MATH 4512, FINAL EXAM December 20, 2018 SOLUTIONS

1. (25 points)

Use Laplace transform to find a solution of the following initial-value problem

$$
\frac{d^{2} y}{d t^{2}}-6 \frac{d y}{d t}+9 y=\mathrm{e}^{3 t}, \quad y(0)=1, \quad \frac{d y}{d t}(0)=-1
$$

Let

$$
Y(s)=\mathcal{L}\{y(t)\}, \quad F(s)=\mathcal{L}\left\{\mathrm{e}^{3 t}\right\}=\frac{1}{s-3}
$$

Then

$$
\begin{aligned}
Y(s) & =\frac{1}{s^{2}-6 s+9}((s-6)-1+F(s)) \\
& =\frac{1}{(s-3)^{2}}\left((s-3)-4+\frac{1}{s-3}\right) \\
& =\frac{1}{s-3}-\frac{4}{(s-3)^{2}}+\frac{1}{(s-3)^{3}} .
\end{aligned}
$$

Since

$$
\begin{gathered}
\mathcal{L}\left\{t \mathrm{e}^{3 t}\right\}=-\frac{d}{d s} \mathcal{L}\left\{\mathrm{e}^{3 t}\right\}=-\frac{d}{d s}\left(\frac{1}{s-3}\right)=\frac{1}{(s-3)^{2}} \\
\mathcal{L}\left\{t^{2} \mathrm{e}^{3 t}\right\}=-\frac{d}{d s} \mathcal{L}\left\{t \mathrm{e}^{3 t}\right\}=-\frac{d}{d s}\left(\frac{1}{(s-3)^{2}}\right)=\frac{2}{(s-3)^{3}}
\end{gathered}
$$

we further have

$$
\begin{aligned}
Y(s) & =\frac{1}{s-3}-\frac{4}{(s-3)^{2}}+\frac{1}{(s-3)^{3}}=\mathcal{L}\left\{\mathrm{e}^{3 t}\right\}-4 \mathcal{L}\left\{t \mathrm{e}^{3 t}\right\}+\frac{1}{2} \mathcal{L}\left\{t^{2} \mathrm{e}^{3 t}\right\} \\
& =\mathcal{L}\left\{\mathrm{e}^{3 t}-4 t \mathrm{e}^{3 t}+\frac{1}{2} t^{2} \mathrm{e}^{3 t}\right\}
\end{aligned}
$$

and consequently

$$
y(t)=\mathrm{e}^{3 t}-4 t \mathrm{e}^{3 t}+\frac{1}{2} t^{2} \mathrm{e}^{3 t}=\left(1-4 t+\frac{1}{2} t^{2}\right) \mathrm{e}^{3 t}
$$

2. (25 points)

Transform the differential equation

$$
\frac{d^{2} u}{d t^{2}}+\frac{d u}{d t}-2 u=0
$$

into a system of differential equations

$$
\left[\begin{array}{c}
\dot{x}(t) \tag{1}\\
\dot{y}(t)
\end{array}\right]=A\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right] .
$$

(a) Determine stability of all solutions of (1).
(b) Find a general solution of (1).
(c) Find equilibrium points of (1) and examine their stability.
(d) Draw the phase portrait of (1).

Introducing $x(t)=u(t), y(t)=\dot{u}(t)$, we have that

$$
\begin{aligned}
\dot{x}(t) & =y(t) \\
\dot{y}(t) & =2 x(t)-y(t) .
\end{aligned}
$$

Therefore

$$
A=\left[\begin{array}{rr}
0 & 1 \\
2 & -1
\end{array}\right]
$$

(a) The characteristic polynomial of the matrix A is

$$
p(\lambda)=\operatorname{det}\left[\begin{array}{rr}
-\lambda & 1 \\
2 & -1-\lambda
\end{array}\right]=\lambda(1+\lambda)-2=\lambda^{2}+\lambda-2=(\lambda+2)(\lambda-1) .
$$

The eigenvalues of A are $\lambda_{1}=-2$ and $\lambda_{2}=1$. Since one eigenvalue has positive real part, all solutions of (1) are unstable.
(b) First we will determine eigenvectors corresponding to $\lambda_{1}=-2$ and $\lambda_{2}=1$.

