MATH 4512, FINAL EXAM December 18, 2019
 SOLUTIONS

1. (16 points)
(a) (8 points) Find $\mathcal{L}\{t \sin t\}$.
(b) (8 points) Using the result from (a), find a function $f(t)$ such that

$$
\mathcal{L}\{f(t)\}=\frac{2 s-4}{\left(s^{2}-4 s+5\right)^{2}}
$$

(a) From $\mathcal{L}\{\sin t\}=\frac{1}{s^{2}+1}$, we obtain

$$
\mathcal{L}\{t \sin t\}=-\mathcal{L}\{-t \sin t\}=-\frac{d}{d s} \mathcal{L}\{\sin t\}=-\frac{d}{d s}\left(\frac{1}{s^{2}+1}\right)=\frac{2 s}{\left(s^{2}+1\right)^{2}}
$$

(b) Notice that

$$
\frac{2 s-4}{\left(s^{2}-4 s+5\right)^{2}}=\frac{2(s-2)}{\left((s-2)^{2}+1\right)^{2}}=F(s-2)
$$

where

$$
F(s)=\frac{2 s}{\left(s^{2}+1\right)^{2}}=\mathcal{L}\{t \sin t\}
$$

Then

$$
\mathcal{L}\{f(t)\}=\frac{2 s-4}{\left(s^{2}-4 s+5\right)^{2}}=F(s-2)=\mathcal{L}\left\{\mathrm{e}^{2 t} t \sin t\right\}
$$

and $f(t)=t \mathrm{e}^{2 t} \sin t$.

2. (18 points)

(a) (3 points) Write an initial-value problem describing vibrations of a small object of mass 1 kg attached to a spring with spring constant $9 \mathrm{~N} / \mathrm{m}$, and immersed in a viscous medium with damping constant $6 \mathrm{Ns} / \mathrm{m}$. At time $t=0$, the mass, which is hanging in rest, is acted upon by an external force $F(t)=\cos t \mathrm{~N}$.
(b) (8 points) Find a particular solution $\psi(t)$ of the differential equation from (a).
(c) (7 points) Solve the initial-value problem from (a).
(a) Here $m=1, k=9, c=6$, and $F(t)=\cos t$. The IVP describing position y of this object in dependence of time t, with initial conditions $y(0)=y^{\prime}(0)=0$, is

$$
y^{\prime \prime}(t)+6 y^{\prime}(t)+9 y(t)=\cos t, \quad y(0)=y^{\prime}(0)=0
$$

(b) The characteristic equation for $y^{\prime \prime}(t)+6 y^{\prime}(t)+9 y(t)=0$ is $r^{2}+6 r+9=(r+3)^{2}=0$ has a double root $r=-3$.
We will use guessing for the particular solution $\phi(t)$ of the complex-valued problem

$$
y^{\prime \prime}(t)+6 y^{\prime}(t)+9 y(t)=\mathrm{e}^{i t} .
$$

Let $\phi(t)=A \mathrm{e}^{i t}$. Then $\phi^{\prime}(t)=A i \mathrm{e}^{i t}, \phi^{\prime \prime}(t)=-A \mathrm{e}^{i t}$, and

$$
\mathrm{e}^{i t}=\phi^{\prime \prime}(t)+6 \phi^{\prime}(t)+9 \phi(t)=(-A+6 A i+9 A) \mathrm{e}^{i t}=(8+6 i) A \mathrm{e}^{i t} .
$$

We obtain

$$
A=\frac{1}{8+6 i}=\frac{8-6 i}{100}=\frac{4}{50}-\frac{3}{50} i
$$

and

$$
\begin{aligned}
\phi(t) & =\left(\frac{4}{50}-\frac{3}{50} i\right) \mathrm{e}^{i t}=\left(\frac{4}{50}-\frac{3}{50} i\right)(\cos t+i \sin t) \\
& =\frac{4}{50} \cos t+\frac{3}{50} \sin t+i\left(\frac{4}{50} \sin t-\frac{3}{50} \cos t\right) .
\end{aligned}
$$

The particular solution $\psi(t)$ of the differential equation $y^{\prime \prime}(t)+6 y^{\prime}(t)+9 y(t)=\cos t$ is

$$
\psi(t)=\operatorname{Re} \phi(t)=\frac{4}{50} \cos t+\frac{3}{50} \sin t
$$

(c) The general solution is

$$
y(t)=\left(c_{1}+c_{2} t\right) \mathrm{e}^{-3 t}+\frac{4}{50} \cos t+\frac{3}{50} \sin t .
$$

