)^{2}}-2=\frac{s}{(s+1)^{2}}=\frac{1}{s+1}-\frac{1}{(s+1)^{2}} \\
& =\mathcal{L}\left\{\mathrm{e}^{-t}\right\}-\mathcal{L}\left\{t \mathrm{e}^{-t}\right\}=\mathcal{L}\left\{(1-t) \mathrm{e}^{-t}\right\}
\end{aligned}
$$

and $x_{2}(t)=(1-t) \mathrm{e}^{-t}$. The final solution is

$$
x(t)=\mathrm{e}^{-t}\left[\begin{array}{l}
2-t \\
1-t
\end{array}\right] .
$$

Problem 2. (35 points)
Transforming the second-order differential equation

$$
y^{\prime \prime}(t)-4 y^{\prime}(t)+5 y(t)=0
$$

into a system of first-order differential equations, find its solution that satisfies

$$
y(\pi)=0, \quad y^{\prime}(\pi)=-1 .
$$

Solution:

Introducing

$$
x_{1}(t)=y(t) \quad \text { and } \quad x_{2}(t)=y^{\prime}(t)
$$

the differential equation becomes

$$
x_{2}^{\prime}(t)=-5 x_{1}(t)+4 x_{2}(t) .
$$

Therefore we obtain the following initial-value problem

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{rr}
0 & 1 \\
-5 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right], \quad\left[\begin{array}{l}
x_{1}(\pi) \\
x_{2}(\pi)
\end{array}\right]=\left[\begin{array}{r}
0 \\
-1
\end{array}\right] .
$$

The system matrix

$$
A=\left[\begin{array}{rr}
0 & 1 \\
-5 & 4
\end{array}\right]
$$

has the characteristic polynomial

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{rr}
-\lambda & 1 \\
-5 & 4-\lambda
\end{array}\right]=-\lambda(4-\lambda)+5=\lambda^{2}-4 \lambda+5,
$$

with the roots $\lambda_{1}=2+i$ and $\lambda_{2}=2-i$ as eigenvalues of A. For determining $x^{1}(t)$ and $x^{2}(t)$, it is sufficient to consider just $\lambda_{1}=2+i$.
A complex eigenvector $v=\left[v_{1}, v_{2}\right]^{\top}$ that corresponds to λ_{1} satisfies $\left(A-\lambda_{1} I\right) v=0$, i.e.

$$
\left[\begin{array}{rr}
-2-i & 1 \\
-5 & 2-i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

From the first equation we obtain $v_{2}=(2+i) v_{1}$. Thus, the vector v has the form

$$
v=\left[\begin{array}{r}
v_{1} \\
(2+i) v_{1}
\end{array}\right]=v_{1}\left[\begin{array}{r}
1 \\
2+i
\end{array}\right]
$$

and we can choose $v_{1}=1$. Then a complex-valued solution of the system is

$$
\begin{aligned}
\phi(t) & =\mathrm{e}^{(2+i) t}\left[\begin{array}{r}
1 \\
2+i
\end{array}\right]=\mathrm{e}^{2 t}(\cos t+i \sin t)\left[\begin{array}{r}
1 \\
2+i
\end{array}\right] \\
& =\mathrm{e}^{2 t}\left[\begin{array}{c}
\cos t+i \sin t \\
2 \cos t-\sin t+i(2 \sin t+\cos t)
\end{array}\right] .
\end{aligned}
$$

Taking $x^{1}(t)=\operatorname{Re}(\phi(t))$ and $x^{2}(t)=\operatorname{Im}(\phi(t))$, we obtain a general solution of the form

$$
x(t)=c_{1} \mathrm{e}^{2 t}\left[\begin{array}{c}
\cos t \\
2 \cos t-\sin t
\end{array}\right]+c_{2} \mathrm{e}^{2 t}\left[\begin{array}{c}
\sin t \\
2 \sin t+\cos t
\end{array}\right] .
$$

The initial condition $x(\pi)=[0,-1]^{\top}$ implies

$$
\left[\begin{array}{r}
0 \\
-1
\end{array}\right]=x(\pi)=c_{1} \mathrm{e}^{2 \pi}\left[\begin{array}{l}
-1 \\
-2
\end{array}\right]+c_{2} \mathrm{e}^{2 \pi}\left[\begin{array}{r}
0 \\
-1
\end{array}\right] .
$$

Hence $c_{1}=0$ and $c_{2}=\mathrm{e}^{-2 \pi}$. The solution of the initial value problem is

$$
x(t)=\mathrm{e}^{2(t-\pi)}\left[\begin{array}{c}
\sin t \\
2 \sin t+\cos t
\end{array}\right]
$$

while the solution of the second-order differential equation with $y(\pi)=0, y^{\prime}(\pi)=-1$, is

$$
y(t)=x_{1}(t)=\mathrm{e}^{2(t-\pi)} \sin t .
$$

Problem 3. (30 points)
For the matrix

$$
A=\left[\begin{array}{rr}
1 & 0 \\
-1 & 2
\end{array}\right]
$$

determine $\mathrm{e}^{A t}$.

Solution:

We will determine $\mathrm{e}^{A t}$ from the relation

$$
\mathrm{e}^{A t}=X(t) X(0)^{-1}
$$

where $X(t)$ is a fundamental matrix solution of the system $\dot{x}(t)=A x(t)$. The characteristic polynomial of the system matrix A is

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{rr}
1-\lambda & 0 \\
-1 & 2-\lambda
\end{array}\right]=(1-\lambda)(2-\lambda) .
$$

The matrix A has eigenvalues $\lambda_{1}=1$ and $\lambda_{2}=2$.
In order to find $x^{1}(t)$, first we need to find a vector $v=\left[v_{1}, v_{2}\right]^{\top}$ such that $\left(A-\lambda_{1} I\right) v=0$, i.e.

$$
\left[\begin{array}{rr}
0 & 0 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

The second equation implies $v_{1}=v_{2}$. We can choose $v=[1,1]^{\top}$ and obtain

$$
x^{1}(t)=\mathrm{e}^{t}\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

For finding $x^{2}(t)$, we search for a vector $v=\left[v_{1}, v_{2}\right]^{\top}$ such that $\left(A-\lambda_{2} I\right) v=0$, i.e.

$$
\left[\begin{array}{ll}
-1 & 0 \\
-1 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

From both equations we get $v_{1}=0$. Choosing $v_{2}=1$, we obtain

$$
x^{2}(t)=\mathrm{e}^{2 t}\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

The fundamental matrix solution of the system $\dot{x}(t)=A x(t)$ is

$$
X(t)=\left[\begin{array}{cc}
\mathrm{e}^{t} & 0 \\
\mathrm{e}^{t} & \mathrm{e}^{2 t}
\end{array}\right]
$$

The inverse matrix of

$$
X(0)=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]
$$

is

$$
X(0)^{-1}=\left[\begin{array}{rr}
1 & 0 \\
-1 & 1
\end{array}\right]
$$

Therefore

$$
\mathrm{e}^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{t} & 0 \\
\mathrm{e}^{t} & \mathrm{e}^{2 t}
\end{array}\right]\left[\begin{array}{rr}
1 & 0 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{cc}
\mathrm{e}^{t} & 0 \\
\mathrm{e}^{t}-\mathrm{e}^{2 t} & \mathrm{e}^{2 t}
\end{array}\right] .
$$

