Problem 1. (25 points)
Solve the following initial-value problem

$$
\frac{d y}{d t}=\frac{2 t y+2 t}{t^{2}+1}, \quad y(-1)=3
$$

This differential equation is both separable and linear since

$$
\frac{d y}{d t}=\frac{2 t(y+1)}{t^{2}+1} \quad \text { and } \quad \frac{d y}{d t}=\frac{2 t}{t^{2}+1} y+\frac{2 t}{t^{2}+1}
$$

We will solve it as a linear differential equation with

$$
a(t)=-\frac{2 t}{t^{2}+1}, \quad b(t)=\frac{2 t}{t^{2}+1} .
$$

The integrating factor is

$$
\mu(t)=\exp \left(-\int \frac{2 t d t}{t^{2}+1}\right)=\exp \left(-\ln \left|t^{2}+1\right|\right)=\exp \left(-\ln \left(t^{2}+1\right)\right)=\frac{1}{t^{2}+1}
$$

The general solution is

$$
\begin{aligned}
y(t) & =\left(t^{2}+1\right)\left(\int \frac{1}{t^{2}+1} \frac{2 t}{t^{2}+1} d t+C\right)=\left(t^{2}+1\right)\left(\int \frac{2 t d t}{\left(t^{2}+1\right)^{2}}+C\right) \\
& =\left(t^{2}+1\right)\left(\int \frac{d s}{s^{2}}+C\right), \quad s=t^{2}+1, \quad d s=2 t d t \\
& =\left(t^{2}+1\right)\left(-\frac{1}{s}+C\right)=\left(t^{2}+1\right)\left(-\frac{1}{t^{2}+1}+C\right)=-1+C\left(t^{2}+1\right)
\end{aligned}
$$

The initial condition implies

$$
3=y(-1)=-1+C\left((-1)^{2}+1\right)=2 C-1, \quad C=2
$$

The solution is

$$
y(t)=-1+2\left(t^{2}+1\right)=2 t^{2}+1
$$

Problem 2. (25 points)
A tank initially contains 60 gal of pure water. Brine containing 1 lb of salt per gallon enters the tank at $2 \mathrm{gal} / \mathrm{min}$, and the well-stirred solution leaves the tank at the same rate.
(a) If $S(t)$ is the amount of salt in the tank at time t, write the differential equation for the time rate of change of $S(t)$ and solve it.
(b) Find the concentration $c(t)$ of the salt in the tank at time t.
(c) What would be the limiting concentration of salt as $t \rightarrow \infty$?

The inflow rate is $r_{i}=2 \mathrm{gal} / \mathrm{min}$, the outflow rate is $r_{o}=2 \mathrm{gal} / \mathrm{min}$, the inflow salt concentration is $c_{i}=1 \mathrm{lb} / \mathrm{gal}, V_{0}=60 \mathrm{gal}$ is the initial volume and $S(0)=0$ is the initial condition (only pure water is initially in the tank).
(a) The time rate of change of $S(t)$ is given by

$$
\frac{d S}{d t}=r_{i} c_{i}-r_{o} \frac{S}{60}=2-\frac{S}{30} .
$$

This differential equation is linear

$$
\frac{d S}{d t}+\frac{S}{30}=2
$$

and the integrating factor is

$$
\mu(t)=\exp \left(\int \frac{d t}{30}\right)=\mathrm{e}^{t / 30}
$$

The solution is

$$
S(t)=\mathrm{e}^{-t / 30}\left(\int 2 \mathrm{e}^{t / 30} d t+C\right)=\mathrm{e}^{-t / 30}\left(60 \mathrm{e}^{t / 30}+C\right)=60+C \mathrm{e}^{-t / 30}
$$

From the initial condition it follows

$$
0=S(0)=60+C, \quad C=-60 .
$$

Finally

$$
S(t)=60-60 \mathrm{e}^{-t / 30}
$$

(b) Concentration $c(t)$ of the salt in the tank at time t is

$$
c(t)=\frac{S(t)}{60}=1-\mathrm{e}^{-t / 30}
$$

(c) The limiting concentration is

$$
\lim _{t \rightarrow \infty} c(t)=\lim _{t \rightarrow \infty}\left(1-\mathrm{e}^{-t / 30}\right)=1
$$