From

$$
\left(A-\lambda_{1} I\right) v=(A+2 I) v=\left[\begin{array}{ll}
2 & 1 \\
2 & 1
\end{array}\right] v=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

we can choose $v^{1}=[1,-2]^{\top}$, while from

$$
\left(A-\lambda_{2} I\right) v=(A-I) v=\left[\begin{array}{rr}
-1 & 1 \\
2 & -2
\end{array}\right] v=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

we can choose $v^{2}=[1,1]^{\top}$. The general solution of (1) has the form

$$
c_{1} \mathrm{e}^{-2 t}\left[\begin{array}{r}
1 \\
-2
\end{array}\right]+c_{2} \mathrm{e}^{t}\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

(c) The system (1) has only one equilibrium point $[0,0]^{\top}$. This constant solution is saddle since

$$
-2=\lambda_{1}<0<\lambda_{2}=1
$$

(d) The phase portrait of (1):

3. (25 points)

Consider the system of nonlinear differential equations

$$
\begin{aligned}
& \dot{x}=y+3 y x^{2} \\
& \dot{y}=4 x .
\end{aligned}
$$

(a) Find orbits of the system.
(b) Find orthogonal trajectories of the family of curves obtained in (a).
(a) Consider the differential equation

$$
\frac{d y}{d x}=\frac{\dot{y}}{\dot{x}}=\frac{4 x}{y+3 y x^{2}}=\frac{4 x}{y\left(1+3 x^{2}\right)}
$$

Since it is separable, we can solve it in the following way:

$$
\begin{aligned}
y \frac{d y}{d x} & =\frac{4 x}{1+3 x^{2}} \\
\frac{d}{d x} \frac{y^{2}}{2} & =\frac{4 x}{1+3 x^{2}} \\
\frac{y^{2}}{2} & =\int \frac{4 x}{1+3 x^{2}} d x=\frac{4}{6} \int \frac{d s}{s}=\frac{2}{3} \ln \left|1+3 x^{2}\right|+c_{1} \\
y^{2} & =\frac{4}{3} \ln \left(1+3 x^{2}\right)+c .
\end{aligned}
$$

The only equilibrium value is $[0,0]^{\top}$. Thus, the orbits of the given system are

- the equilibrium point $[0,0]^{\top}$,
- the curve $y^{2}=\frac{4}{3} \ln \left(1+3 x^{2}\right)$,
- the curves $y^{2}=\frac{4}{3} \ln \left(1+3 x^{2}\right)+c, c \neq 0$.
(b) Let $F(x, y, c)=\frac{4}{3} \ln \left(1+3 x^{2}\right)-y^{2}+c$. From

$$
F_{x}=\frac{8 x}{1+3 x^{2}}, \quad F_{y}=-2 y
$$

we obtain that the orthogonal trajectories y need to satisfy

$$
\frac{d y}{d x}=\frac{F_{y}}{F_{x}}=-\frac{y\left(1+3 x^{2}\right)}{4 x}
$$

This is a separable problem and we solve it as follows:

$$
\begin{aligned}
\frac{1}{y} \frac{d y}{d x} & =-\frac{1+3 x^{2}}{4 x} \\
\frac{d}{d x}(\ln |y|) & =-\frac{1+3 x^{2}}{4 x} \\
\ln |y| & =-\int \frac{1+3 x^{2}}{4 x} d x=-\frac{1}{4} \int \frac{d x}{x}-\frac{3}{4} \int x d x \\
\ln |y| & =-\frac{1}{4} \ln |x|-\frac{3 x^{2}}{8}+c_{1} \\
|y| & =c|x|^{-1 / 4} \exp \left(-3 x^{2} / 8\right) .
\end{aligned}
$$

Orthogonal trajectories are the curves that satisfy

$$
|y|=c|x|^{-1 / 4} \exp \left(-3 x^{2} / 8\right)
$$

Orbits $y^{2}=\frac{4}{3} \ln \left(1+3 x^{2}\right)+c$ (dashed) and orthogonal trajectories $|y|=c|x|^{-1 / 4} \exp \left(-3 x^{2} / 8\right)$ (solid).

