HW 8

Math 4512
Differential Equations with Applications

Fall 2019
University of Minnesota, Twin Cities

Nasser M. Abbasi

Contents

1	Section 4.4, problem 1	2

2	Section 4.4, problem 2
3	

$\begin{array}{lll}3 & \text { Section 4.4, problem 3 } & 4\end{array}$
4 Section 4.4, problem 8 5

| 5 | Section 4.7, problem 3 |
| :--- | :--- | :--- |

6	Section 4.7, problem 6	9

7	Section 4.7, problem 9	11

1 Section 4.4, problem 1

In each of Problems l-3, verify that $x(t), y(t)$ is a solution of the given system of equations, and find its orbit.

$$
\begin{aligned}
\dot{x} & =1 \\
\dot{y} & =2(1-x) \sin \left((1-x)^{2}\right) \\
x(t) & =1+t \\
y(t) & =\cos \left(t^{2}\right)
\end{aligned}
$$

solution
Since $x(t)=1+t$ then $\dot{x}=1$. Verified OK. And since $y(t)=\cos \left(t^{2}\right)$ then $\dot{y}=-2 t \sin \left(t^{2}\right)$. But $t=x-1$, hence $\dot{y}=-2(x-1) \sin \left((1-x)^{2}\right)$ or

$$
\dot{y}=2(1-x) \sin \left((1-x)^{2}\right)
$$

Verified OK. Both solutions verified. Now we need to find system orbit. The Orbit is given by the equation

$$
\frac{d y}{d x}=\frac{g(x, y)}{f(x, y)}
$$

When we write the given system in the following form

$$
\begin{aligned}
& \dot{x}=f(x, y) \\
& \dot{y}=g(x, y)
\end{aligned}
$$

We see now that $f(x, y)=1$ and $g(x, y)=2(1-x) \sin \left((1-x)^{2}\right)$. Therefore

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{2(1-x) \sin \left((1-x)^{2}\right)}{1} \\
& =2(1-x) \sin \left((1-x)^{2}\right)
\end{aligned}
$$

This is first order ODE. Since separable, we can solve it by integration

$$
y(x)=\int 2(1-x) \sin \left((1-x)^{2}\right) d x
$$

Let $u=(1-x)^{2}$, then $\frac{d u}{d x}=2(1-x)(-1)=-2 \sqrt{u}$. Substituting in the above gives

$$
\begin{aligned}
y(x) & =\int 2 \sqrt{u} \sin (u) \frac{d u}{-2 \sqrt{u}} \\
& =-\int \sin (u) d u \\
& =-(-\cos (u))+C \\
& =\cos (u)+C \\
& =\cos \left((1-x)^{2}\right)+C
\end{aligned}
$$

Therefore the equation of the orbit is

$$
y(x)=\cos \left((1-x)^{2}\right)+C
$$

For different values of C, different orbit results.

2 Section 4.4, problem 2

In each of Problems l-3, verify that $x(t), y(t)$ is a solution of the given system of equations, and find its orbit.

$$
\begin{aligned}
\dot{x} & =e^{-x} \\
\dot{y} & =e^{e^{x}-1} \\
x(t) & =\ln (1+t) \\
y(t) & =e^{t}
\end{aligned}
$$

Solution

$$
\begin{aligned}
\frac{d x}{d t} & =\frac{d}{d t} \ln (1+t) \\
\dot{x} & =\frac{1}{1+t}
\end{aligned}
$$

But $e^{-x}=e^{-\ln (1+t)}=\frac{1}{1+t}$. Verified OK. And

$$
\begin{aligned}
\frac{d y}{d t} & =\frac{d}{d t} e^{t} \\
\dot{y} & =e^{t}
\end{aligned}
$$

But $x-1=\ln (1+t)-1$. Hence $\ln (1+t)=x$. Therefore $1+t=e^{x}$ or $t=e^{x}-1$. Therefore $\dot{y}=e^{t}=e^{e^{x}-1}$. Verified OK.

Now we need to find system orbit. The Orbit is given by the equation

$$
\frac{d y}{d x}=\frac{g(x, y)}{f(x, y)}
$$

When we write the given system in the following form

$$
\begin{aligned}
& \dot{x}=f(x, y) \\
& \dot{y}=g(x, y)
\end{aligned}
$$

We see now that $f(x, y)=e^{-x}$ and $g(x, y)=e^{e^{x}-1}$. Therefore

$$
\frac{d y}{d x}=\frac{e^{e^{x}-1}}{e^{-x}}
$$

Integrating

$$
\int d y=\int \frac{e^{e^{x}-1}}{e^{-x}} d x
$$

Let $e^{x}=u, d u=e^{x} d x$. Hence the RHS $\int \frac{e^{e^{x}-1}}{e^{-x}} d x=\int \frac{e^{u-1}}{\frac{1}{u}} \frac{d u}{u}=\int e^{u-1} d u=e^{u-1}=e^{e^{x}-1}$. The above becomes

$$
y=e^{e^{x}-1}+C
$$

The orbits are given by the above equation for different C

3 Section 4.4, problem 3

In each of Problems l-3, verify that $x(t), y(t)$ is a solution of the given system of equations, and find its orbit.