From $y(0)=0$ we obtain

$$
0=y(0)=c_{1}+\frac{4}{50}, \quad c_{1}=-\frac{4}{50}=-\frac{2}{25} .
$$

Since

$$
y^{\prime}(t)=c_{2} \mathrm{e}^{-3 t}-3\left(c_{1}+c_{2} t\right) \mathrm{e}^{-3 t}-\frac{4}{50} \sin t+\frac{3}{50} \cos t
$$

the initial condition $y^{\prime}(0)=0$ implies

$$
0=y^{\prime}(0)=c_{2}-3 c_{1}+\frac{3}{50}, \quad c_{2}=3 c_{1}-\frac{3}{50}=-\frac{15}{50}=-\frac{3}{10} .
$$

The solution of the IVP is

$$
y(t)=\left(-\frac{2}{25}-\frac{3}{10} t\right) \mathrm{e}^{-3 t}+\frac{4}{50} \cos t+\frac{3}{50} \sin t .
$$

3. (32 points) Consider the linear system of differential equations

$$
\dot{x}=A x, \quad A=\left[\begin{array}{rrr}
-1 & 0 & 0 \\
2 & 1 & -2 \\
3 & 2 & 1
\end{array}\right]
$$

(a) (5 points) Determine stability of all solutions to $\dot{x}=A x$.
(b) (10 points) Find the general solution to $\dot{x}=A x$.
(c) (10 points) Find $\mathrm{e}^{A t}$.
(d) (7 points) Solve the initial-value problem

$$
\dot{x}=A x, \quad x(0)=\left[\begin{array}{r}
4 \\
-5 \\
0
\end{array}\right] .
$$

(a) The characteristic polynomial of the matrix A is

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\left|\begin{array}{rrr}
-1-\lambda & 0 & 0 \\
2 & 1-\lambda & -2 \\
3 & 2 & 1-\lambda
\end{array}\right|=(-1-\lambda)\left|\begin{array}{rr}
1-\lambda & -2 \\
2 & 1-\lambda
\end{array}\right| \\
& =-(1+\lambda)\left(1-2 \lambda+\lambda^{2}+4\right)=-(1+\lambda)\left(\lambda^{2}-2 \lambda+5\right) .
\end{aligned}
$$

Eigenvalues of the matrix A are $\lambda_{1}=-1, \lambda_{2}=1+2 i$, and $\lambda_{3}=1-2 i$. Since both λ_{2} and λ_{3} have positive real part, all solutions of the system $\dot{x}=A x$ are unstable.
(b) Eigenvector for $\lambda_{1}=-1$ satisfies $\left(A-\lambda_{1} I\right) v=0$. Then

$$
\left[\begin{array}{rrr}
0 & 0 & 0 \\
2 & 2 & -2 \\
3 & 2 & 2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

Adding second equation $2 v_{1}+2 v_{2}-2 v_{3}=0$ and third equation $3 v_{1}+2 v_{2}+2 v_{3}=0$, we obtain

$$
5 v_{1}+4 v_{2}=0, \quad v_{1}=-\frac{4}{5} v_{2}
$$

From second equation it follows

$$
v_{3}=v_{1}+v_{2}=-\frac{4}{5} v_{2}+v_{2}=\frac{1}{5} v_{2} .
$$

Every eigenvector corresponding to λ_{1} has the form

$$
v=\left[\begin{array}{r}
-4 / 5 \\
1 \\
1 / 5
\end{array}\right] v_{2}
$$

and we can choose

$$
v^{1}=\left[\begin{array}{r}
-4 \\
5 \\
1
\end{array}\right]
$$

For eigenvalue $\lambda_{2}=1+2 i$, we solve $\left(A-\lambda_{2} I\right) v=0$, i.e.