4. (25 points)

The charge $Q(t)$ on the capacitor within closed electric circuit satisfies the differential equation

$$
L \frac{d^{2} Q}{d t^{2}}+R \frac{d Q}{d t}+\frac{Q}{C}=E(t)
$$

with an inductance L, a resistance R, a capacitance C, and a voltage source $E(t)$ at time t. If $L=1 \mathrm{H}, R=2 \Omega, C=0.2 \mathrm{~F}$, and $E(t)=17 \cos (2 t) \mathrm{V}$, find charge $Q(t)$ that satisfies

$$
Q(0)=0 \mathrm{C}, \quad \frac{d Q}{d t}(0)=9 \mathrm{~A} .
$$

Useful identities and properties:

$$
\begin{array}{llrl}
\sin (2 \theta) & =2 \sin \theta \cos \theta, & \int \mathrm{e}^{a t} \sin (b t) d t & =\frac{\mathrm{e}^{a t}}{a^{2}+b^{2}}(a \sin (b t)-b \cos (b t))+c, \\
\cos (2 \theta) & =2 \cos ^{2} \theta-1, & \int \mathrm{e}^{a t} \cos (b t) d t=\frac{\mathrm{e}^{a t}}{a^{2}+b^{2}}(a \cos (b t)+b \sin (b t))+c .
\end{array}
$$

With the given data, we are solving the following initial-value problem

$$
\frac{d^{2} Q}{d t^{2}}+2 \frac{d Q}{d t}+5 Q=17 \cos (2 t), \quad Q(0)=0, \quad \frac{d Q}{d t}(0)=9
$$

The characteristic equation

$$
r^{2}+2 r+5=0
$$

has complex roots $r_{1}=-1+2 i, r_{2}=-1-2 i$. The functions

$$
y_{1}(t)=\mathrm{e}^{-t} \cos (2 t), \quad y_{2}(t)=\mathrm{e}^{-t} \sin (2 t),
$$

form the fundamental set of solutions. The Wronskian is

$$
W\left[y_{1}, y_{2}\right](t)=y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)=2 \mathrm{e}^{-2 t}
$$

Now we search a particular solution ψ in the form

$$
\psi(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)
$$

With $E(t)=17 \cos (2 t)$, we obtain

$$
\begin{aligned}
u_{1}(t) & =-\int \frac{E(t) y_{2}(t)}{W\left[y_{1}, y_{2}\right](t)} d t=-\frac{17}{2} \int \mathrm{e}^{t} \sin (2 t) \cos (2 t) d t=-\frac{17}{4} \int \mathrm{e}^{t} \sin (4 t) d t \\
& =-\frac{1}{4} \mathrm{e}^{t}(\sin (4 t)-4 \cos (4 t)) \\
u_{2}(t) & =\int \frac{E(t) y_{1}(t)}{W\left[y_{1}, y_{2}\right](t)} d t=\frac{17}{2} \int \mathrm{e}^{t} \cos ^{2}(2 t) d t=\frac{17}{4} \int \mathrm{e}^{t}(1+\cos (4 t)) d t \\
& =\frac{17}{4} \mathrm{e}^{t}+\frac{1}{4} \mathrm{e}^{t}(\cos (4 t)+4 \sin (4 t))
\end{aligned}
$$

The particular solution is

$$
\begin{aligned}
\psi(t) & =u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t) \\
& =-\frac{1}{4}(\sin (4 t)-4 \cos (4 t)) \cos (2 t)+\frac{17}{4} \sin (2 t)+\frac{1}{4}(\cos (4 t)+4 \sin (4 t)) \sin (2 t) \\
& =\cos (2 t)+4 \sin (2 t)
\end{aligned}
$$

