MATH 4512 - DIFFERENTIAL EQUATIONS WITH APPLICATIONS HW7 - SOLUTIONS

1. (Section 4.1 - Exercise 6) Find all equilibrium values of the given system of differential equations

$$
\begin{aligned}
& \frac{d x}{d t}=\cos y \\
& \frac{d y}{d t}=\sin x-1 .
\end{aligned}
$$

Equilibrium values are solutions to the system of nonlinear equations

$$
\begin{aligned}
\cos y & =0 \\
\sin x-1 & =0 .
\end{aligned}
$$

Solutions of the first equation $\cos y=0$ are the points

$$
y_{l}=\frac{\pi}{2}+l \pi, \quad l \in \mathbb{Z}
$$

while solutions of the second equation $\sin x-1=0$ are

$$
x_{k}=\frac{\pi}{2}+2 k \pi, \quad k \in \mathbb{Z} .
$$

Equilibrium points of this system are

$$
\left(x_{k}, y_{l}\right), \quad k, l \in \mathbb{Z}
$$

2. (Section 4.1 - Exercise 8) Find all equilibrium values of the given system of differential equations

$$
\begin{aligned}
& \frac{d x}{d t}=x-y^{2} \\
& \frac{d y}{d t}=x^{2}-y \\
& \frac{d z}{d t}=\mathrm{e}^{z}-x .
\end{aligned}
$$

Equilibrium values are solutions to the system of nonlinear equations

$$
\begin{aligned}
& x-y^{2}=0 \\
& x^{2}-y=0 \\
& \mathrm{e}^{z}-x=0 .
\end{aligned}
$$

From $x=y^{2}$ we obtain $y^{4}-y=0$. Real solutions of this equation are

$$
y_{1}=0, \quad y_{2}=1
$$

Then $x_{1}=y_{1}^{2}=0$ and $x_{2}=y_{2}^{2}=1$. Notice that there is no value z_{1} such that $\mathrm{e}^{z_{1}}=x_{1}=0$, while $z_{2}=0$, where $\mathrm{e}^{z_{2}}=x_{2}=1$. Therefore, the only equilibrium point is

$$
\left[\begin{array}{l}
x_{2} \\
y_{2} \\
z_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

3. (Section 4.2 - Exercise 9) Determine the stability or instability of all solutions of the following system of differential equations

$$
\dot{x}=\left[\begin{array}{rrrr}
0 & 2 & 0 & 0 \\
-2 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 \\
0 & 0 & -2 & 0
\end{array}\right] x .
$$

The characteristic polynomial of the system matrix

$$
A=\left[\begin{array}{rrrr}
0 & 2 & 0 & 0 \\
-2 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 \\
0 & 0 & -2 & 0
\end{array}\right]
$$

is

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\left|\begin{array}{rrrr}
-\lambda & 2 & 0 & 0 \\
-2 & -\lambda & 0 & 0 \\
0 & 0 & -\lambda & 2 \\
0 & 0 & -2 & -\lambda
\end{array}\right| \\
& =(-\lambda)(-1)^{1+1}\left|\begin{array}{rrr}
-\lambda & 0 & 0 \\
0 & -\lambda & 2 \\
0 & -2 & -\lambda
\end{array}\right|+2(-1)^{1+2}\left|\begin{array}{rrr}
-2 & 0 & 0 \\
0 & -\lambda & 2 \\
0 & -2 & -\lambda
\end{array}\right| \\
& =-\lambda\left(-\lambda^{3}-4 \lambda\right)-2\left(-2 \lambda^{2}-8\right)=\lambda^{2}\left(\lambda^{2}+4\right)+4\left(\lambda^{2}+4\right)=\left(\lambda^{2}+4\right)^{2} .
\end{aligned}
$$

For finding this determinant we used first-row element expansion.
The eigenvalues of the matrix A are $\lambda_{1}=2 i, \lambda_{2}=-2 i$, both with multiplicity 2 . It remains to check the number of linearly independent eigenvectors for each λ_{1} and λ_{2}.

First consider the system $\left(A-\lambda_{1} I\right) v=0$, i.e.

$$
\left[\begin{array}{rrrr}
-2 i & 2 & 0 & 0 \\
-2 & -2 i & 0 & 0 \\
0 & 0 & -2 i & 2 \\
0 & 0 & -2 & -2 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

From the first equation we obtain $-2 i v_{1}+2 v_{2}=0$, and $v_{2}=i v_{1}$, while from the third $-2 i v_{3}+2 v_{4}=0$ it follows $v_{4}=i v_{3}$. Thus every eigenvector v has the form

$$
v=\left[\begin{array}{c}
v_{1} \\
i v_{1} \\
v_{3} \\
i v_{3}
\end{array}\right]=v_{1}\left[\begin{array}{l}
1 \\
i \\
0 \\
0
\end{array}\right]+v_{3}\left[\begin{array}{l}
0 \\
0 \\
1 \\
i
\end{array}\right] .
$$