$$
\left[\begin{array}{rrr}
-2-2 i & 0 & 0 \\
2 & -2 i & -2 \\
3 & 2 & -2 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The first equation immediately gives $v_{1}=0$, while from the second it follows $v_{3}=-i v_{2}$. Then

$$
v=\left[\begin{array}{r}
0 \\
1 \\
-i
\end{array}\right] v_{2},
$$

and we can choose

$$
v=\left[\begin{array}{r}
0 \\
1 \\
-i
\end{array}\right]
$$

The complex-valued solution $\mathrm{e}^{\lambda_{2} t} v$ can be written as

$$
\begin{aligned}
\mathrm{e}^{\lambda_{2} t} v & =\mathrm{e}^{(1+2 i) t}\left[\begin{array}{r}
0 \\
1 \\
-i
\end{array}\right]=\mathrm{e}^{t}(\cos 2 t+i \sin 2 t)\left[\begin{array}{r}
0 \\
1 \\
-i
\end{array}\right] \\
& =\mathrm{e}^{t}\left[\begin{array}{r}
0 \\
\cos 2 t \\
\sin 2 t
\end{array}\right]+i \mathrm{e}^{t}\left[\begin{array}{r}
0 \\
\sin 2 t \\
-\cos 2 t
\end{array}\right]
\end{aligned}
$$

The general solution to $\dot{x}=A x$ is

$$
x(t)=c_{1} \mathrm{e}^{-t}\left[\begin{array}{r}
-4 \\
5 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{t}\left[\begin{array}{r}
0 \\
\cos 2 t \\
\sin 2 t
\end{array}\right]+c_{3} \mathrm{e}^{t}\left[\begin{array}{r}
0 \\
\sin 2 t \\
-\cos 2 t
\end{array}\right]
$$

(c) The fundamental matrix solutions $X(t)$ for this system is

$$
X(t)=\left[\begin{array}{rrr}
-4 \mathrm{e}^{-t} & 0 & 0 \\
5 \mathrm{e}^{-t} & \mathrm{e}^{t} \cos 2 t & \mathrm{e}^{t} \sin 2 t \\
\mathrm{e}^{-t} & \mathrm{e}^{t} \sin 2 t & -\mathrm{e}^{t} \cos 2 t
\end{array}\right]
$$

Then

$$
X(0)=\left[\begin{array}{rrr}
-4 & 0 & 0 \\
5 & 1 & 0 \\
1 & 0 & -1
\end{array}\right]
$$

From

$$
\begin{aligned}
{\left[\begin{array}{rrr|rrr}
-4 & 0 & 0 & 1 & 0 & 0 \\
5 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & -1 & 0 & 0 & 1
\end{array}\right] } & \xrightarrow[-R_{3}]{-\frac{1}{4} R_{1}}\left[\begin{array}{rrr|rrr}
1 & 0 & 0 & -1 / 4 & 0 & 0 \\
5 & 1 & 0 & 1 \\
0 & 1 & 0 \\
-1 & 0 & 1 & 0 & 0 & -1
\end{array}\right] \\
& \xrightarrow[R_{1}+R_{3}]{-5 R_{1}+R_{2}}\left[\begin{array}{lll|rlr}
1 & 0 & 0 & -1 / 4 & 0 & 0 \\
0 & 1 & 0 & 5 / 4 & 1 & 0 \\
0 & 0 & 1 & -1 / 4 & 0 & -1
\end{array}\right]
\end{aligned}
$$

we obtain

$$
X(0)^{-1}=\left[\begin{array}{rrr}
-1 / 4 & 0 & 0 \\
5 / 4 & 1 & 0 \\
-1 / 4 & 0 & -1
\end{array}\right]
$$

Finally,

$$
\mathrm{e}^{A t}=X(t) X(0)^{-1}=\left[\begin{array}{rrr}
\mathrm{e}^{-t} & 0 & 0 \\
-\frac{5}{4} \mathrm{e}^{-t}+\frac{5}{4} \mathrm{e}^{t} \cos 2 t-\frac{1}{4} \mathrm{e}^{t} \sin 2 t & \mathrm{e}^{t} \cos 2 t & -\mathrm{e}^{t} \sin 2 t \\
-\frac{1}{4} \mathrm{e}^{-t}+\frac{5}{4} \mathrm{e}^{t} \sin 2 t+\frac{1}{4} \mathrm{e}^{t} \cos 2 t & \mathrm{e}^{t} \sin 2 t & \mathrm{e}^{t} \cos 2 t
\end{array}\right]
$$