Problem 3. (30 points)
A population of butterflies grows according to the logistic law

$$
\frac{d p}{d t}=0.002 p(100-p)=0.2 p-0.002 p^{2}, \quad t \geq 0
$$

(a) Find the population $p(t)$ as the function of time t, if the initial population is 60 .
(b) Find $\lim _{t \rightarrow \infty} p(t)$ and determine limiting population in this model.
(a) We start from

$$
\frac{d p}{d t}=0.002 p(100-p)
$$

Using partial fractions

$$
\frac{1}{p(100-p)}=\frac{1}{100}\left(\frac{1}{p}+\frac{1}{100-p}\right)
$$

we derive

$$
\begin{aligned}
\int \frac{d p}{p(100-p)} & =\int 0.002 d t \\
\frac{1}{100} \int\left(\frac{1}{p}+\frac{1}{100-p}\right) d p & =0.002 \int d t \\
\int\left(\frac{1}{p}+\frac{1}{100-p}\right) d p & =0.2 \int d t \\
\ln |p|-\ln |100-p| & =0.2 t+C_{1} \\
\ln \left|\frac{p}{100-p}\right| & =0.2 t+C_{1} \\
\frac{p}{100-p} & =C \mathrm{e}^{0.2 t}
\end{aligned}
$$

From the given initial condition $p(0)=60$, we can find the constant C :

$$
\frac{p(0)}{100-p(0)}=C \mathrm{e}^{0.2 \cdot 0}, \quad \frac{60}{100-60}=C, \quad C=\frac{3}{2} .
$$

The next step is to find the function $p(t)$:

$$
\begin{aligned}
\frac{p}{100-p} & =\frac{3}{2} \mathrm{e}^{0.2 t} \\
p & =\frac{3}{2} \mathrm{e}^{0.2 t}(100-p)=150 \mathrm{e}^{0.2 t}-\frac{3}{2} \mathrm{e}^{0.2 t} p \\
p\left(1+\frac{3}{2} \mathrm{e}^{0.2 t}\right) & =150 \mathrm{e}^{0.2 t} \\
p(t) & =\frac{150 \mathrm{e}^{0.2 t}}{1+\frac{3}{2} \mathrm{e}^{0.2 t}}=\frac{150}{\mathrm{e}^{-0.2 t}+\frac{3}{2}} .
\end{aligned}
$$

The solution can be obtained directly from the formula

$$
p(t)=\frac{a p_{0}}{b p_{0}+\left(a-b p_{0}\right) \mathrm{e}^{-a\left(t-t_{0}\right)}} .
$$

Here $a=0.2, b=0.002, t_{0}=0$, and $p_{0}=60$. Then

$$
p(t)=\frac{12}{0.12+(0.2-0.12) \mathrm{e}^{-0.2 t}}=\frac{12}{0.12+0.08 \mathrm{e}^{-0.2 t}}=\frac{150}{1.5+\mathrm{e}^{-0.2 t}} .
$$

(b) The limiting population in this model is

$$
\lim _{t \rightarrow \infty} p(t)=\lim _{t \rightarrow \infty} \frac{150}{1.5+\mathrm{e}^{-0.2 t}}=\frac{150}{1.5}=100=\frac{a}{b} .
$$

Problem 4. (20 points)
Find the orthogonal trajectories of the given family of curves

$$
y=c \mathrm{e}^{x} .
$$

Here we can take $F(x, y, c)=y-c \mathrm{e}^{x}$. Then from

$$
F_{x}=-c \mathrm{e}^{x}, \quad F_{y}=1, \quad c=\frac{y}{\mathrm{e}^{x}},
$$

the orthogonal trajectories of the given family are the solution curves of the equation

$$
\frac{d y}{d x}=\frac{F_{y}}{F_{x}}=-\frac{1}{y} .
$$

This is a separable differential equation and we solve it as follows:

$$
\begin{aligned}
\int y d y & =-\int d x \\
\frac{y^{2}}{2} & =-x+c .
\end{aligned}
$$