$$
\begin{aligned}
\dot{x} & =1+x^{2} \\
\dot{y} & =\left(1+x^{2}\right) \sec ^{2} x \\
x(t) & =\tan t \\
y(t) & =\tan (\tan t)
\end{aligned}
$$

solution
Orbits given by

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\left(1+x^{2}\right) \sec ^{2} x}{1+x^{2}} \\
& =\sec ^{2} x
\end{aligned}
$$

Hence

$$
\int d y=\int \sec ^{2} x d x
$$

But $\sec ^{2} x=\frac{1}{\cos ^{2} x}$. And $\frac{d}{d x} \frac{\sin x}{\cos x}=\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x}=\frac{1}{\cos ^{2} x}$. Hence $\int \sec ^{2} x d x=\tan x$. Therefore the above gives

$$
y=\tan x+C
$$

The orbits are given by the above equation for different C. (do not know why book gives only $y=\tan x$)

4 Section 4.4, problem 8

Find the orbits of each of the following systems

$$
\begin{aligned}
& \dot{x}=y+x^{2} y \\
& \dot{y}=3 x+x y^{2}
\end{aligned}
$$

Solution

The Orbit is given by the equation

$$
\frac{d y}{d x}=\frac{g(x, y)}{f(x, y)}
$$

When we write the given system in the following form

$$
\begin{aligned}
& \dot{x}=f(x, y) \\
& \dot{y}=g(x, y)
\end{aligned}
$$

We see now that $f(x, y)=y+x^{2} y$ and $g(x, y)=3 x+x y^{2}$. Therefore

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{3 x+x y^{2}}{y+x^{2} y} \\
& =\frac{x\left(3+y^{2}\right)}{y\left(1+x^{2}\right)} \\
& =\frac{x}{\left(1+x^{2}\right)} \frac{\left(3+y^{2}\right)}{y}
\end{aligned}
$$

Hence it is separable.

$$
\begin{aligned}
\int \frac{y}{3+y^{2}} d y & =\int \frac{x}{1+x^{2}} d x \\
\frac{1}{2} \ln \left(3+y^{2}\right) & =\frac{1}{2} \ln \left(1+x^{2}\right)+C_{2} \\
\ln \left(3+y^{2}\right) & =\ln \left(1+x^{2}\right)+C_{1}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
3+y^{2} & =e^{\ln \left(1+x^{2}\right)+C_{1}} \\
& =e^{C_{1}} e^{\ln \left(1+x^{2}\right)} \\
& =C\left(1+x^{2}\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
y^{2} & =C\left(1+x^{2}\right)-3 \\
y(x) & = \pm \sqrt{C\left(1+x^{2}\right)-3}
\end{aligned}
$$

The above gives the equations for the orbit. For each C value, there is a different orbit curve. Now we need to find equilibrium points, since these are orbits also. We need to solve

$$
\begin{aligned}
& 0=y+x^{2} y \\
& 0=3 x+x y^{2}
\end{aligned}
$$

Or

$$
\begin{aligned}
& 0=y\left(1+x^{2}\right) \\
& 0=x\left(3+y^{2}\right)
\end{aligned}
$$

First equation gives $y=0$ as only real solution. When $y=0$ then second equation gives $x=0$. Hence $(0,0)$ is also an orbit. So the orbits are

$$
\begin{aligned}
y^{2} & =C\left(1+x^{2}\right)-3 \quad C \neq 3 \\
(x, y) & =(0,0)
\end{aligned}
$$

And when $C=3$ we obtain orbits $y^{2}=3\left(1+x^{2}\right)-3=3 x^{2}$, with additional orbits (notice that we have to exclude $x=0$ from each one below, since $x=0$ is allready included in

$$
\begin{aligned}
& (x, y)=(0,0)) \\
& \begin{array}{ll}
y=\sqrt{3} x & x>0 \\
y=\sqrt{3} x & x<0 \\
y=-\sqrt{3} x & x>0 \\
y=-\sqrt{3} x & x<0
\end{array}
\end{aligned}
$$

Hence there are 6 possible orbits in total.

