Problem 1. (25 points)
Find the inverse Laplace transform of the function

$$
\frac{4 s^{2}+2}{s^{3}+s^{2}-2 s}
$$

The denominator of the given function is $s^{3}+s^{2}-2 s=s\left(s^{2}+s-2\right)=s(s-1)(s+2)$.
Using partial fractions, we can further write

$$
\begin{aligned}
\frac{4 s^{2}+2}{s^{3}+s^{2}-2 s} & =\frac{4 s^{2}+2}{s(s-1)(s+2)}=\frac{A}{s}+\frac{B}{s-1}+\frac{C}{s+2} \\
& =\frac{1}{s(s-1)(s+2)}(A(s-1)(s+2)+B s(s+2)+C s(s-1)) \\
& =\frac{1}{s(s-1)(s+2)}\left(A s^{2}+A s-2 A+B s^{2}+2 B s+C s^{2}-C s\right) \\
& \left.=\frac{1}{s(s-1)(s+2)}\left(s^{2}(A+B+C)+s(A+2 B-C)-2 A\right)\right)
\end{aligned}
$$

Equating the coefficients, we first obtain $-2 A=2, A=-1$. Then from

$$
A+B+C=4, \quad A+2 B-C=0
$$

we find $B=2$ and $C=3$.
Therefore,

$$
\begin{aligned}
\frac{4 s^{2}+2}{s^{3}+s^{2}-2 s} & =-\frac{1}{s}+\frac{2}{s-1}+\frac{3}{s+2} \\
& =-\mathcal{L}\{1\}+2 \mathcal{L}\left\{\mathrm{e}^{t}\right\}+3 \mathcal{L}\left\{\mathrm{e}^{-2 t}\right\} \\
& =\mathcal{L}\left\{-1+2 \mathrm{e}^{t}+3 \mathrm{e}^{-2 t}\right\}
\end{aligned}
$$

We conclude that the inverse Laplace transform of the given function is $-1+2 \mathrm{e}^{t}+3 \mathrm{e}^{-2 t}$.

Problem 2. (25 points)
Solve the following initial-value problem

$$
y^{\prime \prime}-3 y^{\prime}-4 y=\mathrm{e}^{2 t}, \quad y(0)=0, \quad y^{\prime}(0)=-\frac{1}{2}
$$

For finding the particular solution, use the method of variation of parameters.

First we solve the homogeneous problem. The characteristic equation

$$
r^{2}-3 r-4=0
$$

has two real roots $r_{1}=4$ and $r_{2}=-1$. The functions

$$
y_{1}(t)=\mathrm{e}^{4 t}, \quad y_{2}(t)=\mathrm{e}^{-t}
$$

form a fundamental set of solutions.
The particular solution $\psi(t)$ we seek in the form

$$
\psi(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t) .
$$

The Wronskian for y_{1}, y_{2} is

$$
W(t)=W\left[y_{1}, y_{2}\right](t)=y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)=-\mathrm{e}^{4 t} \mathrm{e}^{-t}-4 \mathrm{e}^{4 t} \mathrm{e}^{-t}=-5 \mathrm{e}^{3 t} .
$$

Functions u_{1}, u_{2} we find as

$$
\begin{aligned}
& u_{1}(t)=-\int \frac{\mathrm{e}^{2 t} \mathrm{e}^{-t}}{-5 \mathrm{e}^{3 t}} d t=\frac{1}{5} \int \mathrm{e}^{-2 t} d t=-\frac{1}{10} \mathrm{e}^{-2 t} \\
& u_{2}(t)=\int \frac{\mathrm{e}^{2 t} \mathrm{e}^{4 t}}{-5 \mathrm{e}^{3 t}} d t=-\frac{1}{5} \int \mathrm{e}^{3 t} d t=-\frac{1}{15} \mathrm{e}^{3 t}
\end{aligned}
$$

The particular solution is

$$
\psi(t)=-\frac{1}{10} \mathrm{e}^{-2 t} \mathrm{e}^{4 t}-\frac{1}{15} \mathrm{e}^{3 t} \mathrm{e}^{-t}=-\frac{1}{6} \mathrm{e}^{2 t}
$$

The general solution is

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)+\psi(t)=c_{1} \mathrm{e}^{4 t}+c_{2} \mathrm{e}^{-t}-\frac{1}{6} \mathrm{e}^{2 t}
$$

From $y(0)=0$, we get the first condition $c_{1}+c_{2}-1 / 6=0$ for the constants c_{1}, c_{2}. The first derivative of $y(t)$ is

$$
y^{\prime}(t)=4 c_{1} \mathrm{e}^{4 t}-c_{2} \mathrm{e}^{-t}-\frac{1}{3} \mathrm{e}^{2 t} .
$$