Notice that

$$
\left[\begin{array}{l}
1 \\
i \\
0 \\
0
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{l}
0 \\
0 \\
1 \\
i
\end{array}\right]
$$

are linearly independent eigenvectors for $\lambda_{1}=2 i$ that generate all other eigenvectors. Since the multiplicity of λ_{1} is the same as the number of linearly independent eigenvectors, we proceed with analysis of the second eigenvalue.
Consider the system $\left(A-\lambda_{2} I\right) v=0$, i.e.

$$
\left[\begin{array}{rrrr}
2 i & 2 & 0 & 0 \\
-2 & 2 i & 0 & 0 \\
0 & 0 & 2 i & 2 \\
0 & 0 & -2 & 2 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] .
$$

From the second equation $-2 v_{1}+2 i v_{2}=0$ we obtain $v_{1}=i v_{2}$, while from the last equation $-2 v_{3}+2 i v_{4}=0$ it follows $v_{3}=i v_{4}$. Thus every eigenvector v has the form

$$
v=\left[\begin{array}{c}
i v_{2} \\
v_{2} \\
i v_{4} \\
v_{4}
\end{array}\right]=v_{2}\left[\begin{array}{l}
i \\
1 \\
0 \\
0
\end{array}\right]+v_{4}\left[\begin{array}{c}
0 \\
0 \\
i \\
1
\end{array}\right] .
$$

Similarly to previous case, vectors

$$
\left[\begin{array}{c}
i \\
1 \\
0 \\
0
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{c}
0 \\
0 \\
i \\
1
\end{array}\right]
$$

are linearly independent eigenvectors for $\lambda_{2}=-2 i$ that generate all other eigenvectors.

Since the multiplicity of each λ_{1} and λ_{2} is the same as the number of corresponding linearly independent eigenvectors, we conclude that every solution of the starting system of DEs is stable.
4. (Section 4.2 - Exercise 10) Determine the stability or instability of all solutions of the following system of differential equations

$$
\dot{x}=\left[\begin{array}{rrrr}
0 & 2 & 1 & 0 \\
-2 & 0 & 0 & 1 \\
0 & 0 & 0 & 2 \\
0 & 0 & -2 & 0
\end{array}\right] x
$$

The characteristic polynomial of the system matrix

$$
A=\left[\begin{array}{rrrr}
0 & 2 & 1 & 0 \\
-2 & 0 & 0 & 1 \\
0 & 0 & 0 & 2 \\
0 & 0 & -2 & 0
\end{array}\right]
$$

is

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\left|\begin{array}{rrrr}
-\lambda & 2 & 1 & 0 \\
-2 & -\lambda & 0 & 1 \\
0 & 0 & -\lambda & 2 \\
0 & 0 & -2 & -\lambda
\end{array}\right| \\
& =(-\lambda)(-1)^{1+1}\left|\begin{array}{rrr}
-\lambda & 0 & 1 \\
0 & -\lambda & 2 \\
0 & -2 & -\lambda
\end{array}\right|+(-2)(-1)^{2+1}\left|\begin{array}{rrr}
2 & 1 & 0 \\
0 & -\lambda & 2 \\
0 & -2 & -\lambda
\end{array}\right| \\
& =-\lambda\left(-\lambda^{3}-4 \lambda\right)+2\left(2 \lambda^{2}+8\right)=\lambda^{2}\left(\lambda^{2}+4\right)+4\left(\lambda^{2}+4\right)=\left(\lambda^{2}+4\right)^{2} .
\end{aligned}
$$

For finding this determinant we used first-column element expansion.
Eigenvectors for $\lambda_{1}=2 i$ solve $\left(A-\lambda_{1} I\right) v=0$, i.e.

$$
\left[\begin{array}{rrrr}
-2 i & 2 & 1 & 0 \\
-2 & -2 i & 0 & 1 \\
0 & 0 & -2 i & 2 \\
0 & 0 & -2 & -2 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The third equation $-2 i v_{3}+2 v_{4}=0$ implies $v_{4}=i v_{3}$. The second equation can be written as

$$
0=-2 v_{1}-2 i v_{2}+v_{4}=-2 v_{1}-2 i v_{2}+i v_{3}=-i\left(-2 i v_{1}+2 v_{2}-v_{3}\right) .
$$

Combining the last relation with the first equation $-2 i v_{1}+2 v_{2}+v_{3}=0$, we obtain $v_{3}=0$. Consequently $v_{4}=0$ and $v_{2}=i v_{1}$. Every eigenvector v corresponding to $\lambda_{1}=2 i$ can be represented as

$$
v=\left[\begin{array}{c}
v_{1} \\
i v_{1} \\
0 \\
0
\end{array}\right]=v_{1}\left[\begin{array}{l}
1 \\
i \\
0 \\
0
\end{array}\right] .
$$

Since the number of linearly independent eigenvectors is smaller than the multiplicity 2 of λ_{1}, we conclude that every solution of the starting system of DEs is unstable.
5. (Section 4.3 - Exercise 8) Verify that the origin is an equilibrium point of the following system of equations

$$
\begin{aligned}
& \dot{x}=y+\cos y-1 \\
& \dot{y}=-\sin x+x^{3}
\end{aligned}
$$

and determine (if possible) whether it is stable or unstable.
Vector $[0,0]^{\top}$ is obviously an equilibrium point of this system.