(d) The initial-value problem

$$
\dot{x}=A x, \quad x(0)=\left[\begin{array}{r}
4 \\
-5 \\
0
\end{array}\right] .
$$

can be solved using the formula $x(t)=\mathrm{e}^{A t} x(0)$, or from the initial condition

$$
\left[\begin{array}{r}
4 \\
-5 \\
0
\end{array}\right]=x(0)=c_{1}\left[\begin{array}{r}
-4 \\
5 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+c_{3}\left[\begin{array}{r}
0 \\
0 \\
-1
\end{array}\right]=\left[\begin{array}{r}
-4 c_{1} \\
5 c_{1}+c_{2} \\
c_{1}-c_{3}
\end{array}\right] .
$$

Then $c_{1}=-1, c_{2}=-5-5 c_{1}=0$, and $c_{3}=c_{1}=-1$. The solution to the IVP is

$$
x(t)=-\mathrm{e}^{-t}\left[\begin{array}{r}
-4 \\
5 \\
1
\end{array}\right]-\mathrm{e}^{t}\left[\begin{array}{r}
0 \\
\sin 2 t \\
-\cos 2 t
\end{array}\right]=\left[\begin{array}{r}
4 \mathrm{e}^{-t} \\
-5 \mathrm{e}^{-t}-\mathrm{e}^{t} \sin 2 t \\
-\mathrm{e}^{-t}+\mathrm{e}^{t} \cos 2 t
\end{array}\right] .
$$

4. (22 points) Consider the autonomous nonlinear system of differential equations

$$
\begin{aligned}
\dot{x} & =4 y \\
\dot{y} & =2 x+x y^{2} .
\end{aligned}
$$

(a) (7 points) Find orbits of the system.
(b) (7 points) Determine stability of equilibrium solutions of the system.
(c) (8 points) Write the nonlinear system as

$$
\dot{z}=A z+g(z), \quad z=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

and draw the phase portrait of $\dot{z}=A z$.
(a) The differential equation

$$
\frac{d y}{d x}=\frac{\dot{y}}{\dot{x}}=\frac{2 x+x y^{2}}{4 y}=\frac{x\left(2+y^{2}\right)}{4 y}
$$

is separable, and we can solve it in the following way:

$$
\begin{aligned}
\int \frac{y}{2+y^{2}} d y & =\frac{1}{4} \int x d x \\
\frac{1}{2} \ln \left(2+y^{2}\right) & =\frac{x^{2}}{8}+c_{1} \\
\ln \left(2+y^{2}\right) & =\frac{x^{2}}{4}+c_{2} \\
y^{2} & =c \mathrm{e}^{x^{2} / 4}-2 .
\end{aligned}
$$

The only equilibrium solution is $(0,0)$. Thus, the orbits of the given system are

- equilibrium point $(0,0)$,
- curves $y^{2}=c \mathrm{e}^{x^{2} / 4}-2, c \neq 2$,
- four curves
(1) $y=\sqrt{2 \mathrm{e}^{x^{2} / 4}-2}, x>0$,
(2) $y=\sqrt{2 \mathrm{e}^{x^{2} / 4}-2}, x<0$,
(3) $y=-\sqrt{2 \mathrm{e}^{x^{2} / 4}-2}, x>0$,
(4) $y=-\sqrt{2 \mathrm{e}^{x^{2} / 4}-2}, x<0$.
(b) The nonlinear system in the matrix form is

$$
\left[\begin{array}{c}
\dot{x} \\
\dot{y}
\end{array}\right]=\left[\begin{array}{ll}
0 & 4 \\
2 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{c}
0 \\
x y^{2}
\end{array}\right] .
$$

The characteristic polynomial of the system matrix

$$
A=\left[\begin{array}{ll}
0 & 4 \\
2 & 0
\end{array}\right]
$$

is

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{rr}
-\lambda & 4 \\
2 & -\lambda
\end{array}\right|=\lambda^{2}-8
$$

The eigenvalues of A are $\lambda_{1}=-\sqrt{8}$ and $\lambda_{2}=\sqrt{8}$. Since one eigenvalue has positive real part, the equilibrium solution $(0,0)$ is unstable.
(c) In (b) we already derived the matrix form

$$
\dot{z}=A z+g(z), \quad z=\left[\begin{array}{l}
x \\
y
\end{array}\right], \quad A=\left[\begin{array}{ll}
0 & 4 \\
2 & 0
\end{array}\right] .
$$

Eigenvalues of A are $\lambda_{1}=-\sqrt{8}$ and $\lambda_{2}=\sqrt{8}$, and the equilibrium solution $(0,0)$ is saddle. In order to draw the phase portrait for $\dot{z}=A z$, we will determine eigenvectors corresponding to λ_{1}, λ_{2}.