5 Section 4.7, problem 3

Draw the phase portraits of each of the following systems of differential equations

$$
\dot{x}=\left(\begin{array}{cc}
4 & -1 \\
-2 & 5
\end{array}\right) x
$$

solution

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =0 \\
\left|\begin{array}{cc}
4-\lambda & -1 \\
-2 & 5-\lambda
\end{array}\right| & =0 \\
(4-\lambda)(5-\lambda)-2 & =0 \\
\lambda^{2}-9 \lambda+18 & =0
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=6 \\
& \lambda_{2}=3
\end{aligned}
$$

Case $\lambda_{1}=6$

$$
\begin{aligned}
\left(\begin{array}{cc}
4-\lambda & -1 \\
-2 & 5-\lambda
\end{array}\right)\binom{v_{1}}{v_{2}} & =\binom{0}{0} \\
\left(\begin{array}{cc}
4-6 & -1 \\
-2 & 5-6
\end{array}\right)\binom{v_{1}}{v_{2}} & =\binom{0}{0} \\
\left(\begin{array}{ll}
-2 & -1 \\
-2 & -1
\end{array}\right)\binom{v_{1}}{v_{2}} & =\binom{0}{0}
\end{aligned}
$$

From first row $-2 v_{1}-v_{2}=0$. Hence $v_{2}=-2 v_{1}$. Therefore the first eigenvector is $\boldsymbol{v}^{1}=$ $\binom{v_{1}}{-2 v_{1}}=v_{1}\binom{1}{-2}=\binom{1}{-2}$ by setting $v_{1}=1$
Case $\lambda_{1}=3$

$$
\begin{aligned}
\left(\begin{array}{cc}
4-\lambda & -1 \\
-2 & 5-\lambda
\end{array}\right)\binom{v_{1}}{v_{2}} & =\binom{0}{0} \\
\left(\begin{array}{cc}
4-3 & -1 \\
-2 & 5-3
\end{array}\right)\binom{v_{1}}{v_{2}} & =\binom{0}{0} \\
\left(\begin{array}{cc}
1 & -1 \\
-2 & 2
\end{array}\right)\binom{v_{1}}{v_{2}} & =\binom{0}{0}
\end{aligned}
$$

From first row $v_{1}-v_{2}=0$. Hence $v_{2}=v_{1}$. Therefore the second eigenvector is $v^{2}=\binom{v_{1}}{v_{1}}=$ $v_{1}\binom{1}{1}=\binom{1}{1}$ by setting $v_{1}=1$

Since eigenvalues are both real and both are positive, then $(0,0)$ is unstable node. Here is a the Phase portrait. The lines marked red and blue are the two eigenvectors found above. The arrows are all leaving $(0,0)$ which means this is unstable equilibrium point.

Figure 1: Phase portrait

```
p = StreamPlot [{4x-y, - 2x+5y}, {x, - 2, 2},{y, - 2, 2},
    StreamPoints }->\mathrm{ {
        {
            {{1, 1}, {Thick, Red}},
            {{1, - 2}, {Thick, Blue}},
            {{-1, -1}, {Thick, Red}},
            {{-1, 2}, {Thick, Blue}},
            Automatic}
        }, Epilog }->\mathrm{ {Red, PointSize[0.03], Point[{0, 0}]},
    Axes }->\mathrm{ True];
```

Figure 2: Code used

6 Section 4.7, problem 6

Draw the phase portraits of each of the following systems of differential equations

$$
\dot{x}=\left(\begin{array}{ll}
3 & -1 \\
5 & -3
\end{array}\right) x
$$

Solution

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =0 \\
\left|\begin{array}{cc}
3-\lambda & -1 \\
5 & -3-\lambda
\end{array}\right| & =0 \\
(3-\lambda)(-3-\lambda)+5 & =0 \\
\lambda^{2}-4 & =0
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=-2
\end{aligned}
$$

We see that one eigenvalue is stable and one is not stable.
Case $\lambda_{1}=2$

$$
\begin{aligned}
\left(\begin{array}{cc}
3-\lambda & -1 \\
5 & -3-\lambda
\end{array}\right)\binom{v_{1}}{v_{2}} & =\binom{0}{0} \\
\left(\begin{array}{cc}
3-2 & -1 \\
5 & -3-2
\end{array}\right)\binom{v_{1}}{v_{2}} & =\binom{0}{0} \\
\left(\begin{array}{ll}
1 & -1 \\
5 & -5
\end{array}\right)\binom{v_{1}}{v_{2}} & =\binom{0}{0}
\end{aligned}
$$