First approach.

From the expansions

$$
\begin{aligned}
& \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots \\
& \cos y=1-\frac{y^{2}}{2!}+\frac{y^{4}}{4!}-\cdots
\end{aligned}
$$

we can write down $\dot{x}=y+\cos y-1$, and $\dot{y}=x^{3}-\sin x$, as

$$
\begin{aligned}
& \dot{x}=y-\frac{y^{2}}{2!}+\frac{y^{4}}{4!}-\cdots=y+g_{1}(y) \\
& \dot{y}=x^{3}-x+\frac{x^{3}}{3!}-\frac{x^{5}}{5!}-\cdots=-x+g_{2}(x) .
\end{aligned}
$$

Then

$$
\left[\begin{array}{l}
\dot{x} \\
\dot{y}
\end{array}\right]=\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
g_{1}(y) \\
g_{2}(x)
\end{array}\right] .
$$

The characteristic polynomial of the previous matrix is

$$
p(\lambda)=\operatorname{det}\left[\begin{array}{rr}
-\lambda & 1 \\
-1 & -\lambda
\end{array}\right]=\lambda^{2}+1
$$

Since its roots $\lambda_{1}=i, \lambda_{2}=-i$, both have zero real part, we cannot determine whether the vector $[0,0]^{\top}$ is stable or not.
(At this point of the course, we can only apply the theory from Sections 4.1-4.3).

Second approach.

Let $f_{1}(x, y)=y+\cos y-1$ and $f_{2}(x, y)=-\sin x+x^{3}$. The Jacobian matrix for nonlinear vector-valued function

$$
f(x, y)=\left[\begin{array}{l}
f_{1}(x, y) \\
f_{2}(x, y)
\end{array}\right]
$$

evaluated at the equilibrium point $[0,0]^{\top}$ is

$$
A=\left[\begin{array}{cc}
\frac{\partial f_{1}}{\partial x}(0,0) & \frac{\partial f_{1}}{\partial y}(0,0) \\
\frac{\partial f_{2}}{\partial x}(0,0) & \frac{\partial f_{2}}{\partial y}(0,0)
\end{array}\right]=\left[\begin{array}{cc}
0 & 1-\sin y \\
-\cos x+3 x^{2} & 0
\end{array}\right]_{x=0, y=0}=\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

We obtained the same matrix and we can proceed as in the first approach.
6. (Section 4.3 - Exercise 10) Verify that the origin is an equilibrium point of the following system of equations

$$
\begin{aligned}
\dot{x} & =\ln \left(1+x+y^{2}\right) \\
\dot{y} & =-y+x^{3}
\end{aligned}
$$

and determine (if possible) whether it is stable or unstable.
Again the vector $[0,0]^{\top}$ is obviously an equilibrium point of this system.

First approach.

Here we will use expansion

$$
\ln \left(1+x+y^{2}\right)=x+y^{2}-\frac{\left(x+y^{2}\right)^{2}}{2}+\frac{\left(x+y^{2}\right)^{3}}{3}-\cdots
$$

Then

$$
\left[\begin{array}{c}
\dot{x} \\
\dot{y}
\end{array}\right]=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{c}
g(x, y) \\
x^{3}
\end{array}\right]
$$

where

$$
g(x, y)=y^{2}-\frac{\left(x+y^{2}\right)^{2}}{2}+\frac{\left(x+y^{2}\right)^{3}}{3}-\cdots
$$

The characteristic polynomial of the previous matrix is

$$
p(\lambda)=\operatorname{det}\left[\begin{array}{rr}
1-\lambda & 0 \\
0 & -1-\lambda
\end{array}\right]=-(1-\lambda)(1+\lambda) .
$$

Since one eigenvalue of A has positive real part, the equilibrium value $[0,0]^{\top}$ for this system is unstable.

Second approach.

Let $f_{1}(x, y)=\ln \left(1+x+y^{2}\right)$ and $f_{2}(x, y)=-y+x^{3}$. The Jacobian matrix for nonlinear vector-valued function

$$
f(x, y)=\left[\begin{array}{l}
f_{1}(x, y) \\
f_{2}(x, y)
\end{array}\right]
$$

evaluated at the equilibrium point $[0,0]^{\top}$ is

$$
\begin{aligned}
A & =\left[\begin{array}{cc}
\frac{\partial f_{1}}{\partial x}(0,0) & \frac{\partial f_{1}}{\partial y}(0,0) \\
\frac{\partial f_{2}}{\partial x}(0,0) & \frac{\partial f_{2}}{\partial y}(0,0)
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{1+x+y^{2}} & \frac{2 y}{1+x+y^{2}} \\
3 x^{2} & -1
\end{array}\right]_{x=0, y=0} \\
& =\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right] .
\end{aligned}
$$

We obtained the same matrix and we can proceed as in the first approach.