From

$$
\left(A-\lambda_{1} I\right) v=\left[\begin{array}{rr}
\sqrt{8} & 4 \\
2 & \sqrt{8}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

we obtain

$$
\sqrt{8} v_{1}+4 v_{2}=0, \quad v_{1}=-\frac{4}{\sqrt{8}} v_{2}=-\sqrt{2} v_{2}
$$

and we can choose

$$
v^{1}=\left[\begin{array}{r}
-\sqrt{2} \\
1
\end{array}\right] .
$$

From

$$
\left(A-\lambda_{2} I\right) v=\left[\begin{array}{rr}
-\sqrt{8} & 4 \\
2 & -\sqrt{8}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right],
$$

we obtain

$$
-\sqrt{8} v_{1}+4 v_{2}=0, \quad v_{1}=\frac{4}{\sqrt{8}} v_{2}=\sqrt{2} v_{2}
$$

and we can choose

$$
v^{2}=\left[\begin{array}{r}
\sqrt{2} \\
1
\end{array}\right] .
$$

The phase portrait of $\dot{z}=A z$:

5. (12 points) Determine whether the following statements are true or false. Explain your answer.
(a) (4 points) Initial-value problem

$$
\frac{d y}{d t}=\mathrm{e}^{t}(y+1)^{2 / 3}, \quad y(0)=-1
$$

has a unique solution $y(t)=-1$.
True/False
(b) (4 points) Families of curves

$$
y=c \tan x, \quad y^{2}+\sin ^{2} x=c
$$

are orthogonal.
True/False
(c) (4 points) Vector-valued functions

$$
x(t)=\left[\begin{array}{r}
3 \mathrm{e}^{t} \\
-\mathrm{e}^{t} \\
\mathrm{e}^{t}
\end{array}\right], \quad y(t)=\left[\begin{array}{r}
\sin t \\
\cos t \\
-\cos t
\end{array}\right], \quad z(t)=\left[\begin{array}{r}
-\mathrm{e}^{-2 t} \\
1-\mathrm{e}^{-2 t} \\
\mathrm{e}^{-2 t}-1
\end{array}\right]
$$

are linearly independent.
(a) False.

Notice that a constant function $y(t)=-1$ is one solution to the IVP.
Let $f(t, y)=\mathrm{e}^{t}(y+1)^{2 / 3}$ and $y_{0}=-1$. Though function f is continuous for all $t \in \mathbb{R}$ and all $y \in \mathbb{R}$, its partial derivative

$$
\frac{\partial f}{\partial y}=\mathrm{e}^{t} \frac{2}{3}(y+1)^{-1 / 3}
$$

is not continuous in any neighborhood of y_{0}. Thus this IVP has more than one solution.
(b) True.

Starting from

$$
F(x, y, c)=c \tan x-y, \quad F_{y}=-1, \quad F_{x}=\frac{c}{\cos ^{2} x}=\frac{y}{\tan x} \frac{1}{\cos ^{2} x}=\frac{y}{\sin x \cos x}
$$

we can derive

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{F_{y}}{F_{x}}=\frac{-\sin x \cos x}{y} \\
\int y d y & =-\int \sin x \cos x d x \\
\frac{y^{2}}{2} & =-\frac{\sin ^{2} x}{2}+c_{1} \\
y^{2}+\sin ^{2} x & =c
\end{aligned}
$$

(c) False.

Choose $t=0$ and consider a zero linear combination $c_{1} x(0)+c_{2} y(0)+c_{3} z(0)=0$:

$$
\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]=c_{1}\left[\begin{array}{r}
3 \\
-1 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right]+c_{3}\left[\begin{array}{r}
-1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{r}
3 c_{1}-c_{3} \\
-c_{1}+c_{2} \\
c_{1}-c_{2}
\end{array}\right] .
$$

We can choose, for example, the following nonzero constants

$$
c_{1}=1, \quad c_{2}=1, \quad c_{3}=3,
$$

and obtain $c_{1} x(0)+c_{2} y(0)+c_{3} z(0)=0$. This implies that the vector-valued functions $x(t), y(t), z(t)$ are linearly dependent.