Here we have used double-angle formulae.
The particular solution can be found using guessing

$$
\psi(t)=a \cos (2 t)+b \sin (2 t), \quad a, b \text { are constants. }
$$

Then from

$$
\begin{aligned}
\psi^{\prime}(t) & =-2 a \sin (2 t)+2 b \cos (2 t) \\
\psi^{\prime \prime}(t) & =-4 a \cos (2 t)-4 b \sin (2 t)
\end{aligned}
$$

we get

$$
17 \cos (2 t)=\psi^{\prime \prime}(t)+2 \psi^{\prime}(t)+5 \psi(t)=(-4 a+b) \sin (2 t)+(a+4 b) \cos (2 t)
$$

Finally, $a=1, b=4$, and $\psi(t)=\cos (2 t)+4 \sin (2 t)$.
The general solution of the starting problem has the form

$$
Q(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)+\psi(t)=c_{1} \mathrm{e}^{-t} \cos (2 t)+c_{2} \mathrm{e}^{-t} \sin (2 t)+\psi(t) .
$$

The initial condition $Q(0)=0$, and $y_{1}(0)=1, y_{2}(0)=0, \psi(0)=1$, imply

$$
0=Q(0)=c_{1}+1, \quad c_{1}=-1
$$

Now, from

$$
\begin{aligned}
y_{1}^{\prime}(t) & =-\mathrm{e}^{-t}(\cos (2 t)+2 \sin (2 t)) \\
y_{2}^{\prime}(t) & =\mathrm{e}^{-t}(2 \cos (2 t)-\sin (2 t)) \\
\psi^{\prime}(t) & =8 \cos (2 t)-2 \sin (2 t),
\end{aligned}
$$

the second condition $Q^{\prime}(0)=9$ further implies

$$
9=c_{1} y_{1}^{\prime}(0)+c_{2} y_{2}^{\prime}(0)+\psi^{\prime}(0)=-c_{1}+2 c_{2}+8, \quad c_{2}=0
$$

The final solution (the charge on the capacitor at time t) is

$$
\begin{aligned}
Q(t) & =-y_{1}(t)+\psi(t) \\
& =-\mathrm{e}^{-t} \cos (2 t)+\cos (2 t)+4 \sin (2 t) \\
& =\left(1-\mathrm{e}^{-t}\right) \cos (2 t)+4 \sin (2 t)
\end{aligned}
$$

This initial-value problem

$$
\frac{d^{2} Q}{d t^{2}}+2 \frac{d Q}{d t}+5 Q=17 \cos (2 t), \quad Q(0)=0, \quad \frac{d Q}{d t}(0)=9
$$

can also be solved using Laplace transforms. Let

$$
Y(s)=\mathcal{L}\{Q(t)\}, \quad F(s)=\mathcal{L}\{17 \cos (2 t)\}=\frac{17 s}{s^{2}+4}
$$

Then

$$
\begin{aligned}
Y(s) & =\frac{1}{s^{2}+2 s+5}(9+F(s))=\frac{1}{s^{2}+2 s+5}\left(9+\frac{17 s}{s^{2}+4}\right) \\
& =\frac{9 s^{2}+17 s+36}{\left(s^{2}+2 s+5\right)\left(s^{2}+4\right)}=-\frac{s+1}{s^{2}+2 s+5}+\frac{s+8}{s^{2}+4},
\end{aligned}
$$

where in the last step we use partial fractions. Then

$$
\begin{aligned}
-\frac{s+1}{s^{2}+2 s+5} & =-\frac{s+1}{(s+1)^{2}+4}=-\mathcal{L}\left\{\mathrm{e}^{-t} \cos (2 t)\right\} \\
\frac{s+8}{s^{2}+4} & =\frac{s}{s^{2}+4}+4 \frac{2}{s^{2}+4}=\mathcal{L}\{\cos (2 t)\}+4 \mathcal{L}\{\sin (2 t)\}
\end{aligned}
$$

and consequently

$$
\begin{aligned}
Y(s) & =-\mathcal{L}\left\{\mathrm{e}^{-t} \cos (2 t)\right\}+\mathcal{L}\{\cos (2 t)\}+4 \mathcal{L}\{\sin (2 t)\} \\
Q(t) & =-\mathrm{e}^{-t} \cos (2 t)+\cos (2 t)+4 \sin (2 t) \\
& =\left(1-\mathrm{e}^{-t}\right) \cos (2 t)+4 \sin (2 t)
\end{aligned}
$$