From first row $v_{1}-v_{2}=0$. Hence $v_{2}=v_{1}$. Therefore the first eigenvector is $\boldsymbol{v}^{1}=\binom{v_{1}}{v_{1}}=$ $v_{1}\binom{1}{1}=\binom{1}{1}$ by setting $v_{1}=1$
$\underline{\text { Case } \lambda_{1}=-2}$

$$
\begin{aligned}
\left(\begin{array}{cc}
3-\lambda & -1 \\
5 & -3-\lambda
\end{array}\right)\binom{v_{1}}{v_{2}} & =\binom{0}{0} \\
\left(\begin{array}{cc}
3+2 & -1 \\
5 & -3+2
\end{array}\right)\binom{v_{1}}{v_{2}} & =\binom{0}{0} \\
\left(\begin{array}{ll}
5 & -1 \\
5 & -1
\end{array}\right)\binom{v_{1}}{v_{2}} & =\binom{0}{0}
\end{aligned}
$$

From first row $5 v_{1}-v_{2}=0$. Hence $v_{2}=5 v_{1}$. Therefore the first eigenvector is $\boldsymbol{v}^{1}=\binom{v_{1}}{5 v_{1}}=$ $v_{1}\binom{1}{5}=\binom{1}{5}$ by setting $v_{1}=1$.
Since one eigenvalue is stable and one is not, then $(0,0)$ is unstable saddle point. Here is a the Phase portrait. The lines marked red and blue are the two eigenvectors found above.

Figure 3: Phase portrait

```
p = StreamPlot[{3x-y, 5x-3y},{x, - 2, 2}, {y, - 5, 5},
    StreamPoints }->\mathrm{ {
        {
            {{1, 1}, {Thick, Red}},
            {{1, 5}, {Thick, Blue}},
            {{-1, -1}, {Thick, Red}},
            {{-1, -5}, {Thick, Blue}},
            Automatic}
        }, Epilog }->\mathrm{ {Red, PointSize[0.03], Point[{0, 0}]},
    Axes }->\mathrm{ True];
```

Figure 4: Code used

7 Section 4.7, problem 9

Draw the phase portraits of each of the following systems of differential equations

$$
\dot{x}=\left(\begin{array}{cc}
2 & 1 \\
-5 & -2
\end{array}\right) x
$$

solution

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =0 \\
\left|\begin{array}{cc}
2-\lambda & -1 \\
-5 & -2-\lambda
\end{array}\right| & =0 \\
(2-\lambda)(-2-\lambda)+5 & =0 \\
\lambda^{2}+1 & =0
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
$$

The real part is zero. Hence $(0,0)$ equilibrium point is called CENTER. it is stable, but not asymptotically stable.
$\underline{\text { Case } \lambda_{1}=i}$

$$
\begin{aligned}
\left(\begin{array}{cc}
2-\lambda & 1 \\
-5 & -2-\lambda
\end{array}\right)\binom{v_{1}}{v_{2}} & =\binom{0}{0} \\
\left(\begin{array}{cc}
2-i & 1 \\
-5 & -2-i
\end{array}\right)\binom{v_{1}}{v_{2}} & =\binom{0}{0}
\end{aligned}
$$

From second row $-5 v_{1}-(2+i) v_{2}=0$. Hence $v_{2}=-\frac{5}{(2+i)} v_{1}$. Therefore the first eigenvector is $\boldsymbol{v}^{1}=\binom{v_{1}}{-\frac{5}{(2+i)} v_{1}}=v_{1}\binom{1}{-\frac{5}{(2+i)}}=\binom{-(2+i)}{5}$ by setting $v_{1}=1$

Case $\lambda_{1}=-i$

$$
\begin{aligned}
\left(\begin{array}{cc}
2-\lambda & 1 \\
-5 & -2-\lambda
\end{array}\right)\binom{v_{1}}{v_{2}} & =\binom{0}{0} \\
\left(\begin{array}{cc}
2+i & 1 \\
-5 & -2+i
\end{array}\right)\binom{v_{1}}{v_{2}} & =\binom{0}{0}
\end{aligned}
$$

From second row $-5 v_{1}+(-2+i) v_{2}=0$. Hence $v_{2}=-\frac{5}{(-2+i)} v_{1}$. Therefore the first eigenvector is $\boldsymbol{v}^{1}=\binom{v_{1}}{-\frac{5}{(-2+i)} v_{1}}=v_{1}\binom{1}{-\frac{5}{(-2+i)}}=\binom{-2+i}{5}$ by setting $v_{1}=1$
$(0,0)$ equilibrium point is called CENTER with curves making closed circles around $(0,0)$ as shown below

Figure 5: Phase portrait

```
p = StreamPlot [{2x+y, - 5x-2y}, {x, -4, 4}, {y, -4, 4}
    , Epilog }->\mathrm{ {Red, PointSize[0.03], Point[{0, 0}]},
    Axes }->\mathrm{ True];
```

Figure 6: Code used