Now, from $y^{\prime}(0)=-1 / 2$ we get $4 c_{1}-c_{2}-1 / 3=-1 / 2$. The constants are $c_{1}=0, c_{2}=1 / 6$, and the final solution is

$$
y(t)=\frac{1}{6} \mathrm{e}^{-t}-\frac{1}{6} \mathrm{e}^{2 t} .
$$

Problem 3. (20 points)
Which of the following functions
(a) $\mathrm{e}^{-t / 3}\left(A_{3} t^{3}+A_{0}\right) t^{2}$
(b) $\mathrm{e}^{-t / 3}\left(A_{3} t^{3}+A_{2} t^{2}+A_{1} t+A_{0}\right) t$
(c) $\mathrm{e}^{-t / 3}\left(A_{3} t^{3}+A_{2} t^{2}+A_{1} t+A_{0}\right) t^{2}$
(d) $\mathrm{e}^{-t / 3}\left(A_{3} t^{3}+A_{2} t^{2}+A_{1} t+A_{0}\right)$
should be chosen as a guessing for the particular solution of $9 y^{\prime \prime}+6 y^{\prime}+y=\mathrm{e}^{-t / 3}\left(t^{3}-1\right)$?

The characteristic equation

$$
9 r^{2}+6 r+1=0
$$

has one double root $r=-1 / 3$ that coincides with the exponent $\alpha=-1 / 3$ in the right-hand side $g(t)=\mathrm{e}^{\alpha t}\left(t^{3}-1\right)$. Thus the correct guessing for the particular solution is the answer (c), i.e.

$$
\psi(t)=\mathrm{e}^{-t / 3} t^{2}\left(A_{3} t^{3}+A_{2} t^{2}+A_{1} t+A_{0}\right) .
$$

Problem 4. (30 points)
A spring-mass-dashpot system with $m=1, k=2$ and $c=2$ (in their respective units) hangs in equilibrium. At time $t=0$, an external force $F(t)=t-\pi \mathrm{N}$ starts acting on the hanging object. Find the position $y(t)$ of the object at anytime $t>0$. Over time, what do you expect to occur within this system?

The initial-value problem describing this system is

$$
y^{\prime \prime}+2 y^{\prime}+2 y=t-\pi, \quad y(0)=y^{\prime}(0)=0 .
$$

The characteristic equation $r^{2}+2 r+2=0$ has complex roots $r_{1}=-1+i, r_{2}=-1-i$. Therefore, the functions

$$
y_{1}(t)=\mathrm{e}^{-t} \cos t, \quad y_{2}(t)=\mathrm{e}^{-t} \sin t,
$$

form a fundamental set of solutions.
The particular solution can be found using the guessing method. Then

$$
\psi(t)=A t+B,
$$

with $\psi^{\prime}(t)=A$ and $\psi^{\prime \prime}(t)=0$. The differential equation with the function ψ reduces to

$$
\psi^{\prime \prime}+2 \psi^{\prime}+2 \psi=2 A+2 A t+2 B=2 A t+2(A+B)=t-\pi .
$$

Equating coefficients we obtain $A=1 / 2, B=-\pi / 2-1 / 2$. Hence, the particular solution is

$$
\psi(t)=\frac{t}{2}-\frac{\pi}{2}-\frac{1}{2}
$$

The general solution

$$
y(t)=c_{1} \mathrm{e}^{-t} \cos t+c_{2} \mathrm{e}^{-t} \sin t+\frac{t}{2}-\frac{\pi}{2}-\frac{1}{2}
$$

has its first derivative

$$
y^{\prime}(t)=-c_{1} \mathrm{e}^{-t} \cos t-c_{1} \mathrm{e}^{-t} \sin t-c_{2} \mathrm{e}^{-t} \sin t+c_{2} \mathrm{e}^{-t} \cos t+\frac{1}{2} .
$$

Initial conditions $y(0)=0$ and $y^{\prime}(0)=0$ further imply

$$
0=c_{1}-\frac{\pi}{2}-\frac{1}{2}, \quad 0=-c_{1}+c_{2}+\frac{1}{2}
$$

Then

$$
c_{1}=\frac{\pi}{2}+\frac{1}{2}, \quad c_{2}=\frac{\pi}{2}
$$

and the function $y(t)$ that describes the position of the object at anytime $t>0$ is

$$
y(t)=\left(\frac{\pi}{2}+\frac{1}{2}\right) \mathrm{e}^{-t} \cos t+\frac{\pi}{2} \mathrm{e}^{-t} \sin t+\frac{t}{2}-\frac{\pi}{2}-\frac{1}{2}
$$

Over time we expect the spring to break since

$$
\lim _{t \rightarrow \infty} y(t)=\infty
$$

(the positive direction of the position $y(t)$ is downwards).

